
CSL Technical Report SRI-CSL-02-03 � May 23, 2002

Bounded Model Checking for Timed Automata

Maria Sorea�

This research was supported by the National Science Foundation under grants CCR-00-

82560 and CCR-00-86096.�Also affiliated with: University of Ulm, Germany.

Computer Science Laboratory � 333 Ravenswood Ave. � Menlo Park, CA 94025 � (650) 326-6200 � Facsimile: (650) 859-2844

AbstratGiven a timed automatonM , a linear temporal logi formula ', and a bound k,bounded model heking for timed automata determines if there is a falsifyingpath of length k to the hypothesis that M satis�es the spei�ation '. Thisproblem an be redued to the satis�ability problem for Boolean onstraint for-mulas over linear arithmeti onstraints. We show that bounded model hekingfor timed automata is omplete, and we give lower and upper bounds for thelength k of ounterexamples. Moreover, we de�ne bounded model heking forsystems of timed automata in a ompositional way.

Contents
1 Introdution 32 Bakground 53 Timed Automata 64 System Veri�ation 95 BMC for Networks of Timed Automata 186 Disussion and Conlusion 24

1

List of Figures3.1 Example of a timed automaton (the simple example). 74.1 Automaton for F (at = l2). 155.1 Produt onstrution for timed automata. 19

2

Chapter 1IntrodutionTimed automata [AD94℄ are state-transition graphs augmented with a �niteset of real-valued loks. The loks proeed at a uniform rate and onstrainthe times at whih transitions may our. Given a timed automaton and aproperty expressed in a timed logi suh as TCTL [ACD90℄ or T� [HNSY94℄,model heking answers the question of whether or not the timed automatonsatis�es the given formula. The fundamental graph-theoreti model hekingalgorithm by Alur, Couroubetis, and Dill [ACD90℄ onstruts a �nite quotient,the so-alled region graph, of the in�nite state graph. Algorithms diretly basedon the expliit onstrution of suh a partition are, however, unlikely to per-form eÆiently in pratie, sine the number of equivalene lasses of states ofthe region graph grows exponentially with the largest time onstant and thenumber of loks that are used to speify timing onstraints. Symboli modelheking algorithms are obtained by haraterizing regions as Boolean ombi-nations of linear inequalities over loks [HNSY94℄. Based on these algorithms,tools for verifying timed automata, suh as Uppaal [LPY97℄, Kronos [DOTY96℄,HyTeh [HHWT97℄, and Tempo [Sor01℄, have been developed.As an alternative to lassial model heking, the tehnique of boundedmodel heking has been reently introdued [CBRZ01℄. Given a system Mmodeled as a state mahine, a temporal logi spei�ation ', and a bound k,the bounded model heking (BMC) problem onsists in searhing for ounterex-amples of length k to the model heking problem M j= '. The BMC problemfor �nite state models an be redued to a propositional satis�ability problem,3

and o�-the-shelf propositional satis�ability (SAT) hekers are used to onstrutounterexamples from satisfying assignments to the propositional variables. Ithas been demonstrated that BMC is in many ases more e�etive in falsify-ing designs than traditional model heking tehniques [CBRZ01, CFF+01℄.In [dMRS02℄ the BMC paradigm has been extended to programs over in�nitestate spae, and LTL formulas augmented with a deidable set of onstraints.For an in�nite state system M , a linear temporal logi formula with onstraints', and a bound k, it has been illustrated how a Boolean onstraint formula,[[M;'℄℄k, an be onstruted that is satis�able if and only if there is a oun-terexample of length k for the model heking problem M j= '. BMC forin�nite state systems is sound, and for invariant properties also omplete, butinomplete for the entire LTL logi.The main ontribution here is to show that BMC for timed automata isindeed omplete for all LTL formulas with lok onstraints. We desribe howa timed automaton an be diretly enoded into a Boolean onstraint formula,without onstruting the orresponding region graph. Our approah is om-positional, in that Boolean onstraint formulas enoding omplex systems anbe obtained by Boolean ombinations of the enoding of the omponents. Ob-viously, this ompositional approah redues the size of the generated formulaonsiderably. Moreover, we give lower and upper bounds for the length k ofounterexamples that depend on the size of the LTL formula and the size of theregion graph orresponding to the given timed automaton.The paper is strutured as follows. In Chapter 2 we provide some bakgroundinformation on Boolean onstraints. Chapter 3 reviews the basi notions oftimed automata. Chapter 4 presents the details of BMC for timed automatatogether with the ompleteness results. Lower and upper bounds for the lengthk of ounterexamples are given. Chapter 5 illustrates BMC for networks, that is,parallel omposition of timed automata, and shows how omplex systems an beenoded into a Boolean onstraint formula in a ompositional way, without �rstomputing the produt automaton of the omponents. Finally, in Chapter 6 wepresent some experimental results using Fisher's mutual exlusion protool asa benhmark, and draw onlusions.
4

Chapter 2BakgroundA set of variables V := fx1; : : : ; xng is said to be typed if there are nonemptysets D1 through Dn and a type assignment � suh that �(xi) = Di. For a set oftyped variables V , a variable assignment is a funtion � from variables x 2 Vto an element of �(x).Let V be a set of typed variables and L be an assoiated logial language.A set of onstraints in L is alled a onstraint theory C if it inludes onstantstrue, false and if it is losed under negation; a subset of C of onstraints withfree variables in V 0 � V is denoted by C(V 0). For 2 C and � an assignment forthe free variables in , the value of the prediate [[℄℄� is alled the interpretationof w.r.t. �. Hereby, [[true℄℄� ([[false ℄℄�) is assumed to hold for all (for no) �,and [[:℄℄� holds i� [[℄℄� does not hold. A set of onstraints C � C is said tobe satis�able if there exists a variable assignment � suh that [[℄℄� holds forevery in C; otherwise, C is said to be unsatis�able. Furthermore, a funtionC-sat(C) is alled a C-satis�ability solver if it returns ? if the set of onstraintsC is unsatis�able and a satisfying assignment for C otherwise.For a given theory C, the set of Boolean onstraints Bool(C) inludes all on-straints in C and it is losed under onjuntion ^ , disjuntion _ , and negation:: The notions of satis�ability, inonsisteny, satisfying assignment, and satis-�ability solver are homomorphially lifted to the set of Boolean onstraints inthe usual way. If V = fp1; : : : ; png and the orresponding type assignment �(pi)is either true or false, then Bool(ftrue; falseg [V) redues to the usual notionof Boolean logi with propositional variables fp1; : : : ; png.5

Chapter 3Timed AutomataWe review some basi notions of transition systems and timed automata. Timedautomata, as introdued by Alur, Couroubetis, and Dill [ACD90℄, are state-transition graphs augmented with a �nite set of real-valued loks. Given a setof loks Cl = fx1; : : : ; xng, a lok-valuation funtion v : Cl ! IR+0 assignsa (positive) real value to eah lok. Clok onstraints ompare lok valueswith rational onstants. Given a set Cl of lok variables (or simply loks),x1; x2 arbitrary loks, 2 IQ�0, and � 2 f�;�; <;>;=g, the set � of lok (ortiming) onstraints over Cl is de�ned by the grammarg := tt j ff j x1 � j x1 � x2 � j g1 ^ g2:For a positive integer d, �(d) is the �nite subset of all timing onstraints x � ,x � y � , where x; y 2 Cl , � 2 f<;�;=;�; >g and 2 f0; : : : ; dg. Clokonstraints over Cl are interpreted with respet to lok-valuation funtionsv : Cl ! IR+0 . For a lok-valuation funtion v and a lok onstraint g over Cl ,we write v j� g (to be read as \v satis�es g") to denote that aording to thevalues given by v the onstraint g evaluates to true. Formally, v j� g is de�nedindutively over the syntati struture of g, where x1; x2 2 Cl are arbitraryloks, 2 IQ�0, and � 2 f�;�; <;>;=g:v j6�ff v j�tt v j�x1 � x2 � i� v(x1)� v(x2) � v j�x1 � i� v(x1) � v j� g1 ^ g2 i� v j� g1 and v j� g2For Æ 2 IR�0, v+ Æ denotes the lok valuation that maps eah lok x 2 Clto the value v(x) + Æ. For a lok x 2 Cl , v[x := 0℄ denotes the lok valuation6

l0y � 1
l1 l2

x := 0x := 0 y > xy := 0 x � yFigure 3.1: Example of a timed automaton (the simple example).for Cl that maps x to the value 0 and leaves all the other lok values unhanged.A timed automaton S is a tuple hL; l0;Cl ; E; Invi, where L is a nonempty�nite set of loations, l0 � L is the initial loation, and Cl is a �nite set ofloks. Inv : L ! � assigns a set of downward losed lok onstraints toeah loation L; the elements of Inv(l) are the invariants for loation l. E �L�P(�)�P(Cl)�L is a �nite set of edges. An edge e = hl; g; r; l0i representsa transition from loation l to loation l0. A transition may be �red only if thetiming onstraint (guard of the transition) g holds with respet to the urrentvalue of the loks, and if the invariant of the target loation is satis�ed withrespet to the modi�ed value of the loks. Firing a transition does not onlyhange the urrent loation but also resets the loks in r to 0.A timed automaton with three loations l0, l1, l2 and two loks x, y isdisplayed in Figure 3.1. The initial loation is l0, and transitions are deoratedwith both timing onstraints and lok resets suh as x := 0. The invariant forloation l0 is y � 1. Timing onstraints that are true are omitted.Alur, Couroubetis, and Dill [ACD90℄ introdue the fundamental notion oflok regions, whih partition the spae of possible lok evaluation for a timedautomaton into �nitely many regions. For a timed automaton S with loks Cland largest onstant d, ourring in any timing onstraint of S , a lok region isa set � of lok valuations, suh that for all timing onstraints g 2 �(d) and forany two v1; v2 2 � it is the ase that v1 j� g if and only if v2 j� g. In this ase wewrite v1�S v2. We will use [v℄ to denote the lok region to whih v belongs.A state of a timed automaton S is a pair (l; v) where l 2 L is a loation ofS and v a lok valuation for Cl . An initial state is of the form (l0; v0) wherel0 denotes the initial state of S and v0 maps all loks in Cl to 0. We extendthe satis�ability relation for lok onstraints on states, as follows: for a state7

(l; v) and a timing onstraint g, (l; v) j� g i� v j� g. A timed step is either adelay step, where time advanes by some positive real-valued Æ, or an instan-taneous state transition step. For a timed automaton S = hL; l0;Cl ; E; Invi,and Æ � 0, we say that the state (l; v + Æ) is obtained from (l; v) by a de-lay step (l; v) Æ�!(l; v + Æ), if the invariant onstraint v + Æ j� Inv(l) holds. Astate transition step (l; v) g;r�!(l0; v0) ours if there exists an edge hl; g; r; l0i, andv j� g, v0 = v[r := 0℄, and v0 j� Inv(l0). The union of delay and state tran-sition steps de�nes the timed transition relation) of a timed automaton S .Now, a path � is an in�nite sequene of states (l0; v0); (l1; v1); : : : suh that(li; vi))(li+1; vi+1);8i � 0.

8

Chapter 4System Veri�ationIn presenting the details of BMC for timed automata together with the om-pleteness results, we assume as given a solvable onstraint theory C that in-ludes the lok onstraints �, and onstraints of the form x0 � x = y0 � y,where x; x0; y; y0 2 Cl are lok variables. To make this paper as self-ontainedas possible, we reall some notions and de�nitions from [dMRS02℄. For the sim-pliity of the presentation we onsider only timed automata that are nonzeno.A omplete BMC proedure for timed automata, however, requires an expliitenoding of nonzenoness suh as, for example, the one given in [MRS02℄.De�nition 1 (C-Programs) Typed variables in V := fx1; : : : ; xng are alsoalled state variables, and a program state is a variable assignment over V . Apair hI; T i is a C-program over V if I 2 Bool(C(V)) and T 2 Bool(C(V [V 0)),where V 0 is a primed, disjoint opy of V . I is used to restrit the set of initialprogram states, and T spei�es the transition relation between states and theirsuessor states. The set of C-programs over V is denoted by Prg(C(V)).The semantis of a program P is given in terms of a transition system M in theusual way, and, by a slight abuse of notation, we sometimes write M for boththe program and its assoiated transition system.A timed automaton S = hL; l0;Cl ; E; Invi an easily be desribed in terms ofa program with linear arithmeti onstraints over states (at ; x1; : : : ; xn), whereat is interpreted over the set L of loations and the lok variables x1; : : : ; xn 2Cl are interpreted over IR+0 . 9

De�nition 2 Given a timed automaton S = hL; l0;Cl ; E; Invi, with Cl =fx1; : : : ; xng the set of loks. S an be de�ned as a hI; T i program in Prg(C(V))over the set V = fat ; x1; : : : ; xn; at 0; x01; : : : ; x0ng as follows.� De�nition of the initial state l0I := (at = l0 ^ x1 = 0 ^ : : : ^ xn = 0):� De�nition of a state transition step orresponding to e = hl; g; r; l0i 2 E~T (e) := (at = l ^ g ^ x01 = z1 ^ : : : ^ x0n = zn ^ at 0 = l0)where zi = 0 if xi 2 r; otherwise zi = xi.� De�nition of delay steps (Inv(S) is the set of all loations that have aninvariant di�erent from true.)delay := 9Æ � 0: (^l2Inv(S)(at = l) Inv(l)(x01; : : : ; x0n))^ (at 0 = at)^ (x01 = x1 + Æ) ^ : : : ^ (x0n = xn + Æ)):The state formula Inv(l)(x01; : : : ; x0n) is obtained from the invariant of lo-ation l, Inv(l), by replaing the variables x1; : : : ; xn in the onstraints ofInv(l) by the primed variables x01; : : : ; x0n.� De�nition of the transition relation T (
 denotes the exlusive or onne-tive) T :=
e2E ~T (e)
 delay :The timed automaton depited in Figure 3.1, for example, is expressed interms of the program hI; T i over states (at ; x; y), where at is interpreted overthe set of loations fl0; l1; l2g, and the lok variables x; y are interpreted overIR+0 . Initially, the program is in loation l0 and the value of the loks x; y isequal to 0. The transitions are enoded by a onjuntion of onstraints over theurrent state variables at ; x; y and the next state variables at 0; x0; y0.I(at ; x; y) := (at = l0 ^ x = 0 ^ y = 0)T (at ; x; y; at 0; x0; y0) := (at = l0 ^ x0 = 0 ^ y0 = y ^ at 0 = l0)
(at = l0 ^ x0 = 0 ^ y0 = y ^ at 0 = l1)
10

(at = l0 ^ y > x ^ x0 = x ^ y0 = y ^ at 0 = l1)
(at = l1 ^ y0 = 0 ^ x0 = x ^ at 0 = l0)
(at = l1 ^ x � y ^ x0 = x ^ y0 = y ^ at 0 = l2)
delay(at ; x; y; at 0; x0; y0)The delay steps are enoding asdelay(at ; x; y; at 0; x0; y0) :=9Æ � 0: ((at = l0) y0 � 1) ^ (at0 = at) ^ (x0 = x+ Æ) ^ (y0 = y + Æ)):The above formula is not ontained in Bool(C), sine the de�nition of delayontains an existential quanti�er. After performing quanti�er elimination weobtaindelay(at ; x; y; at 0; x0; y0) :=((at = l0) y0 � 1) ^ (x0 � x � 0) ^ (y0 � y = x0 � x)^ (at 0 = at)):The formulas of the onstraint linear temporal logi LTL(C) are linear-time tem-poral logi formulas with the usual \until" and \release" operators, and on-straints 2 C as atoms. Note that only onstraints in � are allowed.' ::= true j false j j '1 ^'2 j '1 _'2 j '1U '2 j '1R '2The derived operators F' = trueU ' and G' = falseR ' denote \eventually'" and \globally '" . Our logi does not ontain a next-step operator. Themain interest in removing the next-step operator stems from the fat that wedo not want to distinguish between one delay step of duration, say, 1 and twosubsequent delay steps of durations 2=5 and 3=5, sine these traes are on-sidered to be observationally equivalent. Logis without an expliit next-stepoperator have also been onsidered, for example, by Alur [Alu91℄, by Henzinger,Niollin, Sifakis, and Yovine [HNSY94℄, and by Dams [Dam96℄. Given a pro-gram M 2 Prg(C) and a path � in M , the satis�ability relation M;� j= ' foran LTL(C) formula ' is given in the usual way with the notable exeption of thease of onstraint formulas . In this ase, M;� j= if and only if holds in thestart state of �.De�nition 3 (Semantis of LTL(C)) Given a program M 2 Prg(C(V)) overthe set of typed variables V , a path � in the transition system assoiated with11

M , and a formula ' 2 LTL(C(V)), the satis�ability relationM;� j= ' is de�nedindutively over the syntax of '.M;� j= trueM;� j== falseM;� j= i� �(0) j� M; � j= '1 ^'2 i� M;� j= '1 and M;� j= '2M;� j= '1 _'2 i� M;� j= '1 or M;� j= '2M;� j= '1U '2 i� 9i:M; �i j= '1 and 8j < i:M; �j j= '2M;� j= '1R '2 i� 8i:M; �i j= '1 or 9j < i:M; �j j= '2Assuming the notation above, the C-model heking problem M j= ' holds i�for all paths � = s0; s1; : : : in M with s0 2 I it is the ase that M;� j= '.The following lemma states that the logi LTL(C) preserves bisimulation.Lemma 1 Given a program M with a �nite bisimulation M 0 (i.e., M �M 0),and a formula ' 2 LTL(C); then M j= ' i� M 0 j= '.Proof. The proof follows by indution over the struture of '. The ases' = true and ' = false are trivial.' = Assume M;� j= ' for all paths � = (l0; v0); (l1; v1); : : : in M . Thenby De�nition 3 M;� j= i� (l0; v0) j� . From (l0; v0) j� by the de�nition oflok regions it follows that (l0; [v0℄) j� , where [v0℄ denotes the lok region ofM with v0 2 [v0℄. Again by De�nition 3, we obtain that M 0; [�℄ j= , where[�℄ = (l0; [v0℄); (l1; [v1℄); : : :.' = '1U '2 Assume M;� j= ' for all paths � = (l0; v0); (l1; v1); : : : in M .Then, by De�nition 3 there exists i � 0 suh that M;�i j= '1 and M;�j j= '2,8j < i. From the fat that M and M 0 are bisimilar, we an onstrut a path�0 = (l0; [v0℄); (l1; [v1℄); : : :, suh that vi 2 [vi℄ for all i � 0. By indution hypoth-esis, M 0; �0i j= '1 and M 0; �0j j= '2, and therefore by De�nition 3, M 0; �0 j= '.Sine � � �0 for all paths � in M and �0 in M 0, it follows that M 0 j= '.' = '1R '2 Assume M;� j= ' for all paths � = (l0; v0); (l1; v1); : : : in M .Then, by De�nition 3 for all i � 0, M;�i j= '1 or there exists j < i suh thatM;�j j= '2. From the fat that M and M 0 are bisimilar, we an onstrut a12

path �0 = (l0; [v0℄); (l1; [v1℄); : : :, suh that vi 2 [vi℄ for all i � 0. By indutionhypothesis, M 0; �0i j= '1 for all i � 0, or M 0; �0j j= '2 for some j < i. Thus,by De�nition 3, M 0; �0 j= '. Sine � � �0 for all paths � in M and �0 in M 0, itfollows that M 0 j= '.' = '1 ^ '2 Follows by indution hypothesis.' = '1 _ '2 Follows by indution hypothesis. 2Now, given a bound k, a programM 2 Prg(C(V)) and a formula ' 2 LTL(C)we onsider the problem of onstruting a formula [[M;'℄℄k 2 Bool(C(V)), whihis satis�able if and only if there is a ounterexample of length k for the C-modelheking problem M j= '. This onstrution proeeds as follows.1. De�nition of [[M ℄℄k as the unfolding of the program M up to step k frominitial states (this requires k disjoint opies of V).2. Translation of :' into a orresponding B�uhi automaton B:' whose lan-guage of aepting words onsists of the satisfying paths of :'.3. Enoding of the transition system for B:' and the B�uhi aeptane on-dition as a Boolean formula, say [[B℄℄k.4. Forming the onjuntion [[M;'℄℄k := [[B℄℄k ^ [[M ℄℄k.5. A satisfying assignment for the formula [[M;'℄℄k indues a ounterexampleof length k for the model heking problem M j= '.De�nition 4 (Enoding of C-Programs) The enoding [[M ℄℄k of the kthunfolding of a C-program M = hI; T i in Prg(C(fx1; : : : ; xng)) is given by theBoolean onstraint formula [[M ℄℄k.I0(x[0℄) := Ihfxi 7! xi[0℄ j xi 2 V giTj(x[0℄; : : : ; x[k℄) := T hfxi 7! xi[j℄ j xi 2 V g [fx0i 7! xi[j + 1℄ j xi 2 V gi[[M ℄℄k := I0(x[0℄)^ k�1̂j=0 Tj(x[j℄; x[j + 1℄)where fxi[j℄ j 0 � j � kg is a family of typed variables for enoding the state ofvariable xi in the jth step, x[j℄ is used as an abbreviation for x1[j℄ : : : ; xn[j℄, andT hxi 7! xi[j℄i denotes simultaneous substitution of the xi by xi[j℄ in formula T .13

A two-step unfolding of the simple program in Figure 3.1, for example, is en-oded by [[simple℄℄2 := I0 ^ T0 ^ T1 (�).I0 := (at [0℄ = l0 ^ x[0℄ = 0 ^ y[0℄ = 0)T0 := (at [0℄ = l0 ^ x[1℄ = 0 ^ y[1℄ = y[0℄ ^ at [1℄ = l0)
(at [0℄ = l0 ^ x[1℄ = 0 ^ y[1℄ = y[0℄ ^ at [1℄ = l1)
(at [0℄ = l0 ^ y[0℄ > x[0℄ ^ x[1℄ = x[0℄ ^ y[1℄ = y[0℄ ^ at [1℄ = l1)
(at [0℄ = l1 ^ y[1℄ = 0 ^ x[1℄ = x[0℄ ^ at [1℄ = l0)
(at [0℄ = l1 ^ x[0℄ � y[0℄ ^ x[1℄ = x[0℄ ^ y[1℄ = y[0℄ ^ at [1℄ = l2)
((at [0℄ = l0) y[1℄ � 1) ^ (x[1℄� x[0℄ � 0) ^(y[1℄� y[0℄ = x[1℄� x[0℄)^ (at [1℄ = at [0℄))T1 := (at [1℄ = l0 ^ x[2℄ = 0 ^ y[2℄ = y[1℄ ^ at [2℄ = l0)
(at [1℄ = l0 ^ x[2℄ = 0 ^ y[2℄ = y[1℄ ^ at [2℄ = l1)
(at [1℄ = l0 ^ y[1℄ > x[1℄ ^ x[2℄ = x[1℄ ^ y[2℄ = y[1℄ ^ at [2℄ = l1)
(at [1℄ = l1 ^ y[2℄ = 0 ^ x[2℄ = x[1℄ ^ at [2℄ = l0)
(at [1℄ = l1 ^ x[1℄ � y[1℄ ^ x[2℄ = x[1℄ ^ y[2℄ = y[1℄ ^ at [2℄ = l2)
((at [1℄ = l0) y[2℄ � 1) ^ (x[2℄� x[1℄ � 0) ^(y[2℄� y[1℄ = x[2℄� x[1℄)^ (at [2℄ = at [1℄))A di�erene between our approah and the BMCmethod presented in [CBRZ01℄onsists in the enoding of the LTL formulas. While in [CBRZ01℄ LTL formu-las are translated diretly into propositional formulas, we use B�uhi automatafor the enoding. This simpli�es substantially the notations and the proofs.The translation of linear temporal logi formulas into a orresponding B�uhiautomaton is well studied in the literature (e.g., [GPVW95℄) and does not re-quire additional explanation. Notie, however, that the translation of LTL(C)formulas yields B�uhi automata with C-onstraints as labels. Both the resultingtransition system and the bounded aeptane test based on the detetion ofreahable yles with at least one �nal state an easily be enoded as Booleanonstraint formulas [dMRS02℄.De�nition 5 (Enoding of B�uhi Automata) Let V = fx1; : : : ; xng be aset of typed variables, B = h�; Q;�; Q0; F i be a B�uhi automaton with labels �in Bool(C), and p be a variable (not in V), whih is interpreted over the �nite14

q0 q1at = l2at 6= l2
Figure 4.1: Automaton for F (at = l2).set of loations Q of the B�uhi automaton. For a given integer k, we obtain,as in De�nition 4, families of variables xi[j℄, p[j℄ (1 � i � n, 0 � j � k) forrepresenting the jth state of B in a run of length k. Furthermore, the transitionrelation of B is enoded in terms of the C-program BM over the set of variablesfpg[V , and [[BM ℄℄k denotes the enoding of this program as in De�nition 4.Now, given an enoding of the aeptane onditiona(B)k := k�1_j=0 �p[k℄ = p[j℄^ n̂v=1xv [k℄ = xv [j℄^� k_l=j+1 _f2F p[l℄ = f��the k-th unfolding of B is de�ned by [[B℄℄k := [[BM ℄℄k ^ a(B)k.Note that, as illustrated in [dMRS02℄, whenever an LTL(C) formula does notontain any release operators (R-free formula) it suÆes to build an ordinaryautomaton over �nite words instead of a B�uhi automaton. Every R-free for-mula an be translated into an automaton over �nite words that aepts a pre�xof all in�nite paths satisfying the given formula.De�nition 6 Given an automaton B over �nite words and the notation as inDe�nition 5, the enoding of the k-ary unfolding of B is given by [[BM ℄℄k^a(B)kwith the aeptane onditiona(B)k := k_j=0 _f2F p[j℄ = f .Consider the problem of �nding a ounterexample of length k = 2 to the hypoth-esis that our running example in Figure 3.1 satis�es G:(at = l2), that is, thetimed automaton never reahes loation l2. The negated property F (at = l2)is an R-free formula, and the orresponding automaton B over �nite words isdisplayed in Figure 4.1. This automaton is translated, aording to De�nition 6,into the formula[[B℄℄2 := I(B)^T0(B)^T1(B)^ a(B)2 . (��)15

The variables p[j℄ and x[j℄ (j = 0; 1; 2) are used to represent the �rst threestates in a run.I(B) := (p[0℄ = q0)T0(B) := (p[0℄ = q0 ^:(at [0℄ = l2)^ p[1℄ = q0)
(p[0℄ = q0 ^ at [0℄ = l2 ^ p[1℄ = q1)T1(B) := (p[1℄ = q0 ^:(at [1℄ = l2)^ p[2℄ = q0)
(p[1℄ = q0 ^ at [1℄ = l2 ^ p[2℄ = q1)a(B)2 := (p[0℄ = q1 _ p[1℄ = q1 _ p[2℄ = q1)The bounded model heking problem [[simple℄℄2 ^ [[B℄℄2 for the simple programis obtained by onjoining the formulas (�) and (��). Using the BMC proedureover linear arithmeti onstraints, one �nds the ounterexample(l0; x = 0; y = 0)! (l1; x = 0; y = 0)! (l2; x = 0; y = 0)of length 2. Counterexamples for timed property, suh as G (at = l1) x > y),an also be found by the BMC proedure.The following two theorems are due to [dMRS02℄.Theorem 1 (Soundness) Let M 2 Prg(C) and ' 2 LTL(C). If there exists anatural number k suh that [[M;'℄℄k is satis�able, then M j== '.Theorem 2 (Completeness for Finite State Systems) LetM be a C-programwith a �nite set of reahable states, ' be an LTL(C) formula ', and k be a givenbound; then M j== ' implies 9k 2 IN: [[M;'℄℄k is satis�able.In general, BMC over in�nite domains is not omplete. Consider, for ex-ample, the model heking problem M j= ' for the program M = hI; T i overthe variable V = fxg with I = (x = 0) and T = (x0 = x + 1) and the for-mula ' = F (x < 0). M an be seen as a one-ounter automaton, whereinitially the value of the ounter x is 0, and with every transition the valueof x is inreased with 1. Obviously, it is the ase that M 6j= ', but there ex-ists no k 2 IN , suh that the formula [[M;'℄℄k is satis�able. Sine :' is notan R-free formula, the enoding of the B�uhi automaton Bk must ontain, byDe�nition 5, a �nite aepting yle, desribed by p[k℄ = p[0℄^x[k℄ = x[0℄ orp[k℄ = p[1℄^x[k℄ = x[1℄ and so on. Suh a yle, however, does not exist, sinethe program M ontains only one nonyling, in�nite path, where the value ofx inreases in every step, that is, x[i+ 1℄ = x[i℄ + 1, for all i � 0.16

Theorem 3 (Completeness for Timed Automata) LetM be a timed au-tomaton de�ned as a C-program over a set of state variables V = fx1; : : : ; xng,and ' be a formula in LTL(C); thenM j== ' implies 9k: [[M;'℄℄kis satis�able.Proof. Let M 0 be the �nite region graph orresponding to M , also de�nedas a C-program over the set of state variables V . From M j== ', it follows byLemma 1, that M 0 j== '. Let[[M 0; '℄℄k := [[B℄℄k ^ [[M 0℄℄kbe the bounded model heking problem for M 0 and '. Sine M 0 is �nite, byTheorem 2 there exists a k suh that [[M 0; '℄℄k is satis�able. It remains to show,that if [[M 0; '℄℄k is satis�able then also [[M;'℄℄k is satis�able. From [[M 0; '℄℄ksatis�able it follows that [[M 0℄℄k and [[B℄℄k are satis�able. By De�nition 4[[M 0℄℄k := I 00(x[0℄)^ k�1̂j=0 T 0j(x[j℄; x[j + 1℄)where the state formula I 00(x[0℄) enodes the initial state (l0; [v0℄), and the for-mula T 0j(x[j℄; x[j + 1℄) de�nes the transition relation. Obviously, the formulaI 00(x[0℄) is equivalent to the state formula I0(x[0℄), whih desribes the initialstate (l0; v0) of the program M . Let �0 = s00; s01; : : : ; s0k�1, where s0i = (l0i; [v0i℄)be a k-path in M 0. In [TY01℄ it has been shown that the region equivaleneis a bisimulation relation. Sine M and M 0 are bisimilar, it follows that thereexists a k-path � = s0; s1; : : : ; sk�1 in M , where si = (li; vi) suh that li = l0iand vi 2 [v0i℄. Therefore, we an unfold M up to step k, in a manner similar tothe unfolding of M 0, suh that [[M ℄℄k and [[M 0℄℄k are equisatis�able. 2Lower bounds for the length k of ounterexamples an be found by examiningthe struture of the B�uhi automaton for a given LTL(C) formula. A lowerbound is given by the length of the shortest path from the initial state to a�nal/aepting state of the automaton. For a timed automaton M with thelargest onstant appearing in the guards and invariants of M , and t the numberof loks, an upper bound for k is given byk � 2O(t log(t)) � 2O(j'j)where 2O(t log(t)) denotes the number of states in the region graph ofM [Alu99℄.17

Corollary 1 LetM be a timed automaton with the largest onstant appear-ing in the guards and invariants of M , and t the number of loks. Further, let' be a formula in LTL(C). If k = 2O(t log(t)) � 2O(j'j) then M j= ' i� [[M;'℄℄k isunsatis�able.

18

Chapter 5BMC for Networks ofTimed AutomataComplex systems are modeled as networks of timed automata, that is, paral-lel omposition of timed automata. Given two timed automata A1 and A2, forde�ning synhronization on same events, we assume two �nite alphabets �1 and�2, whose elements are used to label the transitions of A1, respetively A2. Anedge of an automaton over an input alphabet � is now a tuple e = hl; a; g; r; l0i.The produt A1kA2 is de�ned in the obvious way [Alu99℄. The loations ofthe produt automaton are pairs of loations of its onstituent automata. Theinvariant of a new loation onsists of the onjuntion of the invariants of theomponent loations. Symbols that belong to both alphabets are used for syn-hronization and must be taken simultaneously by both automata.De�nition 7 ([Alu99℄) Consider two timed automata with disjoint sets ofloks A1 = hL1; l01;�1;Cl1; E1; Inv1i and A2 = hL2; l02;�2;Cl2; E2; Inv2i. Theprodut automaton A1kA2 is the timed automaton hL1�L2; (l01; l02);�1[�2;Cl1[Cl2; Inv ; Ei, where Inv(l1; l2) = Inv(l1)^ Inv(l2), and the edges are de�ned asfollows:1. For a 2 �1\�2, h(l1; l2); a; g1 ^ g2; r1[r2; (l01; l02)i 2 E i� hl1; a; g1; r1; l01i 2E1 and hl2; a; g2; r2; l02i 2 E2.2. For a 2 �1 n �2, h(l1; l2); a; g; r; (l01; l2)i 2 E i� hl1; a; g; r; l01i 2 E1 andl2 2 L2. 19

A1 0 12 a; x := 0x = 1; b A2 0 12 a; y = 2A1 k A2(0; 0)(1; 1) (2; 0) (0; 2)a; y = 2; x := 0 b; x = 1
Figure 5.1: Produt onstrution for timed automata.3. For a 2 �2 n �1, h(l1; l2); a; g; r; (l1; l02)i 2 E i� hl2; a; g; r; l02i 2 E2 andl1 2 L1.Figure 5.1 illustrates two timed automata together with the resulting produtautomaton.To enode the system A1kA2 into a C-program, as desribed in Chapter 4using De�nition 2, the produt automaton must be onstruted �rst. For net-works onsisting of a large number of omponents, this leads to an exponentialblowup in the number of resulting loations and transitions, and therefore alsoin the length of the Boolean onstraint formulas. Here, we propose a methodfor enoding a network of timed automata into a C-program in a ompositionalway, whih does not require the onstrution of the produt automaton.For a timed automaton A with set of loks Cl the formula �x (A) is used toenode \inativity", that is, the fat that A does not perform any transition.�x(A) := (at 0 = at ^ x̂2Cl x0 = x):De�nition 8 Consider two timed automata A1 = hL1; l01;�1;Cl1; E1; Inv1iand A2 = hL2; l02;�2;Cl2; E2; Inv2i. Further, let hIi; Tii be the program inPrg(C(Vi [V 0i)) orresponding to Ai, where Vi = fat i; at ig [Cl i and V 0i =fat 0ig [Cl 0i, and the variables at i are interpreted over �i, for i = 1; 2. Thesystem A1kA2 an be enoded into a hI; T i program in Prg(C(V [V 0)) over theset V = V1 [V2 and V 0 = V 01 [V 02 in a ompositional way, as follows.20

� Initial state (l01; l02)Is := I1 ^ I2 = (at1 = l01 ^ at2 = l02 ^ ^x2Cl1 x = 0^ ^y2Cl2 y = 0)� State transition step orresponding to e1 = hl1; a; g1; r1; l01i 2 E1~T s(e1) = 8>>>>><>>>>>: at1 = l1 ^ at 01 = l01 ^ g1 ^ Vx2Cl1 x0 = z ^ at1 = a^ at2 = ai� a 2 �1 [�2at1 = l1 ^ at 01 = l01 ^ g1 ^ Vx2Cl1 x0 = z ^ at1 = a^�x (A2)i� a 2 �1 n�2where z = 0 if x 2 r1; otherwise z = x. The above formula is equal to~T s(e1) = (~T1(e1)^ at2 = a i� a 2 �1 [�2~T1(e1)^�x(A2) i� a 2 �1 n�2where ~T1(e1) enodes e1 independent of A2, as illustrated in De�nition 2.� State transition step orresponding to e2 = hl2; a; g2; r2; l02i 2 E2~T s(e2) = (~T2(e2)^ at1 = a i� a 2 �1 [�2~T2(e2)^�x(A1) i� a 2 �2 n�1� Delay stepsdelays := 9Æ � 0: � ^l2Inv(A1)[Inv(A2)(at = l) Inv(l)(Cl 01 [Cl 02))^ (at 01 = at1) ^ (at 02 = at2)^ ^x2Cl1(x0 = x+ Æ) ^ ^y2Cl2(y0 = y + Æ)�where at = at1 if l 2 Inv(A1); otherwise at = at2. The formula delaysin quanti�er-free form is equivalent to delay1 ^ delay2 ^ (d1 = d2), wheredelay1 and delay2 desribe the delay steps of A1 respetively A2 also inquanti�er-free form. The onjunt d1 = d2 is used to relate the lokdi�erenes from delay1 and delay2. di denotes the lok di�erene x0i �xifor xi 2 Cl i with x0i � xi � 0. Suh a lok di�erene always exists indelay i after quanti�er elimination.� Transition relation T sT s := �� Oe12E1 ~T s(e1)
 �x(A1)� ^ � Oe22E2 ~T s(e2)
 �x(A2)��O delays21

The network onsisting of the timed automata A1 and A2 from Figure 5.1,for example, is de�ned as a program over the set of variablesV = fat1; at2; at1; at2; at 01; at 02; x; y; x0; y0g;where �x(A1) = (at 01 = at1 ^x0 = x) and �x (A2) = (at 02 = at2 ^ y0 = y).Is := (at1 = 0^ at2 = 0^x = 0^ y = 0)T s := h[(at1 = 0^ at 01 = 1^x0 = 0^ at1 = a^ at2 = a)
(at1 = 0^ at 01 = 2^x = 1^x0 = x^ at1 = b^�x (A2))
 �x(A1)℄ ^[(at2 = 0^ at 02 = 1^ y = 2^ y0 = y ^ at2 = a^ at1 = a)
(at2 = 0^ at 02 = 2^ y0 = y^ at2 = ^�x(A1))
 �x (A2)℄i
(at 01 = at1 ^ at 02 = at2 ^x0 � x � 0^ y0 � y = x0 � x)Theorem 4 (BMC for Networks of Timed Automata) Given two timedautomata with disjoint set of loks Ai = hLi; l0i ;�i;Cl i; Ei; Inv ii, for i = 1; 2.LetMs = hIs; T si be the program orresponding to the network A1kA2 as givenin De�nition 8, and M = hI; T i be the program enoding the produt automa-ton A1 � A2 aording to De�nition 2. Then for a k 2 IN , the kth unfoldingsof Ms and M are equisatis�able, that is [[Ms℄℄k � [[M ℄℄k.Proof. (() Assume [[M ℄℄k = I0(x[0℄)^ Vk�1j=0 Tj(x[j℄; x[j + 1℄) as given inDe�nition 4. Let us �rst onsider only state transition steps for M . We proveby indution over k that if [[M ℄℄k is satis�able then so [[Ms℄℄k.Basis ase k=0. By De�nition 7 (produt onstrution)[[M ℄℄0 = I0(x[0℄) = (at [0℄ = (l01; l02) ^ ^xi2Cl1 xi[0℄ = 0 ^ ^yi2Cl2 yi[0℄ = 0)This formula an be transformed into an equisatis�able formula of the form(at1[0℄ = l01 ^ at2[0℄ = l02 ^ ^xi2Cl1 xi[0℄ = 0 ^ ^yi2Cl2 yi[0℄ = 0)whih by De�nition 8 equals Is. Thus, I0(x[0℄) and Is0 (x[0℄) are equisatis�able.Indution hypothesis. For j < k, [[Ms℄℄j is satis�able if [[M ℄℄j is satis�able.Indution step j=k. We show that Vkj=0 T sj is satis�able if Vki=0 Ti is sat-is�able. By indution hypothesis it follows that Vk�1j=0 T sj and Vk�1i=0 Ti are eq-uisatis�able. To have a loser look at Tk, we onsider a state transition or-responding to an edge e = h(l1; l2); a; g; r; (l01; l02)i 2 E. We distinguish three22

ases: A1 and A2 synhronize on a, only A1 (A2) performs a, or the transi-tion from (l1; l2) to (l01; l02) is not allowed. In the �rst ase e is obtained frome1 = hl1; a; g1; r1; l01; i 2 E2 and e2 = hl2; a; g2; r2; l02; i 2 E2, and we have~Tk := (at [k℄ = (l1; l2) ^ at [k℄ = a ^ g ^ at [k + 1℄ = (l01; l02) ^^xi2Cl1 xi[k + 1℄ = zi ^ ^yi2Cl2 yi[k + 1℄ = zi)where g = g1 ^ g2, and zi = 0 if xi 2 r1 [r2; otherwise zi = xi[k℄. Fromat [k℄ = (l1; l2) (at [k + 1℄ = (l01; l02); at [k℄ = a) satis�able it follows at1[k℄ =l1 ^ at2[k℄ = l2 (at1[k + 1℄ = l01 ^ at2[k + 1℄ = l02; at1[k℄ = a^ at2[k℄ = a)satis�able. Therefore, the formulas ~T s(e1) and ~T s(e2) are both satis�able instep k, and by De�nition 8 the formula T sk is satis�able. In the seond asea 2 �1 n�2, e1 = hl1; a; g1; r1; l01; i, and~Tk := (at [k℄ = (l1; l2) ^ at [k℄ = a ^ g ^ at [k + 1℄ = (l01; l2) ^^xi2Cl1 xi[k + 1℄ = zi ^ ^yi2Cl2 yi[k + 1℄ = zi)where g = g1, and zi = 0 if xi 2 r1; otherwise zi = xi[k℄. By an argumentsimilar to that of the �rst ase, ~T s(e1) is satis�able in step k. Sine A2 does notperform any transition, �x(A2) is satis�able, and therefore T sk are satis�able.In the third ase, if the transition e annot be taken, the formulas �x(A1) and�x(A2), and therefore T s, are satis�able.()) Follows by a similar argumentation.Now, let us onsider delay steps. Aording to De�nition 2, the delay steps ofthe system A1 �A2 (after quanti�er elimination) are enoded asdelay := ^l2Inv(A1�A2)(at = l) Inv(l)(Cl 01 [Cl 02))^ at 0 = at ^ x01 � x1 � 0 ^ ^y2Cl1[Cl2nfx1g y0 � y = x01 � x1The above formula is equivalent todelay := ^l2Inv(A1)(at1 = l) Inv(l)(Cl 01)) ^^l2Inv(A2)(at2 = l) Inv(l)(Cl 02)) ^23

at 01 = at1 ^ at 02 = at2 ^x01 � x1 � 0 ^ x02 � x2 � 0 ^^y2Cl1nfx1g y0 � y = x01 � x1 ^^y2Cl2 y0 � y = x01 � x1whih is equal to delay1 ^ delay2 ^ (x01�x1 = x02�x2). Thus, by De�nition 8,delay = delays.2

24

Chapter 6Disussion and ConlusionWe presented a bounded model heking proedure (BMC) for timed automataand linear temporal logi with real-valued lok onstraints. The main ontribu-tion is a omplete BMC algorithm for timed automata, whih is ompositionalin that Boolean onstraint formulas enoding omplex systems an be obtainedby Boolean ombinations of the enoding of the omponents. A diret enodingof the produt automaton would ause an exponential blow up in the lengthof the resulting Boolean onstraint formula. The ompleteness proof an beadapted to any systems with a �nite bisimulation. Further, we give lower andupper bounds for the length k of ounterexamples, that depend on the stru-ture of the B�uhi automaton of the given formula, and the region automatonorresponding to the timed automaton.The main problem of the BMC approah is to ome up with eÆient al-gorithms for solving the satis�ability problem for Boolean onstraint formulas.Speialized data strutures for timed automata, suh as di�erene bounded ma-tries (DBMs) [Dil89℄, lok di�erene diagrams (CDDs) [LPWY99℄, or di�er-ene deision diagrams (DDDs) [MLAH99℄, annot be applied diretly for BMC,sine the generated formulas ontain lok onstraints of the form x0�x = y0�y,as needed for enoding the delay steps. It is unlear if even reently developedonstraint solvers, suh as the satis�ability heker for di�erene logi, pre-sented in [MNAM02℄, an deal with this kind of onstraints. On the otherhand, general-purpose theorem proving, suh as PVS [ORS92℄, whih uses aombination of BDDs [Bry86℄ and linear arithmeti reasoning based on loop25

residue [Sho81℄, is not very eÆient. For example, �nding a ounterexample oflength k = 2 in the (modi�ed) train gate ontroller protool requires around70 s, and for k = 3 around 8500 s. Reently, new tehniques for hekingsatis�ability of Boolean onstraint formulas have been developed, by ombin-ing SAT solvers with domain-spei� deision proedures based on lemmas ondemand [dMRS02, BDS02℄. We have implemented a prototypial satis�abilitysolver [dMRS02℄ that ombines the SAT solver Cha� [MMZ+01℄ with the dei-sion proedures ICS [FORS01℄. The ore of the solver is a re�nement algorithmbased on lazy theorem proving. In eah re�nement step, the Boolean satis�a-bility heker Cha� is used to suggest andidate assignments. Then ICS hekswhether suh a Boolean assignment determines a onsistent assignment for theorresponding set of onstraints. Whenever suh a onsisteny hek fails, theurrent Boolean formula is re�ned by adding a Boolean analogue of this inon-sisteny. The SAT solver is restarted, and a new andidate assignment for there�ned formula is suggested.We have performed some initial experiments, using Fisher's mutual exlu-sion protool [Lam87℄ with a slight modi�ation of the timing onstraints asa benhmark. We enoded systems of n = 2; : : : ; 10 proesses as a Booleanonstraint formula in a ompositional way, as desribed in Chapter 5. On aPentium II, 450 MHz, for 2 proesses we found a ounterexample of length 3(shortest ounterexample) in 0.23 s, of length 5 in 0.85 s, and of length 10 in6.12 s. For 5 proesses we obtain, for k = 5, 1.34 s, and for k = 10, 16.11 s.For a system onsisting of 10 proesses, and a bound k = 10 a ounterexamplewas found in 210.8 s. Although in an initial phase, the performed experimentsshow that BMC is a promising tehnique for verifying timed systems. Errorsin larger systems for whih onventional timed model heking tools fail or areineÆient an be found using BMC.Lazy theorem proving and lemmas on demands are relatively new onepts,and the underlying implementations improve on a daily basis. Currently, weperform our experiments also with both a new implementation of lemmas ondemand and CVC [BDS00℄, and are in the proess of evaluating and omparingboth approahes.
26

Bibliography[ACD90℄ R. Alur, C. Couroubetis, and D. Dill. Model-heking for real-timesystems. 5th Symp. on Logi in Computer Siene (LICS 90), pages414{425, 1990.[AD94℄ Rajeev Alur and David L. Dill. A theory of timed automata. The-oretial Computer Siene, 126(2):183{235, 25 April 1994.[Alu91℄ R. Alur. Tehniques for Automati Veri�ation of Real-Time Sys-tems. PhD thesis, Stanford University, 1991.[Alu99℄ R. Alur. Timed automata. Leture Notes in Computer Siene,1633:8{22, 1999.[BDS00℄ Clark W. Barrett, David L. Dill, and Aaron Stump. A frameworkfor ooperating deision proedures. In 17th International Confer-ene on Computer-Aided Dedution, volume 1831 of Leture Notesin Arti�ial Intelligene, pages 79{97. Springer-Verlag, 2000.[BDS02℄ Clark W. Barrett, David L. Dill, and Aaron Stump. Cheking sat-is�ability of �rst-order formulas by inremental translation to SAT,2002. To be presented at CAV 2002.[Bry86℄ R. E. Bryant. Graph-based algorithms for boolean funtion Manip-ulation. IEEE Transations on Computers, C-35(8):677{691, 1986.[CBRZ01℄ Edmund M. Clarke, Armin Biere, Rihard Raimi, and YunshanZhu. Bounded model heking using satis�ability solving. FormalMethods in System Design, 19(1):7{34, 2001.27

[CFF+01℄ F. Copty, L. Fix, R. Fraer, E. Giunhiglia, G. Kamhi, A. Ta-hella, and M.Y. Vardi. Bene�ts of bounded model heking in anindustrial setting. In Computer-Aided Veri�ation, CAV 2001, vol-ume 2101 of Leture Notes in Computer Siene, pages 436{453.Springer-Verlag, July 2001.[Dam96℄ Dennis Ren�e Dams. Abstrat Interpretation and Partition Re�ne-ment for Model Cheking. PhD thesis, Eindhoven University ofTehnology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands,July 1996.[Dil89℄ D. Dill. Timing assumptions and veri�ation of �nite-state on-urrent systems. In Proeedings of the International Workshop onAutomati Veri�ation Methods for Finite State Systems, volume407 of Leture Notes in Computer Siene, pages 197{212, Greno-ble, Frane, 1989. Springer-Verlag.[dMRS02℄ Leonardo de Moura, Harald Rue�, and Maria Sorea. Lazy theoremproving for bounded model heking over in�nite domains, 2002.Aepted for publiation at CADE'02.[DOTY96℄ C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool KRONOS.Leture Notes in Computer Siene, 1066:208{219, 1996.[FORS01℄ J.-C. Filliâtre, S. Owre, H. Rue�, and N. Shankar. ICS: Integratedanonizer and solver. In G. Berry, H. Comon, and A. Finkel, ed-itors, Proeedings of CAV'2001, volume 2102 of Leture Notes inComputer Siene, pages 246{249. Springer-Verlag, 2001.[GPVW95℄ Rob Gerth, Doron Peled, Moshe Vardi, and Pierre Wolper. Simpleon-the-y automati veri�ation of linear temporal logi. In Pro-tool Spei�ation Testing and Veri�ation, pages 3{18, Warsaw,Poland, 1995. Chapman & Hall.[HHWT97℄ T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. HYTECH: A modelheker for hybrid systems. Leture Notes in Computer Siene,1254:460{463, 1997.
28

[HNSY94℄ Thomas A. Henzinger, Xavier Niollin, Joseph Sifakis, and SergioYovine. Symboli model heking for real-time systems. Informa-tion and Computation, 111(2):193{244, June 1994.[Lam87℄ Leslie Lamport. A fast mutual exlusion algorithm. ACM Trans-ations on Computer Systems, 5(1):1{11, February 1987.[LPWY99℄ Kim G. Larsen, Justin Pearson, Carsten Weise, and Wang Yi. Clokdi�erene diagrams. Nordi Journal of Computing, 6(3):271{298,Fall 1999.[LPY97℄ K. G. Larsen, P. Pettersson, and W. Yi. Uppaal in a nutshell. Int.Journal on Software Tools for Tehnology Transfer, 1(1{2):134{152,Otober 1997.[MLAH99℄ J. M�ller, J. Lihtenberg, H. R. Andersen, and H. Hulgaard. Dif-ferene deision diagrams. In Computer Siene Logi, The IT Uni-versity of Copenhagen, Denmark, September 1999.[MMZ+01℄ Matthew W. Moskewiz, Conor F. Madigan, Ying Zhao, LintaoZhang, and Sharad Malik. Cha�: Engineering an eÆient SATsolver. In Proeedings of the 38th Design Automation Conferene(DAC'01), June 2001.[MNAM02℄ Moez Mahfoudh, Peter Niebert, Eugene Asarin, and Oded Maler.A satis�ability heker for di�erene logi, 2002. To be presented atthe Fifth International Symposium on the Theory and Appliationsof Satis�ability Testing (SAT 02), Ohio.[MRS02℄ M. Oliver M�oller, Harald Rue�, and Maria Sorea. Prediate abstra-tion for dense real-time systems. Eletroni Notes in TheoretialComputer Siene, 65(6), 2002.[ORS92℄ S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype ver-i�ation system. In 11th International Conferene on AutomatedDedution (CADE), volume 607 of Leture Notes in Arti�ial In-telligene, pages 748{752. Springer-Verlag, 1992.[Sho81℄ Robert Shostak. Deiding linear inequalities by omputing loopresidues. Journal of the ACM, 28(4):769{779, Otober 1981.29

[Sor01℄ Maria Sorea. Tempo: A model-heker for event-reording au-tomata. Workshop on Real-Time Tools, Aalborg, Denmark, August2001. Full version available as Tehnial Report SRI-CSL-01-04,Computer Siene Laboratory, SRI International, Menlo Park, CA,2001.[TY01℄ S. Tripakis and S. Yovine. Analysis of timed systems using time-abstrating bisimulations. Formal Methods in System Design,18(1):25{68, January 2001. Kluwer Aademi Publishers.

30

