
Formal Veri�ation of Funtional Properties ofan SCR-style Software RequirementsSpei�ation using PVS ?Proeedings of Tools and Algorithms for the Constrution and Analysis ofSystems, 8th International Conferene (TACAS 2002), LNCS 2280Taeho Kim1;2, David Stringer-Calvert2 and Sungdeok Cha11 Department of Eletrial Engineering and Computer Siene andAdvaned Information Tehnology Researh Center (AITr),Korea Advaned Institute of Siene and Tehnology (KAIST)Taejon 305-701, Koreafthkim, hag�salmosa.kaist.a.kr2 Computer Siene Laboratory, SRI InternationalMenlo Park CA 94025, USAdave s�sl.sri.omAbstrat. Industrial software ompanies developing safety-ritial sys-tems are required to use rigorous safety analysis tehniques to demon-strate ompliane to regulatory bodies. While analysis tehniques basedon manual inspetion have been suessfully applied to many industrialappliations, we demonstrate that inspetion has limitations in loatingomplex errors in software requirements.In this paper, we desribe the formal veri�ation of a shutdown systemfor a nulear power plant that is urrently operational in Korea. Theshutdown system is an embedded real-time safety-ritial software, andhas a desription in a Software Cost Redution (SCR) style spei�ationlanguage. The key omponent of the work desribed here is an automatimethod for translating SCR-style Software Requirements Spei�ations(SRS) into the language of the PVS spei�ation and veri�ation system.A further omponent is the use of property templates to translate naturallanguage Program Funtional Spei�ations (PFS) into PVS, allowingfor high-assurane onsisteny heking between the translated SRS andPFS, thereby verifying the required funtional properties.1 IntrodutionVarious approahes have been suggested for developing high-quality require-ments spei�ations and onduting ost-e�etive analysis. Although inspetion[1℄ an, in priniple, detet all types of errors in requirements, experiene inonduting inspetions on the Software Requirements Spei�ation (SRS) for? This work was supported by the Korea Siene and Engineering Foundation throughthe Advaned Information Tehnology Researh Center and by the National SieneFoundation under grants CCR-00-82560 and CCR-00-86096.1

the Wolsung 1 shutdown system number 2 (SDS2) revealed that inspetion haspotentially lethal limitations in demonstrating safety.The Wolsung SDS2 is designed to ontinuously monitor the reator state(e.g., temperature, pressure, and power) and to generate a trip signal (e.g., shut-down ommand, and display) if the monitored variables exeed predeterminedsafety parameters. The SDS2 SRS spei�es 30 monitored variables (inputs fromthe environment), 59 ontrolled variables (outputs to the environment), and 129omputational funtions relating them. The SRS is 374 pages in length and wassubjet to four relatively minor releases in less than a year. Inspetion of the ini-tial release of the SRS, onduted by four sta� members, to validate onsistenybetween the SRS and the natural language Program Funtional Spei�ation(PFS) took about 80 sta� hours of formal inspetion meetings, during whihonly 17 trivial notational errors and inomplete de�nitions in the PFS and SRSwere disovered.This experiene with manual inspetion motivated researh to explore morerobust and rigorous methods of analysis. To this end, (1) we provide an auto-mati method for translating SRS into the language of the PVS spei�ation andveri�ation system [2℄, and we implemented a tool for editing and translating,and (2) we translate from PFS into PVS using property templates and rossreferene. Last, (3) we verify the onsisteny between translated SRS and PFS.In this ase study, we onentrate on one trip ondition (PDL trip), among threetrip onditions, for whih SRS is 22 pages, and PFS is 4 pages. The whole SRSfor SDS2 is 374 pages, and the whole PFS is 21 pages.Even though our example ase study is in the nulear domain, we believe theveri�ation proedures we propose are general and appliable to wide range ofsafety-ritial systems.The rest of our paper is organized as follows. In Setion 2, we review how anSCR-style software requirements spei�ation, whih is used in Wolsung SDS2, isorganized. Setion 3 desribes the veri�ation proedure developed, detailing thease study of the Wolsung SDS2, and Setion 4 disusses results and omparisonswith other approahes. Finally, Setion 5 onludes this paper.2 Bakground2.1 SCR-style SRSAn SCR-style formal spei�ation [3℄ has four key attributes:{ Variable de�nitions{ Funtional overview diagrams (FODs){ Strutured deision tables (SDTs){ Timing funtionsIt is slightly di�erent from the SCR spei�ation language developed by re-searhers at the Naval Researh Laboratory and supported by the SCR� toolset1 The Wolsung nulear power plant in Korea, used as a ase study in this paper, isequipped with a software-implement emergeny shutdown system.2

[4℄. The di�erene lies in how primitive funtions are desribed - where SCRstyle uses a time-triggered AND-OR table, the SCR� uses an event-ation tableformat. A system written in SCR-style requirements is designed to read monitorvariables for an external environment (e.g., temperature, pressure, and power)and to generate ontrol values (e.g., a shutdown ommand).The detailed desription of the attributes of an SCR-style SRS as follows:Variable de�nitions : The interfae between the omputer system and its en-vironment is desribed in terms of monitored and ontrolled variables. Mon-itored variables, whose names start with the m pre�x, refer to the inputs tothe omputer system, and ontrolled variables, whose names start with the pre�x, refer to the outputs from the omputer system. A variable may beanalog or digital.Funtional Overview Diagrams (FODs) : An FOD illustrates, in a nota-tion similar to data ow diagrams, a hierarhial organization of funtions.A group, denoted by the g pre�x, onsists of subgroups or basi funtions.Eah basi funtion name starts with the f pre�x. For example, the groupg Overview, illustrated in �gure 1.(a), is re�ned into g ProessInputs,g PDL, g PZL, g SLL groups as shown in �gure 1.(b). The g ProessInputsis a preproessor for the system. g PDL, g PZL, and g SLL are trip signals forreturning the system to a safe state.Similarly, the group g PDL is omposed of six basi funtions and two timingfuntions as shown in �gure 1.(). A basi funtion is a mathematial funtionwith zero delay and are spei�ed in a strutured deision table. Outputs aresynhronous with inputs in a basi funtion. The s pre�x denotes a statename, used to store the previous value of a funtion, that is, with one lokdelay. Timing funtions are drawn as a bar (j), for example, t Pending andt Trip in �gure 1.().In addition to the hierarhial relations, the FOD spei�es inputs, outputs,and internal data dependenies among various omponents. Suh data depen-denies impliitly ditate the proper order of arrying out a set of funtions.For example, in �gure 1.(), the output of the f PDLSnrI funtion is used asan input to the f PDLTrip funtion, and the latter funtion therefore may beinvoked only when the former is ompleted. This is the same onept usedin dataow languages suh as LUSTRE [5℄.Strutured Deision Table (SDT) : The required behavior of eah basifuntion is expressed in a tabular notation, alled SDT, as shown in �g-ure 2. The funtion f PDLCond produes an output, whose value is eitherk CondOut or k CondIn. The k pre�x indiates a onstant value.Condition maros are a substitution for spei� onditions. For example,lines 2{5 of the ondition maros in �gure 2 de�ne the maro w FlogPDLCondLo[f Flog℄. If f Flog<k FlogPDLLo-k CondHys, w FlogPDLCondLo[f Flog℄is denoted \a" aording to line 3.As shown in the seond olumn in the SDT, this funtion returns the valuek CondOut when the value m PDLCond is equal to k CondSwLo andw FlogPDLCondLo[f Flog℄ is equal to a. The `-' entries denote the `don'tare' ondition. 3

m_PDLCond

m_PHTD[i], i=1..4

m_PrzL

m_SGL[i], i=1..4

m_Flin

m_Flog

c_PDLTrip

c_PZLTrip

c_SLLTrip

c_FlogM

g_Overview

c_PZLTrip

c_SLLTrip

c_FlogM

m_PHTD[i], i=1..4

m_PDLCond
c_PDLTrip

m_PrzL

m_Flin

m_SGL[i], i=1..4

m_Flog(a) A part of the FOD for SDS2
m_PDLCond

m_PHTD[i], i=1..4

m_PrzL

m_SGL[i], i=1..4

c_PDLTrip

c_PZLTrip

c_SLLTripg_SLL

f_PDLTrip

f_PZLTrip

f_SLLTrip

m_Flin

m_Flog

c_FlogM
c_FlogM

m_PHTD[i], i=1..4
f_PumpMde
f_Flog
f_FaveC

m_PDLCond����g_PDL

g_PZL

f_Flog

m_PrzL

f_FaveC

f_PumpMde

m_SGL[i],i=1..4

f_FaveC

f_Flog

g_Process
Inputs

m_PrzL
m_SGL[i],i=1..4

m_Flin
m_Flog

m_PHTD(b) A lower-level FOD of g Overview
m_PDLCond

f_Flog

f_PDLSpI[
i], i=1..4�f_PDLCon

d

f_PDLSnrI
[i], i=1..4 ��f_PDLTrip

f_PDLDly

f_PDLSnr
Dly[i],
i=1..4

c_PDLTrip

m_PHTD[i], i=1..4

s_PDLDly

s_PDLCond

f_PumpMde

f_FaveC

m_PDLCond

f_Flog

f_PDLSnrDly[i],
i=1..4

f_PumpMde

m_PHTD[i],
i=1..4

f_FaveC

f_PDLSpI[i],
i=1..4

m_PHTD[i],
i=1..4

f_PDLSnrDly[i],
i=1..4

t_Trip

s_Pending

t_Pending

s_PDLDly

f_PDLCond

f_FaveC

f_PDLSnrI[i],
i=1..4

s_PDLDly

f_PDLDly

f_PDLTrip

() A lower-level FOD of g PDLFig. 1. Examples of the funtion overview diagram4

1: Condition Maros:2: w FlogPDLCondLo[f Flog℄3: a f Flog < k FlogPDLLo - k CondHys4: b f FlogPDLLo - k CondHys <= f Flog < k FlogPDLLo5: f Flog >= k FlogPDLLo6: w FlogPDLCondHi[f Flog℄7: a f Flog < k FlogPDLHi - k CondHys8: b f FlogPDLHi - k CondHys <= f Flog < k FlogPDLHi9: f Flog >= k FlogPDLHiStrutured Deision Table:CONDITION STATEMENTSm PDLCond = k CondSwLo T T T T F F F Fw FlogPDLCondLo[f Flog℄ a b b - - - -w FlogPDLCondHi[f Flog℄ - - - - a b b s PDLCond = k CondOut - T F - - T F -ACTION STATEMENTSf PDLCond = k CondOut X X X Xf PDLCond = k CondIn X X X XFig. 2. The SDT for f PDLCondTiming funtion : Timing funtions are used for speifying timing onstraintsand real-time behavior. A prototype of a timing funtion is t Wait is t Wait(C (t), Time value, tol), where C (t) is a logial ondition at time t, theTime value is a time interval, and tol is an aeptable time deviation.Intuitively speaking, the funtion stays true during Time value when theimmediately previous value of the funtion is false and C (t) is true at timet. The t Wait at time 0 is FALSE. The formal semanti de�nition of a timingfuntion ist Wait(C(t); Time value; tol)= 8<:true if there exists an instant in time; t s 2 [t� Timer value; t℄suh that C(t s) AND :t Wait(C(t s��); Time value; tol)false otherwise; inluding at t = 0For example, t Trip in �gure 1.() is de�ned suh thatt Trip = t Wait(C, k PDLTrip, k PDLTripTol)where C = (f FaveC >= k FaveCPDL ANDt Pending = false AND s Pending = true)This means that t Trip is true between time t and time t + k PDLTripwhen t Trip is false at time t-�, and f FaveC >= k FaveCPDL AND t Pending= false AND s Pending = true. The k PDLTripTol is the tolerane ofk PDLTrip.2.2 Program Funtional Spei�ation (PFS)A program funtional spei�ation (PFS) is a system spei�ation written innatural language (English for Wolsung SDS2), as prepared by domain experts.The struture is highly intuitive, and an example is shown in �gure 3. The PFSfor SDS2 is 21 pages, and PDL trip in this ase study aounts for 4 pages.5

PHT Low Core Di�erential Pressure (PDL)1: The PHT Low Core Di�erential Pressure (�P) trip parameter inludes both2: an immediate and a delayed trip setpoint. Unlike other parameters, the �P3: parameter immediate trip low power onditioning level an be seleted by the4: operator. A handswith is onneted to a D/I, and the operator an hoose5: between two predetermined low power onditioning levels.6: The PHT Low Core Di�erential Pressure trip requirements are:7: � � � � � �8: e. Determine the immediate trip onditioning status from the onditioning level9: D/I as follows:10: 1. If the D/I is open, selet the 0:3%FP (Full Power) onditioning level.11: If �LOG < 0:3%FP � 50mV , ondition out the immediate trip.12: If �LOG >= 0:3%FP , enable the trip.13: � � � � � �14: g. If no PHT �P delayed trip is pending or ative then exeute a delayed15: trip as follows:16: 1. Continue normal operation without opening the parameter trip D/O for17: nominally three seonds.18: 2. After the delay period has expired, open the parameter trip D/O19: if fAV EC equals or exeeds 80%FP .20: Do not open the parameter trip D/O if fAV EC is below 80%FP .21: 3. One the delayed parameter trip has ourred,22: keep the parameter trip D/O open for one seond.23: � � � � � �24: h. Immediate trips and delayed trips (pending and ative) an our simultaneously.25: � � � � � � Fig. 3. Example of program funtional spei�ation3 Veri�ation of SCR-style SRS3.1 Translation from SCR-style SRS to PVSWe desribe a translation proedure of SCR-style SRS as embodied in our tool,and its appliation to the spei� ase study of the Wolsung SDS2 SRS. Thetranslation proedure onsists of �ve steps :1. De�nition of time (tik) model elements2. De�nition of types and onstants3. De�nitions of types for monitored and ontrolled variables4. Translation of SDTs5. De�nition and translation of timing funtionsStep 1. De�nition of time model elements:Time inreases by a �xed period, so time an be spei�ed using a tik, apositive number. A time is represented by the set of suessive multiples of thatperiod, starting from 0. This part is ommon through di�erent spei�ationsand is denoted in �gure 4.2 Time is desribed in the type tik de�nition in line2 The numbering on the left is merely a line number for referene in this paper, andis not part of the translation proedure or translated spei�ation.6

1, being delared as a nat (natural number). Line 2 de�nes t, representing avariable of type tik. In line 3, a onstant init is de�ned to be 0, for use asthe initial value of tik.1: tik : TYPE+ = nat CONTAINING 02: t : VAR tik3: init : tik = 0Fig. 4. Step 1. De�nition of model elementsStep 2. De�nition of types and onstants:The type of a variable in SCR-style SRS is di�erent for analog variables anddigital variables. The type for an analog variable is delared to be a real number(or subtypes of real), and the type for a digital variable is a given enumeration.Trajetories of the value of variables with time are delared as funtions fromtik to the variable type.Figure 5 shows the types and onstant de�nitions used in the Wolsung SDS2.Line 1 shows the de�nition of millivolt, de�ned in the SCR style as an analogvariable, so it is translated to the real type. Line 2 is a de�nition of t Millivoltas a funtion from tik to millivolt. Line 4 is a de�nition of the zero onetype for a digital variable, de�ned as set type whose membership inludes 0and 1. In line 5, undef will be used for onstants whose values are unde�ned.An unde�ned value will be assigned a value during later phases of the softwaredevelopment proess. k Trip and k NotTrip in lines 6 and 7 are onstants ofthe digital variable type. Line 11 de�nes to TripNotTrip as an enumeration ofk Trip and k NotTrip. Lines 12 and 13 de�ne a funtion t TripNotTrip fromtik to to TripNotTrip. This type inludes the trivial funtion mapping fromany tik value t to the onstant k Trip. to CondInOut is a enumeration typewhose members are k CondIn and k CondOut. Line 15 is a funtion t CondInOutfrom tik to to CondInOut. Line 17 de�nes enumab used within SDT. enumabis an enumerative type for a, b, and .Step 3. De�nition of types for monitored and ontrolled variables:This step de�nes the types of the monitored and ontrolled variables usingthe de�nitions from step 2. The variables are de�ned in the form variable :type. Figure 6 is an example for monitored variable m Flog and ontrolled vari-able PDLTrip. m Flog is a type t Milivolt in line 1 and PDLTrip is a typet TripNotTrip.Step 4. Translation of SDTs:Funtions in an SCR-style SRS are strutured in a hierarhy. The lowest levelof the hierarhy is an internal omputation funtion expressed as an SDT or atiming funtion. The hierarhial information is not needed in the translationfor heking funtional orretness; hene, this step translates only the SDT andtiming funtions.There are two kinds of funtion. One is a funtion that reads values at tikt and writes values at tik t. The other is a funtion whih reads both valuesat tik t and at t-1 and writes values at tik t. SCR-style SRS assumes that ittakes zero time to exeute a funtion. 7

1: millivolt : TYPE = real % analog variable2: t_Millivolt : TYPE = [tik -> millivolt℄3:4: zero_one : TYPE+ = fx:int | x=0 OR x=1g CONTAINING 0 % digital var.5: undef : TYPE+ % undefined-value onstant6: k_Trip : zero_one = 07: k_NotTrip : zero_one = 18: k_CondIn : undef9: k_CondOut : undef10:11: to_TripNotTrip : TYPE = fx:zero_one | x = k_Trip OR x = k_NotTripg12: t_TripNotTrip : TYPE+ = [tik -> to_TripNotTrip℄% funtion type from13: CONTAINING lambda (t:tik) : k_Trip % tik to_TripNotTrip14: to_CondInOut : TYPE = fk_CondIn, k_CondOutg % inl. t->k_Trip15: t_CondInOut : TYPE = [tik -> to_CondInOut℄16:17: enumab : TYPE = fa,b,gFig. 5. Step 2. De�nition of types and onstants1: m_Flog : t_Milivolt % Type definition for monitored variable2: _PDLTrip : t_TripNotTrip % Type definition for ontrolled variableFig. 6. Step 3. De�nition of types for monitored and ontrolled variablesLet f output, f input1, f input2, and s output be funtion names or variablenames. The �rst kind of funtion isf output(t) = ompute(f input1 (t), f input2 (t))To ompute f output, it reads the values of the f input1 and f input2 at tik tand then ompute f output at tik t. For this funtion, the translation templateis1: f_output(t:tik):value_type = ompute(f_input1(t),f_input2(t))If the ondition maro is de�ned within ompute, the maro should be loallyde�ned by the LET � � � IN onstrut. In this ase, the translation template is31: f_output(t:tik) : value_type =2: LET3: w_ondition_maro : enumeration_type = ondition_maro4: IN5: ompute(f_input1(t), f_input2(t))The seond kind of funtion isf output(t) = ompute(f input1 (t), s output(t))s output(t) = � initial value when t = 0f output(t� 1) when t 6= 03 In SCR-style SRS, funtions and ondition maros are de�ned as tabular notation,so ondition maro and omputes in translated PVS spei�ation are expressed asa TABLE � � � ENDTABLE onstrut. 8

In the seond kind of a funtion, there is a irular dependeny among thef output and the s output. The type heking of PVS does not admit irulardependenies in an expliit manner, so we use a de�nitional style with loalde�nitions embedded within a reursive funtion, in this paper. The transla-tion template for this kind of funtion introdues a loal opy of the mutuallydependent funtion.1: f_output(t:tik) : RECURSIVE value_type =2: LET3: s_output:[tik->value_type℄=LAMBDA (tt:tik):4: IF tt = 0 THEN initial_value5: ELSE f_output(tt-1)6: ENDIF7: IN8: output(f_input1(t), s_output(t))9: MEASURE t10: s_output(t:tik) : value_type = IF t = 0 THEN initial_value11: ELSE f_output(t-1)12: ENDIFThe de�nition of f output is given in lines 1{9. Line 8 refers to s output,but as s output is not de�ned until lines 10{12, so a loal de�nition of s outputis given within the funtion f output at lines 3{6. The keyword RECURSIVE isused to indiate a reursive funtion, and a MEASURE funtion provided to allowthe type heker to generate proof obligations to show termination.The translation of f PDLCond in �gure 2 is shown in �gure 7. f PDLCond atline 4 is reursively de�ned, so we de�ne f PDLCond as a reursive funtion usingRECURSIVE. And we de�ne ondition maro w FlogPDLCond and w FlogPDLCondHiin lines 6{11.We also explored an approah using AXIOMs to introdue mutually reursivefuntions. The approah separates the de�nition part and delaration part in away similar to high-level languages, so it does not need loal de�nition. However,a step-by-step proof may be required for safety auditing, so there is a tradeo�between automation and auditability. We hose to prefer automation, as an aidto �nding errors quikly, rather than fully auditable veri�ation.The translated spei�ation in this paper is more omplex than the delar-ative style beause of the loal de�nition and reursive de�nition for irulardependent funtions. The major advantage of the de�nitional style is that it en-ables greater automation of proofs. However, the step-by-step proof that may berequired for safety auditing is sometimes diÆult. The delarative style supportsless automation for proving, but allows for auditing the proof. We reommendthe delarative style for early prototyping and the de�nitional style for full spe-i�ations.Step 5. De�nition and translation of timing funtions:The semantis of timing funtions in SCR-style SRS is given in �gure 8.The funtion twf at lines 1{7 de�nes the output as FALSE when tik t = 0 and9

1: f_PDLCond(t:tik) : RECURSIVE to_CondInOut =2: LET3: s_PDLCond : t_CondInOut = LAMBDA (tt:tik):IF tt=0 THEN k_CondIn4: ELSE f_PDLCond(tt-1)5: ENDIF,6: w_FlogPDLCondLo : enumab = TABLE7: ... % similar to if-then-else8: ENDTABLE,9: w_FlogPDLCondHi :enumab = TABLE10: ... % similar to if-then-else11: ENDTABLE,12: X = (LAMBDA (x1: pred[bool℄),13: (x2: pred[enumab℄),14: (x3: pred[enumab℄),15: (x4: pred[bool℄) :16: x1(m_PDLCond(t) = k_CondSwLo) &17: x2(w_FlogPDLCondLo) &18: x3(w_FlogPDLCondHi) &19: x4(s_PDLCond(t) = k_CondOut)) IN TABLE20: % | | | |21: % v v v v22: %-------|----|----|----|------------%23: | X(T , a? , d , ~)| k_CondOut ||24: %-------|----|----|----|------------%25: | X(T , b? , d , T)| k_CondOut ||26: %-------|----|----|----|------------%27: | X(T , b? , d , F)| k_CondIn ||28: %-------|----|----|----|------------%29: | X(T , ? , d , ~)| k_CondIn ||30: %-------|----|----|----|------------%31: | X(F , d , a? , ~)| k_CondOut ||32: %-------|----|----|----|------------%33: | X(F , d , b? , T)| k_CondOut ||34: %-------|----|----|----|------------%35: | X(F , d , b? , F)| k_CondIn ||36: %-------|----|----|----|------------%37: | X(F , d , ? , ~)| k_CondIn ||38: %-------|----|----|----|------------%39: ENDTABLE40: MEASURE t41:42: s_PDLCond(t:tik):to_CondInOut = IF t = 0 THEN k_CondIn43: ELSE f_PDLCond(t-1)44: ENDIFFig. 7. Example of de�nitional style of SRS (f PDLCond and s PDLCond)
10

TRUE for a spei�ed time interval tv after triggering a ondition to TRUE (i.e.,that ts is a urrent tik, the output at ts-1 is FALSE, and the ondition at tsis TRUE). The funtion twfs at lines 9{10 spei�es a funtion from tik to anoutput(bool) to speify a sequene of the funtion twf1: twf(C:pred[tik℄, t:tik, tv:tik): RECURSIVE bool =2: IF t = 0 THEN FALSE % initial value is FALSE3: ELSE EXISTS (ts: ft:tik | 0 < tg):4: (t-tv+1) <= ts AND ts <= t AND % During a time interval5: (C(ts) AND NOT twf(ts-1)) % if it starts TRUE6: ENDIF % with just before FALSE,7: MEASURE t % output is TRUE8:9: twfs(C:pred[tik℄, tv:tik) : pred[tik℄ =10: (LAMBDA (t:tik):twf(C,t,tv))Fig. 8. Step 5 (1). The semantis of timing funtionsAn example of translating a spei� timing funtion is given in �gure 9. Lines1{2 de�ne the ondition used in timing funtion t Trip. yletime in line 3 isan interval between two onseutive exeutions.1: C_Trip(t:tik) : bool = f_FaveC(t) >= k_FaveCPDL AND2: (NOT t_Pending(t)) AND s_Pending(t)3: t_Trip(t:tik) : bool = twfs(C_Trip,k_trip/yletime)(t)Fig. 9. Step 5 (2). Translation of timing funtion3.2 Translation from PFS to PVSThe Program Funtional Spei�ation (PFS) is translated into PVS to hekonsisteny between the PFS and the SRS. In this paper, we extrat propertiesto be heked from the PFS, but generally they are not limited to those from thePFS. FMEA (Failure Mode and E�ets Analysis) results and domain experts'knowledge also ould be used to generate putative theorems that may be provenof the system under analysis.The PFS is written in unonstrained natural language, so the translation an-not be easily automated. However, we propose a systemati two-phase proess|the �rst phase is to de�ne a ross-referene between terms in PFS and SRS.The seond phase is to translate sentenes in PFS into PVS. During the �rstphase, we an often �nd inonsistent terms, that must be resolved by the origi-nal spei�ation authors. The seond phase also annot be automated, but thereare three distint lasses, or `patterns,' in the text of the PFS. Beause of thereal-time onstraints involved, these patterns annot be desribed in temporallogi lasses suh as LTL (Linear Temporal Logi) or CTL (Computational TreeLogi), so we diretly enode in a lassial logi. Many researhes have proposedreal-time extension of temporal logis, but there is no standard notation for this.(Pattern 1) Input-Output spei�ations are requirements relating the in-put and output of funtions. If f ondition(t) = k ondition at tik t, the output11

f output is k output. They an be desribed as an impliation (with impliituniversal quanti�ation over tik t) as a relation:theorem_input_output : THEOREM(f_ondition(t) = k_ondition) => f_output(t) = k_output(Pattern 2) Time-Duration spei�ations are real-time requirements suhthat if ertain inputs are satis�ed, the ertain outputs should be maintained fora spei�ed duration. If f ondition(t) = k ondition at tik t, the output of thef output is k output between tik t and t + duration.theorem_duration : THEOREM FORALL (t:fts:tik|ts>0g) :(f_ondition(t) = k_ondition) =>(FORALL (ti: tik): (t <= ti and ti <= t+duration) =>f_output(ti) = k_output)(Pattern 3) Time-Expiration spei�ations are real-time requirements suhthat if ertain inputs are satis�ed and a spei�ed duration has elapsed, then aertain output should be generated. If f ondition(t) = k ondition at tik t andtik duration has elapsed, the output of the f output is hanged to k output.theorem_expiration : THEOREM FORALL (t:fts:tik|ts>0g) :(f_ondition(t) = k_ondition) =>((0 <= duration) => f_output(t+duration+1) = k_output)The translation from PFS to PVS THEOREMs follows the example in �gure 10,whih shows the translation of the items from �gure 3. Item e.1 in �gure 3 is `Ifthe D/I is open, selet the 0:3%FP (Full Power) onditioning level. If �LOG <0:3%FP�50mV , ondition out the immediate trip. If �LOG >= 0:3%FP , enablethe trip.' This sentene mathes (Pattern 1), input-output spei�ations. `TheD/I' is desribed as `hand swith' and `low power onditioning level' in lines3 and 4 in �gure 3. So `the D/I' is mapped to `m PDLCond.' And `the D/I isopen' means that m PDLCond(t) = k CondSwLo. In this state, `immediate trip'is `ondition out' when �LOG < 0:3%FP � 50mV . �LOG is mapped f Flog and0:3%FP is 2739 mv, that is, k FlogPDLLo. This information is desribed in anappendix of PFS and SRS. In this state, immediate trip should not operate(ondition out). It an be written as f PDLCond = k CondOut. In a similar way,`enable trip' when �LOG >= 0:3%FP translates THEOREM th e 1 2.th_e_1_1 : THEOREM (m_PDLCond(t) = k_CondSwLo AND f_Flog(t) < 2739-50)=>f_PDLCond(t) = k_CondOutth_e_1_2 : THEOREM (m_PDLCond(t) = k_CondSwLo AND f_Flog(t) >= 2739) =>f_PDLCond(t) = k_CondInFig. 10. Example of translation from PFS to PVS THEOREMs3.3 Veri�ationThe translated spei�ation is stored in a �le for veri�ation by PVS. The veri�-ation in PVS annot be entirely automated, but we found that there is a pattern12

when we prove similar properties. A proof template is (expand* ": : :")(grind:exlude (": : :")) or (grind :exlude (": : :")). The : : : is related to thefuntions or de�nitions on the paths of dataows. The PVS proof strategy grindtries to rewrite the de�nitions in all possible ases, and for irular de�nitionit rewrites in�nitely. So : : : in exlude are de�nitions are irular dependenyrelations. expand is used for rewriting only one expansion of a de�nition. Whenwe prove THEOREM th e 1 1 and THEOREM th e 1 2 in �gure 3.2, f PDLCond is areursive de�nition. So we an prove them by (expand "f PDLCond") (grind:exlude ("f PDLCond")).4 DisussionDuring our veri�ation experiene, we disovered notational errors, di�erentterms for the same onepts, and hidden assumptions.First, we found that di�erent terms were used in PFS during the onstrutionof the ross-referenes. For example, the m PDLCond is used as hand swith,low power onditioning level, and onditioning level. The m PHTD is used asCore Di�erential Pressure measurement, �Pi, and DP signal. The f PDLTrip, isused as the state of PHT low ore di�erential pressure parameter trip, �Ptrip,and parameter trip(D/O). Our method an be therefore valuable in enouragingthat the PFS use terms in the same way that the SRS does.Seond, other di�erent terms in the PFS are `ondition out the immediatetrip' and `enable trip.' The `ondition out' is atually the opposite of `enable',but this is far from lear. Our analysis highlights suh obfusated wording, in�gure 11. We present a modi�ed PFS term, e.`the low power onditioning level'from `the onditioning level' in �gure 3. The `ondition in - enable' is also mod-i�ed to `disable - enable'.e. Determine the immediate trip onditioning status from the low power onditioninglevel D/I as follows:1. If the D/I is open, selet the 0:3%FP onditioning level. If �LOG < 0:3%FP �50mV , disable the immediate trip. If �LOG >= 0:3%FP , enable the immediatetrip. Fig. 11. Unambiguous PFSThird, there are hidden assumptions, suh as in the following PFS. The g.2and g.3 in �gure 3 are translated into �gure 12 in PVS. But we ould not provethe THEOREM th inappropriate g 3.We investigated the reason and we onluded that there were hidden assump-tions. Items g.2 and g.3 in �gure 3 are not independent. In other words, the itemg.3 an be true only if the item g.2 is true. `One the delayed parameter triphas ourred' does not mean `the delayed parameter trip has ourred' diretly,but it means `fAV EC equals or exeeds 80%FP and then the delayed parametertrip has ourred'. So the assumption the delayed parameter trip has ourredin item g.3 should be strengthened with items g.2.1 and g.2.2. As a result of this13

th_appropriate_g_2_1 : THEOREM FORALL (t:fts:tik|ts>0g) :f_FaveC(t)>= 80 AND t_Pending(t) = false ANDs_Pending(t) = true AND t_Trip(t-1) = false=> t_Trip(t)th_appropriate_g_2_2 : THEOREM FORALL (t:fts:tik|ts>0g) :f_FaveC(t)< 80 AND t_Pending(t) = false ANDs_Pending(t) = true AND t_Trip(t-1) = false=> t_Trip(t)th_inappropriate_g_3 : THEOREM FORALL (t:fts:tik|ts>0g):t_Trip(t-1) = false AND t_Trip(t) = true =>FORALL(t1 : tik): ((t <= t1 and t1 <= 1000/yletime +t) =>t_Trip(t1) = true)Fig. 12. Example of inappropriate translation of PFSinvestigation, we translated the above PFS into PVS spei�ations again, suh asin �gure 13. Then we sueeded in the proof of THEOREM th appropriate g 3.This error was not found through inspetion, and is the kind of error that isdiÆult to �nd without formal analysis.th_appropriate_g_3 : THEOREM FORALL (t:fts:time|ts>0g):t_Trip(t-1) = false AND t_Trip(t) = true AND%% strengthen assumption from th_appropriate_g_2_1~g_2_2f_FaveC(t) >= 80 AND t_Pending(t)=false AND s_Pending(t)=true =>FORALL(t1 : time): ((t <= t1 and t1 <= 1000/yletime + t) =>t_Trip(t1) = true)Fig. 13. Example of appropriate translationRelated workThe work presented here is omplemented by ongoing work at MMaster Uni-versity by Lawford et al. [6℄. Using a similar ase study, their work onentrateson veri�ation of the re�nement of the requirements in the SRS into design el-ements, also expressed in SCR, in the software design desription (SDD). Theyuse an extension of the 4-variable model of Parnas [7℄ into a relational setting,and laim that their approah is more intuitive for system engineers. Our goalin the present work is essentially the same - to develop easier-to-use veri�a-tion approahes - for appliation to the earlier part of the software developmentproess.Another approah for formal validation of requirements from PFS is done byGervasi and Nuseibeh [8℄. It provides a systemati and automated method toonstrut a model from a PFS, and then heking some strutural properties (forexample, funtion's domain is orret) of the onstruted model. We think thattheir extration tehnique an help in extrating funtional properties; however,they do not hek funtional properties.14

5 ConlusionBased on our experiene of inspeting the Wolsung SDS2 SRS, we have demon-strated that inspetion has limitations. To verify funtional properties, we de-veloped a software tool with a graphial user interfae that onverts SCR-stylerequirements spei�ations into the PVS language. In addition, we provide amethod for verifying funtional properties in PFS using PVS. We believe thatthe proedure helps to onstrut high-quality safety-ritial software.Users of our approah need not be experts on formal methods or power usersof PVS. Our graphial editor provides a user-friendly interfae to allow edit-ing of SCR-style spei�ations and automates the translation proess. However,the proof proess an be ompleted with a limited study of the proof pattern.The spei�er translates PFS into PVS theorems manually, even though we antranslate systematially using a ross-referene table.Although we strongly believe that our approah delivers signi�ant bene�tsto pratitioners, the following further enhanements seem to be desirable:{ Development of translation rules so that a formal spei�ation written instateharts or modeharts an be veri�ed using the same approah{ More systemati method of translating from PFS to PVS theorems, to en-hane ompleteness of the urrent ross-referene methods{ Additional study of proof patterns, to the veri�ation{ Enhanements to the SRS-style editor, suh as XML translation, to inreaseits pratial utilityReferenes1. M. Fagan, \Advanes in Software Inspetions," IEEE Transations on SoftwareEngineering, 12(7), pp. 133-144, 1986.2. S. Owre, N. Shankar, J. Rushby, and D. Stringer-Calvert, PVS System Guide, PVSLanguage Referene, and PVS Prover Guide Version 2.4 , Computer Siene Lab-oratory, SRI International, 2001.3. AECL CANDU, Software Work Pratie, Proedure for the Spei�ation of SoftwareRequirements for Safety Critial Systems, Wolsung NPP, 00-68000-SWP-002, 1991.4. C. Heitmeyer, J. Kirby, and B. Labaw, \The SCR Method for Formally Speifying,Verifying and Validating Software Requirements: Tool Support," Proeedings of the19th International Conferene on Software Engineering (ICSE '97), pp. 610-611,1997.5. N. Halbwahs, P. Caspi, P. Raymond, and D. Pilaud, \The Synhronous Data FlowProgramming Language LUSTRE," Proeedings of the IEEE, 79(9), pp. 1305-1320,1991.6. M. Lawford, J. MDougall, P. Froebel, and G. Moum, \Pratial appliation offuntional and relational methods for the spei�ation and veri�ation of safetyritial software," Proeedings of Algebrai Methodology and Software Tehnology,8th International Conferene (AMAST 2000), LNCS 1816, pp. 73-88, 2000.7. D. Parnas and J. Madey, \Funtional doumentation for omputer systems engi-neering," Tehnial Report CRL No. 273, Teleommuniations Researh Instituteof Ontario, MMaster University, 1991.8. V. Gervasi and B. Nuseibeh, \Lightweight Validation of Natural Language Require-ments: a ase study," Proeedings of 4th IEEE International Conferene on Re-quirements Engineering (ICRE 2000), 2000.15

