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Abstract

PLAN is a language designed for programming active networks, and can more generally be
regarded as a model of mobile computation. PLAN generalizes the paradigm of imperative
functional programming in an elegant way that allows for recursive, remote function calls,
and it provides a clear mechanism for the interaction between host and mobile code. Tech-
niques for specifying and reasoning about such languages are of growing importance. In
this paper we describe our specification of PLAN in the rewriting logic language Maude.
We show how techniques for specifying the operational semantics of imperative functional
programs (syntax-based semantics) and for formalizing variable binding constructs and mo-
bile environments (CINNI calculus) are used in combination with the natural representation
of concurrency and distribution provided by rewriting logic to develop a faithful descrip-
tion of the informal PLAN semantics. We also illustrate the wide-spectrum approach to
formal modeling supported by Maude: executing PLAN programs; analyzing PLAN pro-
grams using search and model-checking; proving properties of particular PLAN programs;
and proving general properties of the PLAN language.

1 Introduction

In [24] we have reported on our experience with the rewriting logic [23] language
Maude [2] in the context of active networks. In that paper we have included a
very brief overview of the application of Maude at two very different levels of
the active network infrastructure, namely in the object-oriented specification of
the AER/NCA protocol suite and in the specification of the PLAN active network
Y
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programming language. In this paper we present the second application in greater
depth and with a particular emphasis on the following two aspects: (1) the use of
operational semantics techniques from programming language theory augmented
with the CINNI explicit substitution calculus; and (2) the wide-spectrum approach
to formal modeling supported by Maude. We begin with a brief introduction to
active networks and PLAN.

What are Active Networks?
On the web site of the Switchware Project [11], a project concerned with the

design and the implementation of an active network infrastructure, we find the fol-
lowing explanation:

Active networks explore the idea of allowing routing elements to be extensively
programmed by the packets passing through them. This allows computation
previously possible only at endpoints to be carried out within the network itself,
thus enabling optimizations and extensions of current protocols as well as the
development of fundamentally new protocols.

Active networks are networks with nodes that do not operate according to a fixed
scheme (e.g. as conventional routers) but are instead fully programmable and pro-
vide execution environments for programs that can be received from other nodes via
the network. Active networks can be wired, wireless or hybrid networks. One may
think of active networks as a generalization of conventional networks and as a step
toward greater flexibility: Packets, which are interpreted by routers in conventional
networks following rigid schemes, become programs, which are executed in active
networks in a universal fashion. See [31] for a survey of active network research
and the recent DARPA conferences on this subject [3,4].

What is PLAN?
The PLAN web site [10] introduces PLAN as a Packet Language for Active

Networks with the following explanation:

PLAN is a resource-bounded functional programming language that uses a form
of remote procedure call to realize active network packet programming. It is part
of the SwitchWare Project.

PLAN [13,12,25,14,19], is an imperative functional language similar to ML, but
has a number of additional features, such as remote function execution and re-
source awareness. Remote function execution, means that functions can be invoked
in such a way that the execution does not take place locally but in the execution en-
vironment of a different network node. To this end, the function call is treated as a
so-called chunk, i.e. as a piece of data, which is transmitted to the destination node
by means of a packet. Resource awareness refers to a mechanism which keeps track
of computational resources and ensures that all PLAN programs are terminating. In
addition, PLAN programs interact with their host nodes through service package
interfaces. Basic services include provision of information about local network
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topology, local node properties, time, and routing. Other possible services include
resident data services for (time-limited) data storage and retrieval.

Our sources for the informal semantics of PLAN included (in addition to con-
versations with members of the Switchware team) the PLAN specification docu-
ment [17] and the paper [19] (a fairly detailed description of an operational se-
mantics), an abstract version of PLAN for reasoning about security [18], and the
PLAN programmers guide [15]. We have specified a more general language that
we call the extended PLAN Language (briefly xPLAN). xPLAN is based on the
full call-by-value � -calculus (also known as � -calculus with eager evaluation) and
unrestricted recursion, whereas the functional core language of PLAN is similar to
a first-order fragment of ML but only allows a form of bounded recursion. This
generalization leads to a syntactially simpler, more elegant model with many inter-
esting possibilities for mobile code. The official PLAN language maps naturally
to a subset of xPLAN defined by simple syntactic restrictions. The main restric-
tion, which ensures termination of PLAN (and corresponding xPLAN) programs,
is that recursive calls can only occur inside chunks, and the local or remote invoca-
tion of a chunk reduces the computational resources available by at least one unit.
Furthermore, forwarding a packet to the next hop consumes one unit so that the
standard hop counter scheme to avoid nontermination of routing is subsumed by
this concept.

Our specification fully captures the intent of the specifications [17] and [18], but
has the benefit of being both formal and executable. Furthermore, as we will illus-
trate below, this specification can be used at very different levels [5] ranging from
execution of test configurations, symbolic search, and model checking analysis to
verification of general properties of programs and of the language itself.

2 PLAN in Maude

Our specification is organized in three main parts: syntax; network; and semantics.
The syntax part is a fairly direct formalization in Maude of the syntax of xPLAN
as an algebraic data type. The network part models basic network concepts such
as locations, addresses, connections, and routing, with the minimal detail needed
for the PLAN specification. The semantic part is the heart of the matter. The mul-
tilevel concurrency of active networks is very directly reflected in the computation
state which is structured to provide clear boundaries for the scope of effects and
information access.

� A network configuration is modeled as a multiset containing nodes and packets.
� With each node we associate a multiset of processes local to the node, which

serve as execution environments for programs and can themselves execute con-
currently within the node.

� Each process encapsulates the local state of the execution environment together
with an abstract reduction machine.
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The rules are grouped according to their scope. To specify the abstract machine we
use a general approach suitable for functional languages with side-effects which is
based on [8,16,22]. The main idea is that the reduction state of the abstract machine
is a pair, consisting of a reduction context (i.e. an expression with a hole) and the
expression to be reduced in this context. Furthermore, the specification uses the
CINNI calculus [28] to specify the binding structure of the language. CINNI is a
generic first-order calculus of explicit substitutions that is parametric in the object
language and that does not abstract away the names of variables. � The specifi-
cation is considerably simplified by formalizing environments directly as explicit
substitutions, thereby eliminating the need to treat environments explicitly in mul-
tiple places.

�
It also gives an elegant solution to the subtle problems of binding

and environment handling in the context of recursive remote function calls.

2.1 Syntax

The abstract syntax of xPLAN uses CINNI notation for bound variables. Defining
(binding) occurrences of variables are represented as identifiers. A referencing
occurrence of a variable is written

�������
and refers to the

�
-th defining occurrence

of
�

(counting from the inside and starting with 	 ). Presupposing a sort Nat of
natural numbers, and a sort of identifiers Id, this is formalized by the declarations:

sort Var .
op _ 
 _ � : Id Nat -> Var .

The sort Const contains constants for built-in data objects, and constants for func-
tions, services, etc., which are classified into constructors (sort Cstr) and non-
constructors (sort NonCstr).

sorts Cstr NonCstr Const .
subsorts Cstr NonCstr < Const .
ops Nil Dummy : -> Const .
ops Pair Cons Chunk Foldr : -> Cstr .
ops Foldr Foldl Hd Tl : -> NonCstr .

Foldr and Foldl provide the ability to iterate over a list. In contrast to gen-
eral recursion using LetRec (see below), these two functions provide a form of
bounded recursion that is always terminating and hence not charged against the
computational resources available to the program. The basic data types of PLAN
are modeled by injecting the corresponding Maude sort into the Const sort. Thus
they are isomorphic to, but not confused with, the Maude sorts. Apart from the
standard Maude sorts we presuppose a sort Addr of host addresses. The host ad-
dress is not necessarily unique for a given host, because each host can have several
network devices and each of these has an associated host addresss.
�

This is in contrast to presentations of  -calculus modulo � -conversion or presentations based on
de Bruijn indices. In both of these representations the information about names is lost.�

This is in contrast to for instance SECD machines, which carry the environment as an explicit
component. In the explicit substitution approach environments are not accessible as a machine
component but instead implicitly eliminated as soon as possible thanks to the CINNI equations.
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op Bool_ : Bool -> Const .
op Int_ : Int -> Const .
op String_ : String -> Const .
op Addr_ : Addr -> Const .
op Key_ : Int -> Const .

There are constants for each of the service functions. Some examples are given
below.

ops GetRB GetSource GetSrcDev : -> NonCstr . *** Proc. level
ops ThisHostIs GetNeighbors : -> NonCstr . *** Node level
ops OnNeighbor OnRemote : -> NonCstr . *** Packet creation
ops Exists Get Put : -> NonCstr . *** Data Repository

The service calls GetRB ��� , GetSource ��� , and GetSrcDev ��� are used to access
information about the current process, namely the remaining amount of computa-
tional resources, the address of the originating host, and the address of the network
device at which the packet arrived that initiated the current process. The service
ThisHostIs ����� checks whether a given address � refers to a network device
local to the current note, and GetNeighbors ��� returns the list of neighbors of
the current node. OnNeighbor ���	��
 ���������������� ����������� � invokes the given chunk
�	��
 �� at a neighbor

�����	�
using

�����
as the outgoing device and passes on

� ���
of

its resource units for sending the packet containing the chunk and for its execu-
tion on the remote node. OnRemote is similar but allows execution on arbitrary
nodes and hence may involve packet routing by means of a routing function that
has to be passed as an additional argument. Finally, Exists � �	��� ��� � , Get � �	������� � ,
and Put � �	�������!��� ��" ���	#%$ � provide access to a resident data dictionary local to the
current node, � ��������� � being a composite access key,

� ��" the value to be stored, and�	#%$
the time till expiration.

Note that we use the classification into constructors and non-constructor only
for constants that denote functions. It is done in order to identify the subset of the
expressions that represent values. Roughly speaking, constants are values and con-
structors applied to lists of values are values. A non-constructor applied to any list
of expressions is a non-value requiring one or more steps of evaluation. Also, a con-
structor applied to a list containing a non-value is a non-value. In the specification,
values and non-values are formalized as sorts Val < Ex and NonVal < Ex,
respectively.

The expressions of the language, are built from constants and variables using
typical functional language constructs. The main constructs of xPLAN are given
below. &
sort Ex .
subsorts Const Var < Ex .
op __ : Ex ExList -> Ex .
op If_Then_Else_ : Ex Ex Ex -> Ex .
op Lam‘[_:_‘]_ : IdList PlanTypeList Ex -> Ex .

'
There are additional constructs for sequential execution and exception handling.
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op Let‘[_=_‘]_ : IdList ExList Ex -> Ex .
op LetRec‘[_=_‘]_ : IdList ExList Ex -> Ex .

Note that __ stands for empty syntax, thus function application is represented by
juxtaposition of the function expression with the argument list, and the backquote
separates lexical tokens in the mixfix declarations. The meaning of these con-
structs is the standard one of call-by-value � -caluclus, but function application and

� -abstraction are generalized to arbitrary
�

-ary functions (so that currying is not
needed), and correspondingly a single (recursive) Let construct allows several si-
multaneous bindings.

For sake of brevity we have omitted the declarations of the sort PlanType
of type annotations and the obvious declarations of the sorts IdList, ExList,
ValList, and PlanTypeList. They denote lists over Id, Ex, Val, and Plan
Type, respectively, with inclusions Id < IdList, Ex < ExList, Val <
ValList, PlanType < PlanTypeList. We always use a constructor _,_
for list concatenation. Furthermore, we use a constant empty-exl for the empty
list over Ex, and we extend the inclusion Val < Ex to ValList < ExList.

2.2 Semantics

To specify the semantics of xPLAN we first explain how the global active network
state is represented. We then discuss the reduction machine which is the basis for
the operational semantics for the functional programming primitives. Finally, we
discuss the transition rules and give representative examples for the main types of
transitions.

2.2.1 The Active Network State
The global state of an active network is a configuration modeled as multiset whose
elements are nodes, processes, packets, data sets, and a unique global key. The
sort and constructor declarations are as follows. We assume sorts Addr, Loc,
Connection, Route of host addresses, locations, connections (i.e. pairs of the
form

��� � >>
�����	�

), routes (i.e. pairs of the form
�����	�

via ��� � , meaning that�������
can be reached via the connection ��� � ), and sorts AddrList, Connection

List, RouteList of corresponding lists.

sort Configuration .
sort Node Packet Process FreshKey Data DataItem .
subsorts Node Packet Process FreshKey Data < Configuration .
op empty-conf : -> Configuration .
op __ : Configuration Configuration -> Configuration

[assoc comm id: empty-conf] .
op Node : Loc AddrList ConnectionList RouteList -> Node .
op Packet : Addr Addr Addr Int Int Const

Val ValList -> Packet .
op Process : Loc Addr Addr Int Int RedState -> Process .
op FreshKey : Int -> FreshKey .
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op Data : Loc DataItemList -> Data .
op DataItem : String Int Val Int -> DataItem

A network node has the form Node ��" ������� � � ����� � ����� � . The location " serves as
its identifier,

����� �
lists its network devices,

����� �
gives the connections to neigh-

bors, and
���

is the node’s routing table. The network topology is given by the
combined device and neighbors information of all of its nodes.

A packet in transit has the form Packet �������	� ��
 �����	� ���������� � ��� � ����� ����
 ������� �������� � , where
�����	�

specifies the next hop destination address on its route to the final
destination


 �����	� . Each packet has an originating packet, injected into the network
by some application and has assigned a unique session key.

��� �
is the session key

of the originating packet, and �
� ��� �

is the address of the originating application.
��

is the amount of computational resources available to the packet for its execution,
and

��

is the packet’s preferred routing function. The final two arguments make up

a chunk with function
� ��" , and (evaluated) arguments

� ��"�" .
A process has the form Process ��" � � � ��� � � � � ����� ����� � ���� ��� � � . The process

was created when a packet with node " as its final destination arrived. The address
� � ����� refers to the device at which the packet entered the node, �

� ��� �
,
��� �

, are the
same as in the packet,

��
is the remaining amount of computational resources, and� �

is the reduction machine state (see below).
Admissible configurations have a single object of the form FreshKey � � �� �

used to generate fresh keys for sessions and controlled data sharing. The integer� �� 
is incremented each time a key is generated.

For the resident data services each node Node ��" ��!�!�! � has an associated data
object Data ��" ����� "�� where

�%� " is a list of data items. Data items have the form
DataItem � � � ������� ��" ��� � "�� , where � ��� ��� � constitutes a composite key under which
the value

� ��" is stored. The last argument
� � " determines the time until expiration

of the data item (present for future compatibility, since time advance is currently
not modeled).

In Figure 1 we show an example network topology and a fragment of the def-
inition of the Maude term example-topology representing an initial network
configuration with this topology. The network has six nodes l0,...,l5, and six sub-
nets na,...,ne,ni. In the term example-topology this topology is expressed
by the AddrList and ConnectionList arguments of the Node constructs.
The configuration also contains information about the next available fresh key and
an initially empty data dictionary associated with each node.

2.2.2 Design of the Reduction Machine
When a packet arrives at its destination node a process is created to execute the
invocation encapsulated by the chunk. The local execution of a process is specified
by an abstract reduction machine. A simple and concise formalization of the reduc-
tion machine is crucial for the semantics to be useful for mathematical reasoning.
We have used an approach called syntax-based semantics [8,20,30] to simplify the
reduction machine and to obtain a very direct connection between the (partially
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1

3

5

2

4

ni
nb

nc

ne

nd0

na
a1

c3

e4

op example-topology : -> Configuration .
eq example-topology =

FreshKey(10)
Node(loc("l0"), (addr("i0"),addr("a0")),

((addr("a0") >> addr("a1"))),
((addr("a1") via (addr("a0") >> addr("a1"))),
(addr("b1") via (addr("a0") >> addr("a1"))),
...))

Data(loc("l0"), empty-dil)
Node(loc("l1"), (addr("a1"),addr("b1"),addr("c1")),

((addr("a1") >> addr("a0")),
(addr("b1") >> addr("b2")),
(addr("c1") >> addr("c3"))),
((addr("a0") via (addr("a1") >> addr("a0"))),
(addr("b2") via (addr("b1") >> addr("b2"))),
...))

Data(loc("l1"), empty-dil)
... .

Fig. 1. Example Topology

executed) program and the machine state. This approach uses (extended) program
syntax to represent semantic entities. In particular, values are just a subset of ex-
pressions, and the control stack is represented by expressions with holes, called
reduction contexts. Environments are represented using explicit substitutions in a
suitable instance of the CINNI calculus.

A reduction machine state has the form RedState ��� # ���	# � with a constructor:

op RedState : Cx Ex -> RedState .

The reduction context component � # is an expression with a hole and
�	#

is the
expression that is the current focus of reduction.
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The sort Cx contains expressions with any number of holes (including possibly
none) in any position in which an expression could occur. Thus expression con-
structors are overloaded to construct contexts and there is an additional constant ?
to represent the hole:

sort Cx .
subsort Ex < Cx .
op ‘? : -> Cx .

Reduction contexts are a special form of contexts in which the holes correspond
to positions where evaluation can take place. In the case of PLAN, which has a de-
terministic evaluation semantics, reduction contexts have a single hole and this hole
is not in the scope of any binding operators. Redexes correspond to machine in-
structions, they can be immediately reduced. In the pure lambda-value calculus
the redexes are lambda expressions applied to values: � � # ! � � � . In PLAN they also
include non-constructors applied to value lists and let expressions in which all bind-
ings are value expressions. Mathematical descriptions of deterministic evaluation
using reduction contexts are based on a key lemma that says that an expression

�	#
is either a value or it decomposes uniquely into a reduction context

�
and a redex�

such that
�	#

is the result of filling the hole in
�

with
�

(written
��� ���

) [8]. The
inductive definition of the set of reduction contexts corresponds to peeling off basic
reduction contexts one layer at a time until a redex is reached:

�	#����
	�� ! !�!�!����� �����
.

These basic reduction contexts correspond to a control stack with
�


at the top. For
example, the first layer of a PLAN application

�	#�� � ��" � � ��" " � � � ��" ���	# "�� , where� ��" " is a value list and
� � ��" is a non-value expression, is the reduction context��� � ��"!� � ��" " � ? ���	# "�� expressing the left to right evaluation order semantics. Most

of the action occurs at the inner basic reduction context (top of the stack). For ex-
ample, suppose the above application fills the hole of an outer reduction context���

so that
�	#���������� �	#�������������� � � ��" ��� . When the evaluation of

� � ��" leads to a
value

� ��" � the hole is filled with that value, and the resulting expression is rede-
composed if it still contains a redex. The new decomposition is parametric in the
outer reduction context, that is, it has the form

� � ��� � � � � � ���
where

� � � � � � �
is the unique

decomposition of
��� � ��" � � .

In the following we use variables
�	#

,
�	#��

, etc. to range over expressions (sort
Ex) and variables � # , � #�� , etc. to range over contexts (sort Cx). The operation of
hole filling is a special case of metavariable substitution (the hole being the only
metavariable) and is generalized to allow filling of holes with contexts (context
composition) and to apply to context lists (sort CxList), contexts being a special
case. The process of hole filling is formalized by the following operation.

op <‘?‘:=_>_ : Cx Cx -> Cx .
op <‘?‘:=_>_ : Cx CxList -> CxList .
eq < ? := cx > ? = cx .
eq < ? := cx > const = const .
eq < ? := cx >(cx’ cxl) = (< ? := cx >cx’)(< ? := cx > cxl) .

...
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A naive formalization of the reduction machine uses decomposition to deter-
mine the next reduction step, followed by hole filling to place the reduct in its
context. This involves many operations of hole filling and decomposition. A more
efficient formalization uses the observation that the reduction context layers corre-
spond to a stack and represents this stack using a lazy hole filling operator (with no
equations for simplification):

op <<‘?‘:=_>>_ : Cx Cx -> Cx .
op <<‘?‘:=_>>_ : Cx CxList -> CxList .

The rules for forming reduction contexts can be easily formalized using member-
ship axioms or by direct construction. However, they are not needed to formulate
the reduction rules. They more properly belong to an extension of the executable
specification where properties of the semantics are to be proved. For example,
the reduction machine maintains two invariants on RedState ��� # ���	# � : (1) the � #
component is a reduction context; and (2) the entire program (in its current stage of
evaluation) is given by <? :=

�	#
> � # , i.e. by filling the hole in � # with the focus

expression
�	#

.
Apart from the metavariable substitution used for hole filling, a second notion

of substitution is needed in the rules of our specification for object variables. This
substitution cannot be reduced to a simple textual substitution, because it must re-
spect the binding structure of the object language. Therefore, we use the CINNI
family of explicit substitution calculi [28] instantiated to the syntax of xPLAN.
We have slightly generalized the original CINNI substitutions to simultaneous sub-
stitutions by simply lifting all operators from Id to IdList (which represents a
simultaneous binding). There is a basic explicit substitution constructor [_:=_],
two auxiliary constructors shift and lift, for relocation (by changing the vari-
able indices), and an operation __ for application of a substitution to an expression
list (expressions being a special case).

sort Subst .
op [_:=_] : Id Ex -> Subst .
op [_:=_] : IdList ExList -> Subst .
op [shift_] : Id -> Subst .
op [lift__] : Id Subst -> Subst .
op [lift__] : IdList Subst -> Subst .
op __ : Subst Ex -> Ex .
op __ : Subst ExList -> ExList .

eq ([id := ex] (id{0})) = ex . *** C1
eq ([id := ex] (id{suc(m)})) = (id{m}) . *** C2
eq ([shift id] (id{m})) = (id{suc(m)}) . *** C3
eq ([lift id S] (id{0})) = (id{0}) . *** C4
eq ([lift id S] (id{suc(m)})) =

[shift id] (S (id{m})) . *** C5

eq (S const) = const . *** C6

10
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eq (S (ex exl’)) = ((S ex) (S exl’)) . *** C7
eq (S (Lam [idl : typel] ex)) =

(Lam [idl : typel]([lift idl S] ex)) . *** C8
...

2.2.3 The Transition Rules
The configuration evolves by means of local reduction machine rules and service
rules. The latter are further split into process, network, packet, and data service
rules.

Reduction machine rules. There are two kinds of reduction machine rules: con-
trol rules that move the focus to the next relevant redex; and reduction rules that
perform the actual reductions.

rl [args]: RedState(cx, (val (vall’, nval’, exl’)))
=>
RedState(<< ? := (val (vall’, ?, exl’)) >> cx, nval’) .

rl [up]: RedState(<< ? := cx >> cx’, val)
=>
RedState(cx’, < ? := val > cx) .

rl [beta] RedState(cx, ((Lam [idl : typel] ex) vall))
=>
RedState(cx, [idl := vall] ex) .

The rule args is a control rule moving the focus to the next unevaluated ar-
gument in a function application. The rule up moves the current focus toward the
top (viewing the term as a tree) if the current focus is a value. It is the only rule
that uses the “non-lazy” version of context hole filling. The rule beta corresponds
to the standard beta-reduction rule of the call-by-value lambda calculus. To give a
flavor of how CINNI handles substitution we show the reduction and simplification
of a lambda application (omitting type annotations) using the beta rule and the
CINNI equations given earlier.

((Lam [x] (Lam [x] (x{0} x{1})) ) x{0})
= [x := x{0}] (Lam [x] (x{0} x{1})) *** beta
= (Lam [x] [lift x [x := x{0}]] (x{0} x{1}) ) *** C8
= (Lam [x] ([lift x [x := x{0}]]x{0}

[lift x [x := x{0}]]x{1}))
= (Lam [x] (x{0} [shift x]x{0})) *** C1 C2 C4 C5
= (Lam [x] (x{0} x{1})) *** C3

Thus the original x{0} has become x{1} to maintain its reference to an external
binding.

Process Service rules use information held in the process but outside the reduction
machine state. For example, application of GetRB returns the resource bound, i.e.
the remaining computational resources, of the current process.
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rl Process(l, orign, ardev, ssn, rb,
RedState(cx, (GetRB empty-exl)))

=>
Process(l, orign, ardev, ssn, rb,
RedState(cx, (Int rb))) .

Network service rules use the nodes local network information. For example, the
service function ThisHostIs checks whether a given address is one of the nodes
network devices.

rl Node(l,devs,nbrs,rt)
Process(l, orign, ardev, ssn, rb,
RedState(cx, (ThisHostIs (Addr a))))

=>
Node(l,devs,nbrs,rt)
Process(l, orign, ardev, ssn, rb,
RedState(cx, (Bool (contains(devs,a))))) .

Data service rules manipulate the nodes resident data storage. For example, the
service function Put adds or updates a data item.

rl Data(l,dil)
Process(l, orign, ardev, ssn, rb,
RedState(cx, (Put ((String str),(Key key),

val,(Int ttl)))))
=>
Data(l,put(dil,str,key,val,ttl))
Process(l, orign, ardev, ssn, rb,
RedState(cx, Dummy)) .

Packet rules include rules for emitting, delivering, and routing packets in transit.
The PLAN construct OnNeighbor is one of the two possibilities to initiate a
remote function call which is given by a chunk Chunk � � ��" ��� ��" "�� . As we can see
below, the execution of OnNeighbor leads to the emission of a packet which
encapsulates this chunk.

crl Node(l,devs,nbrs,rt)
Process(l, orign, ardev, ssn, rb,
RedState(cx, (OnNeighbor ((Chunk (val,vall)),

(Addr dest),(Int int),(Addr dev)))))
=>
Node(l,devs,nbrs,rt)
Process(l, orign, ardev, ssn, (rb -int),
RedState(cx, Dummy))

Packet(dest, dest, orign, ssn, (int - 1), NoRoute,
val, vall)

if connection(devs,nbrs,(dev >> dest)) and
(rb >= int) and (int > 0) .

Notice that the current amount of resources rb of the executing process is de-
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creased by the amount given to the emitted packet, and that amount is then de-
creased by one corresponding to the use of one unit for the first hop. The routing
function component of the packet is set to an irrelevant constant NoRoute above,
because OnNeighbor can only send packets to immediate neigbors. The more
general OnRemote service allows remote invocation on arbitrary locations and
allows the user to specify a routing function which is passed along in the packet.

When a packet reaches its destination (next hop agrees with final destination) a
process is created to evaluate the contained chunk.

crl Node(l,devs,nbrs,rt)
Packet(dest, fdest, orign, ssn, rb, rf, val, vall)
=>
Node(l,devs,nbrs,rt)
Process(l, orign, dest, ssn, rb, RedState(?,(val vall)))
if (dest == fdest) and contains(devs,dest) .

There are also rules to route packets not yet at their destination, termination rules
to remove processes that have completed their task, and exception handling rules
for generating, propagating and handling runtime exceptions.

3 Using the Maude Specification of PLAN

Spelling out the details in a formal notation forces one to clarify concepts and to
make explicit many implicit assumptions, but there is no guarantee that the spec-
ification is correct (represents the intended model) or usable. Thus, a specifica-
tion must be subjected to further examination and tests. Like system requirements,
whether or not a formal specification is correct is subjective and cannot be mechan-
ically checked. However, one can derive consequences (predictions) and compare
these to observed or desired properties. In this section, which extends a correspond-
ing section in [24], we recall several general properties of PLAN programs and we
discuss a specific program and its analysis in some detail.

As part of the validation of PLAN in Maude we proved a number of general
properties of PLAN programs implied by the Maude specification:

(t) Termination: Assuming all packets are eventually delivered (fairness), if a
packet is injected into the network with a fresh session identifier, then all pro-
cesses with that session identifier terminate execution with a reduction state
having one of the following forms:

(t1) a non-value purposely left unevaluated in the current specification, such
as Print val;

(t2) a non-value that cannot be executed because it would cause a runtime type
error.

(ni) Noninterference: Packets injected into a network with no pre-existing (ac-
cessible) data elements execute independently—that is, execution of packets
with different session identifiers can be considered separately, since the only
mechanism for interaction is shared access to data elements.

13
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(r) Resource requirement: For a PLAN program to visit each node of a network
by repeatedly sending packets to all neighbors (one to each) it is sufficient to
start with

�����������
, where

�
is the diameter—the length of the longest path

between nodes, and
�

is the width—the maximum number of neighbors of
any node. To have

�
units left at every terminal point, it is sufficient to start

with
���� � �
	�� � ��� .

The termination results are a bit more general than stated in that they allow, para-
metrically, for certain extensions of the language. Proofs of these results will appear
in a forthcoming paper.

3.1 Testing and Analyzing Particular PLAN Programs

To test the usability of the specification from the programmer’s point of view, we
selected several PLAN programs and subjected them to a spectrum of formal anal-
ysis techniques. The general approach for these exercises was to

(i) represent the program as a Maude term (a simple syntactic modification, which
could be automated);

(ii) define a suite of test configurations, each determined by a network configura-
tion and program input—also represented as Maude terms;

(iii) run the test configurations using the Maude interpreter;

(iv) further analyze the possible computations of the test configurations using
Maude’s search and model checking tools; and

(v) prove properties of interest for arbitrary network configurations and inputs
(using ordinary mathematical reasoning based on the formal model).

As a concrete illustration, we will use one of the route finding programs pub-
lished in [19]. The Maude term for this program is shown in Figure 2. The program
has two main functions: find, which does a forward search for the node with the
destination address, and goback, that returns to the source by the inverse route
and Prints the route found. The forward search, like Hansel and Gretel, drops
crumbs to mark the way back, by storing at each node visited a backpointer, i.e.
the address of the network device it used when leaving the previous node. When
a packet containing an invocation find-prog-2 �� � ��� �����	�!� is injected at some
node in the network with a given destination address � � ��� �����	� , the computation is
initialized by determining the address of the starting node (using the GetSource
service), by generating a fresh key for labeling data (using the GenerateKey
service), and by an initial call of the find function with this information. The
network is then flooded with packets which propagate themselves from nodes that
have not been previously visited. To this end, the find function first uses the
resident data service Exists to check if an entry associated with the current key
exists in the local dictionary of the current node. If this is not the case, the node
has not been previously visited. Hence a new entry in the local dictionary under the
same key is created using Put to store the backpointer. Next it is checked using
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ops find-prog-2 : Addr -> Ex .

eq find-prog-2(find-dest) =
(LetRec ["goback" = Lam [("k","route")

: (TKey, (TList TAddr))]
(If (ThisHostIs (GetSource empty-exl))

Then (Print "route"{0})
Else (Let ["nexthop" = (Get ((String ""),"k"{0}))]

(Let ["d" = (GetDevToHost "nexthop"{0})]
(Let ["newroute" = (Cons ("d"{0},"route"{0}))]
(OnNeighbor
((Chunk ("goback"{0}, ("k"{0},"newroute"{0}))),
"nexthop"{0}, (GetRB empty-exl), "d"{0}))))))]

(LetRec ["find" = Lam [("dest","previous","k")
: (TAddr,TAddr,TKey)]

(If (Exists ((String ""),"k"{0}))
Then Dummy
Else ((Put ((String ""), "k"{0},

"previous"{0}, (Int 200)));
(If (ThisHostIs "dest"{0})
Then ("goback"{0} ("k"{0},Nil))
Else (
(Let ["neighbors" = (GetNeighbors empty-exl)]
(Let ["srcdev" = (GetSrcDev empty-exl)]
(Let ["childrb" = ... ] *** divide up rb
(Let ["sendchild" = *** emit a find packet

Lam [ ("n","u")
: ((TPair TAddr TAddr),TUnit) ]

(OnNeighbor ((Chunk ("find"{0},
("dest"{0},(Snd "n"{0}),"k"{0}))),

(Fst "n"{0}), "childrb"{0}, (Snd "n"{0})))]
(Foldr ("sendchild"{0},"neighbors"{0},Dummy)) )))))

)))]
("find"{0} ((Addr find-dest), (GetSource empty-exl),

(GenerateKey empty-exl))) )) .

Fig. 2. A PLAN program for route discovery

ThisHostIs if the destination has been reached, and if this is the case the route
is reported back to the source by calling goback, which recursively follows the
backpointers until the source is reached and the route can be Printed, which is
assembled on the way. Otherwise, the auxiliary function sendchild is called
in the body of find for each neighbor (using Foldr to iterate over the list of
neighbors), and sendchild itself recursively invokes find on the given neigh-
bor’s address using the OnNeighbor construct. The remaining computational
resources are equally distributed among all neighbors (the corresponding amount
is computed in childrb).
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As an example execution, we start a process on node l0 with destination e4 (the
address of the interface of node l4 on network ne).

rew example-topology
Process(loc("l0"), addr("i0"), addr("i0"), 1, 100,
RedState(?, find-prog-2(addr("e4")))) .

The resulting final configuration returns the route (a1, c3, e4) (cf. Fig. 1)
by Printing the corresponding PLAN list at the starting node. In this final con-
figuration we also see how the data dictionary was used.

result Configuration:
FreshKey(11)
Data(loc("l0"), DataItem("", 10, Addr addr("i0"), 200))
Data(loc("l1"), DataItem("", 10, Addr addr("a0"), 200))
Data(loc("l2"), DataItem("", 10, Addr addr("b1"), 200))
Data(loc("l3"), DataItem("", 10, Addr addr("c1"), 200))
Data(loc("l4"), DataItem("", 10, Addr addr("e3"), 200))
Data(loc("l5"), DataItem("", 10, Addr addr("d3"), 200))
...
Process(loc("l0"), addr("i0"), addr("a0"), 1, 4,
RedState(?,Print (Cons (Addr addr("a1"),

Cons (Addr addr("c3"),
Cons (Addr addr("e4"),Nil))))))

Given that multiple find processes can be executing concurrently, possibly
several on the same node, we might ask if one process could overwrite data written
by another. This could happen if two processes on a node are both waiting to Put
data with the same key. Using the Maude search command we find a state reachable
from the above initial configuration in which this situation occurs.

search [1] i222e4 =>+
cnf:Configuration
Process(l:Loc, src:Addr, idev0:Addr, sn:Int, rb0:Int,
RedState(cx0:Cx,
(Put (String "", Key k0:Int, Addr prev0:Addr, Int 200))))

Process(l:Loc, src:Addr, idev1:Addr, sn:Int, rb1:Int,
RedState(cx1:Cx,
(Put (String "", Key k1:Int, Addr prev1:Addr, Int 200)))) .

i222e4 is a constant defined to be the above initial state. The infix =>+ says to
search for states reachable after one or more rewrites, and the term on the righthand
side is a pattern to be matched. A solution is found with two processes executing
on node l3, one coming from address c1 and the other coming from address d2.

All of the example runs using Maude’s default execution strategy produced a
single path from source to destination. We wondered if in general at most one path
would be discovered. We used the newly developed Maude model checking capa-
bility [6,7] to find a counter-example. The interface to the Maude model checker
is embodied in the MODEL-CHECKER module. This module defines syntax for
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LTL (Linear Temporal Logic) formulas built over a sort Prop. It also introduces a
sort State and a satisfaction relation � � on states and LTL formulas. To use the
model checker, the user defines particular states and propositions and axiomatizes
satisfaction on these states and propositions. The LTL semantics lifts satisfaction
from propositions to arbitrary LTL formulas. We declared Configuration to
be a subsort of State and define a property PrintTwice satisfied by a configu-
ration in which there are two processes printing results on the packet source node.
In order to get an answer quickly we used a simple 3-node network. The actual
Maude model-checking command was

init-a1 |= [] ˜ PrintTwice .

where init-a1 starts the find program in the 3-node network, and the expres-
sion [] ˜ PrintTwice is a temporal logic formula that is satisfied only if no
reachable configuration satisfies the PrintTwice property. The model-checker
returned a counterexample showing a possible computation in which two distinct
paths from source to destination were returned (Printed) to the source.

As an example of analysis by mathematical reasoning, we have proved some
correctness properties of the program. Informally, these properties are:

(f1) If the find program started at node " � � with destination
�������

prints
$ � � � at the

source, then
$ � � � is a path from " � � to

�����	�
.

(f2) If the find program started at node " � � with destination
�����	�

is given sufficient
resources and there is a route from " � � to

�����	�
, then eventually there will be at

least one process that prints a path at the source node " � � .
The proof is simplified by making use of the termination and non-interference

properties of PLAN programs stated above. Note that the resources needed in (f2)
can be computed using the general result (r). The proof also makes use of a sim-
ple form of program specialization that allows one to express a particular PLAN
program as a set of rewrite rules that use only the node level service rules of the
interpreter. The specialization process itself makes use of a form of “abstract exe-
cution” (see also [29]) in the sense that Maude is used to partially execute specifica-
tions without assuming a fixed model, which makes the proof entirely independent
of e.g. the network topology. The find proof is the subject of a forthcoming paper.

4 Conclusions

The formal specification of the PLAN semantics clarifies a number of issues that
remain vague or unsatisfactory in the original mathematical specification [17] such
as: the scope of names and the notion of binding (in particular in connection
with recursive programs), the handling of environments (especially when pack-
ets are shipped), the treatment of side-effects in the iterators Foldr and Foldl,
the mechanism of exception handing, and the concurrent and distributed nature of
packet execution.

By treating a less restrictive language xPLAN the semantics was simplified
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without sacrificing the essential features of PLAN (the proper PLAN subset is
characterized by a simple type system). Furthermore, our specification captures
the general idea of a programming language for mobile computation based on an
imperative � -calculus with features such as recursive function calls with a simulta-
neous change of location.

The syntax-based semantics approach has been used to give operational se-
mantics to languages with functional, imperative and/or concurrent features: pro-
gram equivalance for Scheme-like languages [8,9,26]; program equivalence in ac-
tor languages [1,21]; uniform semantics and program equivalence for a family of
higher-order imperative languages [30]; interaction equivalence of specification di-
agrams [27]; and tool for developing operational semantics and interpreters for
programming languages [32]. With the exception of [32], these efforts have not
developed executable semantics or automated analyses. To the best of our knowl-
edge the combination of explicit substitutions and reduction contexts is new. It
has subsequently been used in a Maude implementation of Specification Diagrams
(personal communication from Prasanna Thati).

Furthermore, the unique combination of functional programming and concur-
rency on different levels makes the PLAN specification an interesting case study
for the use of rewriting logic as a unifying semantic framework. On the conceptual
level rewriting logic is general enough to bridge the gap between these different
aspects, and on the practical level it comes with an efficient implementation in the
Maude language, so that our specification is actually an executable prototype of an
active network programming environment, which at the same time can serve as a
basis for formal theorem proving.

We emphasize that testing a specification as we did is an extremely important
part of the process of developing a formal model. In fact, the specification pre-
sented here is the second major version. The first version we developed served to
clarify many issues and to fill in many gaps. However, it was too low-level, mak-
ing mathematical analysis overly complex. For example, the reduction machine
was based on a state representation similar to the SECD machine used in the paper
specification. This involved defining a number of new state constructors and spe-
cial purpose transition rules just to manipulate these. Also the network model is
slightly more abstract compared with the previous version, where network devices
were clearly distinguished from their addresses.

The formal specification of PLAN in Maude that we discussed in this paper will
shortly be made available via world wide web. Please watch the Maude web page
http://maude.csl.sri.com for corresponding link.
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