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Abstract

Dependency graphs are used to model data and control flow in hardware and software
design. In high-level synthesis of hardware, optimization and refinement transforma-
tions are used to transform dependency-graph-based specifications at the behavior level
to dependency-graph-based implementations at the register-transfer level. Register-
transfer-level implementations are mapped to gate-level hardware designs by low-level
logic synthesis. In this work, we investigated the specification and mechanical verifica-
tion of the correctness of transformations used in high-level synthesis of hardware.

We have provided a formal specification of dependency graphs, and verified the cor-
rectness of a variety of transformations used in an industrial synthesis framework. Errors
have been discovered in the transformations, and modifications have been proposed and
incorporated. Further, the formal specification has permitted us to examine the gener-
alization and composition of transformations. In the process, we have discovered new
transformations that could be used for further optimization and refinement than were
possible before. The specification and verification schemes are general enough for ap-
plications in other synthesis frameworks and software design, where a transformational
design approach is used.

In order to present our work in a concrete context, we focus on the high-level synthe-
sis part of the SPRITE project at Philips Research Laboratories. The transformationsin
the high-level synthesis system are used for refinement and optimization of descriptions
specified in a dependency graph language called the SPRITE Input Language (SIL).
SIL is an intermediate language used during the synthesis of hardware described using
languages such as VHDL, SILAGE and ELLA. Besides being an intermediate language,
it forms the backbone of the TRADES synthesis system of the University of Twente.
SIL has been used in the design of hardware for audio and video applications.

We used the Prototype Verification System (PVS) from SRI International to specify
and mechanically verify the correctness of the transformations. The PVS specification
language allows us to investigate the correctness problem using a convenient level of rep-
resentation. The PVS verifier features automatic procedures and interactive verification
rules to check properties of specifications.
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Chapter 1

Introduction

Dependency graphs! are graph-based specifications of data and control flow in a system.
They are used to model systems at a high level of abstraction in both hardware and soft-
ware design. In high-level synthesis of hardware, a sequence of transformations is used
for refinement of dependency-graph-based specifications at an abstract behavior level
into dependency-graph-based implementations at the register-transfer level. Further,
register-transfer-level implementations could be converted to concrete hardware designs
by low-level logic synthesis. Typically, dependency graphs are represented pictorially as
graph structures with an associated behavior. A transformation transforms one graph
structure into another by removing or adding nodes and edges. An informal represen-
tation would lead to subtle errors, making it difficult to verify the correctness of the
transformations. The problem we have addressed in this work is, how the correctness
of transformations on dependency graphs can be formally specified and verified.

The behavior* of a dependency graph is the set of all tuples, where each tuple has
input data values and corresponding output data values of the dependency graph. A
transformation is correct if the sequence of behaviors allowed by the implementation is
a subsequence of the behaviors permitted by the specification. Trivial implementations
that allow an empty sequence of behaviors can be ruled out by showing either, that
at least one behavior is allowed by the implementation, or that the implementation is
equivalent to its specification with respect to behavior. The solution to the problem of
verifying the correctness of transformations we have sought in this work, is independent
of the model of behavior underlying dependency graphs.

A typical transformation employed in high-level synthesis is cross-jumping tail-
merging [EMH 93], shown in Figure 1.1. In this transformation, two identical nodes
on dependency paths that are never active at the same time are merged into one node.
However, as we found out using the formal approach explained in this paper, the trans-
formation does not preserve behavior. Informally, the reason is as follows. In graph G1,

'In literature, they are also known as control-flow/data-flow graphs and signal-flow graphs.
2Usually known as input/output behavior.
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Behavior(G1l) = Behavior(G2)

Figure 1.1: Cross jumping tail merging: incorrectly specified in informal document.

when c is false, the value of qO is arbitrary, and so is the value of pO. If we choose the
value of pp0 to be that of p0O, the value of pp0O is also arbitrary. In graph G2, when ¢
is false, we could choose the value of p01 to be that of q11. In this case, the value of
pp00is (y1 * y2). Because the corresponding outputs could be unequal with identical
inputs, the behaviors of the graphs are not equivalent. A corrected and generalized
cross-jumping tail-merging transformation is presented in Chapter 6.

The main contributions of this work are the following:

e A formal specification of dependency graphs has been achieved.

A set of optimization and refinement transformations on dependency graphs used

in high level synthesis have been verified. Generalization of transformations have
also been proposed.

e Errors have been discovered in the transformations used in industrial strength
hardware design. Modifications for the erroneous transformations have been pro-
posed and incorporated.

e New transformations have been devised that could be used for further optimization
and refinement than were possible before.
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Figure 1.2: Example of a dependency graph with control specification.

Formal methods could be divided into two main categories: property-oriented meth-
ods and model-oriented methods [JMW 90]. In a property oriented method, the system
under consideration is specified by asserting properties of the system, minimizing the
details of how the system is constructed. While, in a model-oriented method, the spec-
ification describes the construction of the system from its components. An axiomatic
approach is a property-oriented method. Typically, a small set of properties, called
azxioms, are asserted to be true, while other properties, called theorems, are derived.
In this work, we have chosen a property oriented method. We propose an axiomatic
specification coupled with an efficient verification method to study the correctness of
transformations on dependency graphs. As we discuss later in Chapter 7, an axiomatic
approach does not require us to develop a concrete behavioral model for dependency
graphs, thus enabling it to be simpler and more general than other formal approaches.

Dependency graph® is a graph-based representation of the behavior of a system. It
consists of nodes representing operations or processes, and directed edges representing
data dependencies and data flow through the system. In addition, control flow could
also be represented in a dependency graph in several ways. We show an example of such
a graph in Figure 1.2.

In order to present our work in a concrete context, we consider a transformational
design approach used in the high-level behavioral synthesis system as part of the SPRITE
project at Philips Research Labs (PRL). In this approach, transformations are used for
optimization and refinement of descriptions specified using the SPRITE Input Language
(SIL). Descriptions in SIL at a register-transfer level could eventually be converted to
gate-level hardware designs by a logic synthesis application such as PHIDEO at PRL.

SIL is an intermediate language used during the synthesis of hardware described
using hardware description languages such as VHDL [VHD 88], SILAGE [Hil 85], and
ELLA [ELL 90]. It also forms the backbone of the TRADES synthesis system at the
University of Twente. Important features of SIL include hierarchy and design free-
dom. Design freedom is provided by permitting several implementation choices for a

®In this report, the term dependency graph includes control-flow/data-flow graphs and signal-flow
graphs.



SIL description. Implementation choices are constrained by allowing an implementa-
tion suggestion in a SIL description. The implementation suggestion may be tailored
by using refinement and optimization transformations. SIL has been used in the design
of hardware for audio and video signal processing applications such as a direction de-
tector for the progressive scan conversion algorithm [WMM 94, Mid 94-2]. In one of the
applications [Mid 94], a reduction of power consumption by 50% has been achieved.

Many of the optimization transformations used in SIL are inspired by those used
in compiler optimization, such as dead-code elimination and common subexpression
elimination. An optimized SIL graph has to satisfy the original graph with respect
to behavior. This satisfaction can be guaranteed by showing the correctness of the
optimization transformations. Correctness means that every behavior allowed by an
optimized SIL graph implementation is required to be one of the behaviors allowed by
its SIL graph specification. An informal specification of SIL has been presented and
documented as part of the SPRITE project [Klo 92, Kro 92]. A detailed denotational
semantics of SIL for showing the correctness of transformations has been worked out
earlier [HHK 92, HuK 94]. The optimization and refinement transformations have been
specified informally as part of the SPRITE project [EMH 93, Mid 93, Mid 94].

We use the Prototype Verification System (PVS) [OSR 93], an environment for for-
mal specification and verification. The PVS specification language, based on typed
higher-order logic, permits an axiomatic method to develop specifications. This method
entails expressing properties of a system at a convenient level of abstraction. The choice
of a high level of abstraction obviates the need to provide a detailed definition of the be-
havior of dependency graphs. For example, a behavior model could be based on behavior
expressions [McP 83], an imperative semantics [Cam 89], a denotational model [GGJ
93,HuK 94], or an operational model [GGJ 93]. In the axiomatic framework we discuss
in this report, we can compare descriptions with respect to their behavior, and thus
establish correctness of transformations, without specifying a behavioral model of a SIL
description. However, we stress that this work addresses the transformations as intended
in their informal specification, and not verification of the software implementations of
transformations. We show SIL and our work in the context of the synthesis system in
Figure 1.3.

The rest of this report is organized as follows: Chapter 2 gives an overview of SIL. In
Chapter 3, we give a brief description of the PVS system. In Chapter 4, we describe the
specification of structure of SIL graphs, while in Chapter 5 we describe the specification
of behavior, refinement, and equivalence of SIL graphs. We present the specification
and verification of transformations in Chapter 6. In that chapter, we also illustrate how
our generalization and composition of transformations leads to new transformations for
further optimization and refinement than would have been possible before. Finally,
following a general discussion, conclusions are summarized in Chapter 7. A listing of
the specification of SIL and its verified properties as it appears in PVS is given in
Appendix A. Transcripts of the verification in PVS for two transformations discussed
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Figure 1.3: SIL transformations and verification in PVS in the context of high level
synthesis.



in detail in this paper are listed in Appendix B. In the remainder of this chapter, we
discuss related work done in the past.

1.1 Related Work

There have been some efforts in analysis and verification of refinement transformations
in the past. However, few have dealt with transformations on dependency graphs in
general. Most of the efforts have concentrated on specialized hardware description
languages and programming languages.

A formal model was proposed for verifying correctness of high-level transformations
by McFarland and Parker [McP 83]. Transformations used in YIF (Yorktown Internal
Form) [YIF 88] have been proved to be behavior preserving [Cam 89]. In this work,
a strong notion of behavior equivalence based on an imperative semantics tied to a
particular model of representation is used. A formal system using transformations for
hardware synthesis has been discussed by Fourman [Fou 90]. We briefly discuss this work
in Section 1.1.1. A synthesis system for a language based on an algebraic formalism has
been presented by Jones and Sheeran [Jon 90], and its formalization has been presented
by Rossen [Ros 90]. This effort is explained briefly in Section 1.1.2. Another algebraic
approach to transformational design of hardware has been worked out by Johnson [Joh
94]. A short discussion on this approach is presented in Section 1.1.3. In the work on
tying formal verification to silicon compilation [JRS 91], a preliminary study with an
emphasis on the use of formal verification at higher levels of VLSI design was presented.
Correctness of register-transfer-level transformations for scheduling and allocation has
been dealt with in [Vem 90].

An automatic method for functional verification of retiming, pipelining and buffer-
ing optimization has been presented by Kostelijk [KoW 93]. It has been implemented in
a CAD tool called RetLab as part of PHIDEO at PRL. A formal analysis of transforma-
tions used in Systems Architect Workbench (SAW) high-level synthesis was studied by
McFarland [McF 93]. This work is discussed briefly in Section 1.1.4. A post-facto veri-
fication method for comparing logic level designs against a restricted class of data-flow
graphs in SILAGE was presented by Aelten and others [AAD 93, Ael 94]. Denotational
and operational models of generalized data-flow graphs have been developed, but they
have not been used to study the correctness of transformations [GGJ 93]. A formaliza-
tion of SILAGE transformations in HOL was studied by Angelo [Ang 94]. A concise
description of this work appears in Section 1.1.5. An approach based on the execution
model for representation languages in BEDROC high-level synthesis system [CBL 92]
has been used to verify the correctness of optimization transformations. A formal verifi-
cation of an implementation of a logic synthesis system has been reported by Aagard and
Leeser [Aal 94], but it does not provide a mechanical verification for transformations
in high-level synthesis. A brief discussion of the work on verification of transformations
in synchronized transitions [Sta 90] is given in Section 1.1.6. In Section 1.1.7, we briefly



discuss the work on formal specification and verification of refinement transformation
in software design.

1.1.1 LAMBDA

LAMBDA [Fou 90] is formal system based on higher order logic for designing hardware
from high level specifications. In this formalism, a design state is represented as an
inference rule derived within the framework of higher order logic. A refinement is a
rule derived within this logic that can be applied to an abstract design state to arrive
at a concrete design state. The different kinds of refinements that are applied are
temporal, data and behavioral. However, a definite set of refinement and optimization
transformations have not been presented. ELLA, a hardware description language has
been formalized in LAMBDA.

1.1.2 Formal Ruby

In this work, an algorithmic specification of sequential and combinational circuits is
specified in a language called Ruby [Jon 90], based on an algebraic formalism. The
algebraic formalism consists of relations and operations on relations such as composition,
inverse and conjugation. Types are defined as equivalence relations. Data structures
such as lists and tuples are used to represent larger hardware structures. A parallel
composition operator allows to specify hardware composed of independent modules.
Other operators such as row and column are introduced for succinct specification of
regular structures such as systolic arrays.

Ruby has been formalized [Ros 90] in a proof checking system called ISABELLE.
ISABELLE, based on type theory, allows syntactic embedding other logics. A fragment
of Ruby corresponding to combinational circuits, delay element, serial composition and
parallel composition called Pure Ruby is specified as a type. Properties and proof rules
such as induction on Ruby terms is then derived on the type definition. The rest of the
language is then specified using this type.

The axiomatization specifies signals as functions of time and properties of relations
on signals. General properties of Ruby relations have been formalized. However, in
order to derive properties, the semantic embedding involves signals corresponding to a
circuit implementation. A Ruby specification itself, and hence its formalization even at
a high level is geared to be directly translatable to a circuit realization having a regular
structure. Thus, this formalism is at a lower level of abstraction than our formalization
of SIL. A general concept of refinement is not formalized. The formalism does not
present a well-defined set of transformations, to be used to refine and optimize Ruby
programs, other than retiming.



1.1.3 Digital Design Derivation

This is an algebraic approach to transformational design of hardware [Joh 94]. In this
formalism, a functional specification is translated into a representation of a Determin-
istic Finite State Machine specification called behavior tables [RTJ 93]. The behavior
tables are transformed into a digital design. In a behavior table, rows represent state
transitions and columns represent both control and data flow. Some examples of trans-
formations are column merging, deletion and renaming. The transformations are not
formally verified.

1.1.4 Transformations in SAW

In this work, a formal analysis of transformations [McF 93] used in System Architect’s
Workbench (SAW) [Tho 98] is carried out. In this system, hardware described at the
register-transfer level or higher using ISPB [Bar 81] is translated into behavior expres-
sions. Behavior expressions use sequences and relations on sequences to represent the
input/output behavior of the specified hardware. Optimization transformations are car-
ried out on the behavior expressions representations. A number of transformations such
as constant folding and loop unwinding have been analyzed revealing a few conceptual
errors.

1.1.5 Verification of Transformations in SILAGE

SILAGE [Hil 85] is an applicative hardware description language. This language is
used to describe hardware represented as data-flow graphs. Transformations such as
commutativity and retiming are used to optimize and refine SILAGE descriptions. In
this work [Ang 94], the syntax and semantics of SILAGE programs have been formalized
as predicates in HOL [GoM 93]. The denotational semantics of SILAGE have been
formalized in HOL. The equivalence of SILAGE programs is specified with respect to
this denotational semantics. The transformations are then specified as functions from
one formal SILAGE program to another. The correctness of transformations are thus
verified with respect to the denotational semantic notion of equivalence.

1.1.6 Synchronized Transitions in LP

Synchronization Transitions (ST') [Sta 90] is a formalism to specify states and transitions
between states. It is based on UNITY [UNI 88] model of computation as a collection
of atomic conditional assignments to state variables without explicit flow of control.
The transitions are specified by guarded commands. State variables model storage and
sharing of state variables model communication. This is unlike message passing in
CSP [Hoa 85] formalism and token passing in SIL. There is no concept of clocks and
sequencing. The temporal behavior is determined by guards. The formalism is geared



towards direct realizations in synchronous and asynchronous circuits. The optimization
and refinement transformations are not defined in the language. The conditions to be
satisfied by an abstraction function, mapping a concrete state set to an abstract state
set have been presented.

The specification that an ST program has to satisfy can be described as an invariant.
An ST program could then be directly translated into Larch Prover (LP) [GaG 89],
and invariants translated as proof obligations to be discharged. LP is a rewrite rule
prover based on first order equational logic. Thus, an ST program can be both directly
translated to LP and verified, and realized in hardware through synthesis.

1.1.7 Transformations in Software Design

There have been several efforts in specification and verification of refinements used
in program development from high level specifications Most of the efforts choose a
specification formalism and develop a notion of correctness, and an associated set of
transformations based on the semantics of the formalism.

The refinement calculus [Bac 88] for specifications based on Dijkstra’s guarded com-
mand language and weakest precondition semantics has been formalized in HOL [WrS
91]. Transformations such as data refinement and superposition have been verified to be
correct. A formalization of incremental development of programs from specifications for
distributed real-time systems has been worked out in PVS [Hoo 94]. In this formalism,
an assertional method based on a compositional framework of classical Hoare triples is
developed for step-wise refinement of specifications into programs.

The KIDS [Kid 90] system is a program derivation system. High level specifications
written in a language called Refine are transformed by data type refinements and op-
timization transformations such as partial evaluation, finite differencing, into a Refine
program.
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Chapter 2

Overview of SIL

The descriptions in SIL are characterized as graphs. They are used to describe syn-
chronous systems. A denotational semantics of SIL has been worked out by Huijs [HuK
94]. The behavior of a SIL graph is derived from the behaviors of structural build-
ing blocks of the graph. We briefly explain the structural aspects in section 2.1, the
behavioral aspects in Section 2.2, and the transformational approach in Section 2.3

2.1 Structural Aspects of SIL

The basic building blocks of a SIL graph are the nodes for operations such as addition,
multiplication, and multiplexing. The nodes have ports (also known as access points)
for input, output, and an optional condition input. Every port is associated with a type,
which specifies the set of data values that the port can hold. We show the different kinds
of port in Figure 2.1.

While input and output ports can be of any type, a condition input port is always
Boolean. A node with condition input port is known as a conditional node to stress the
presence of the condition inputs.

The ports of the nodes are connected by edges. SIL has different kinds of edges, of
which, we address sequence edge and data-flow edge:

® O

Input Access point Non-inverted Condition Access point
e [

Output Access point Inverted Condition Access point

Figure 2.1: Different kinds of SIL ports.

11



condition access point

input access point

sequence edge

output access point
data flow edge =
/ hierachical
node

Figure 2.2: An example of a SIL graph description.

o A data-flow edge is used to specify the direction of communication of data values

from a source port to a sink port. Each data-flow edge has exactly one port at its
head and exactly one port at its tail. A source port can be the tail of more than
one data-flow edge, in which case it is called a distribute, and a sink port the head
of more than edge, in which case it is called a join.

A sequence edge specifies an ordering between two ports. The ordering is used to
indicate that one of the ports has the overriding influence on the value of the sink
port, to which the two ports are connected by data-flow edges. Each sequence
edge has exactly one port as its tail and one port as its head. Sequence edges
are primarily used to resolve potential conflicts at joins. All source ports that are
tails of data-flow edges with a join as a head must be linearly ordered by sequence
edges.

The nodes and edges form a SIL graph. A SIL graph itself can be viewed as one
single node, and used to construct another SIL graph in a hierarchical manner.
Figure 2.2 is an example of a SIL graph.

2.2 Behavioral Aspects of SIL

The behavior of a SIL graph is determined by the behavior of individual nodes and
their connectivity, which determines the data flow. By behavior, we mean the set of
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Figure 2.3: SIL node: informal description.

tuples, where each tuple has input data values and corresponding data values of internal
and output ports. The values of internal and output ports are constrained by the data
relations of the nodes and the connectivity of the ports in the graph. When the ports
of interest are the outermost input / output (I/0) ports of the SIL graph, then it is
called external or I/O behavior.

Each node is associated with a data relation and an order relation. The data relation
of a node constrains the outputs of the node according to the inputs of the node.
That this is a relation, and not a function, implies nondeterminism allowing several
implementation choices for the nodes. This contributes to design freedom. Any state
information implicit in the node is incorporated into its data relation. In the case of a
conditional node, the output is constrained by the data relation only when the condition
input of the node is true. When the condition input is false, the output is not defined.
The order relation specifies constraints such as, the output port of a node assumes a
value after the value of its input ports have been asserted. This is particularly important
in a hierarchically built node. We illustrate these concepts in Figure 2.3.

The communication of data values in a SIL graph is modeled by a single token
flow concept, similar to the concept in Signal FLow Graphs (SFG) [Hil 85]. A token
is an atomic symbol denoting data. A token generated at an output port (source) is
transmitted through a data-flow edge, emanating from the source, exactly once. The
token is consumed at an input port (sink) to which the edge is connected. The action of
communicating a token through a data-flow edge makes the sequence of values that the
sink can assume equal to the sequence of values that the source can assume. However,
there is one exception to this when a token communicated to the conditional port of
a conditional node denotes a data value that is false. In this case, the output port,
unconstrained by the data relation of the conditional node, is not defined. When such
an output is a source of a data-flow edge, we force the sink of such a data-flow edge to
assume some well-defined arbitrary value. If we do not make this exception, the sink
data values would also not be well-defined. Since a sink is an input port, it is undesirable
to have undefined inputs in practice. In terms of the token flow concept, a sequence
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edge from port A to port B describes that the token fired from B determines the value
of a sink port C connected to A and B by data-flow edges, overriding the effect on the
value of C due to the token fired from A. In such a case, we say that the sequence edge
orders port A less than port B. A data-flow edge has an implicit sequence edge from its
source to its sink. We depict these ideas in Figure 2.4. It should be noted that the token
flow concept is an abstract model of the behavior of a SIL graph. The sequence edge is
an artifact used to resolve conflicts at joins. A sequence edge does not indicate temporal
ordering of the data values that ports would assume when a SIL graph is executed.

The ordering of token communication plays an important part in resolving conflicts
at ports. One such conflict occurs when multiple data-flow edges from different sources
connect into a single sink. Such a sink port is called a join, as shown in Figure 2.5.
To resolve the conflict at a join, first all the data-flow edges that have sources that
can assume well-defined data values are selected. Then, among those selected data-flow
edges, the edge that is responsible for communicating the last token determines the
behavior of the join. With the definition of SIL, there will be exactly one such data-flow
edge. Thus, the source ports are linearly ordered, so that the last of the well-defined
data values arriving at the sink is always specified. If all the data-flow edges to the join
originate from sources whose data values are undefined, then the data value that can
appear at the join is arbitrary.

The counterpart of a join is a source from which multiple data-flow edges originate.
Such an port, known as a distribute, is shown in Figure 2.5. If a distribute is a source
that assumes well-defined data values, then the sink to which it is connected by a data-
flow edge, will assume a sequence of data values identical to the distribute. Otherwise,
if the data values that may appear at the distribute are not defined, the sequence of
data values that may appear at the corresponding sink ports are arbitrary.

A SIL graph models the behavior of a system during a single clock cycle. There
is no explicit notion of state in a SIL graph. The repetition of a SIL graph, called
unfolding over multiple clock cycles gives the behavior of the system across clock cycles.
We depict an example of a combinational adder in Figure 2.6 unfolded over three clock
cycles. The DELAY node, one of the primitive nodes in SIL is used to model data flow
between clock cycles, and thus encapsulates state information. We can unfold the SIL
graph shown in Figure 2.7 over multiple clock cycles to result in a SIL graph without
the DELAY node. The cumulative adder example in Figure 2.8 illustrates the unfolding
of a SIL graph with a DELAY node. It should be noted that comparing two graphs with
respect to behavior would not involve the state information encapsulated in a DELAY
node - since the behavior of a SIL graph would be a snapshot of the execution of the
SIL graph in a single clock cycle. In contrast, the execution histories would have to be
taken into account for comparing two state machine models.

The ordering imposed by sequence edges reduce non-determinism This leads to a
restriction on implementation choices allowed by its corresponding specification. We
illustrate the implementation of a simple multiplexor in Figure 2.10 by reducing non-
determinism in a specification shown in Figure 2.9 using a sequence edge. When c is
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Figure 2.6: Combinational adder: SIL graph repeated over clock cycles.
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c(t) = a) + c(t-1)

Figure 2.7: Cumulative adder: SIL graph with DELAY node.

c(2) = a2 + c(1)

c(-1) =0
c(t) = alt) + c(t-1)

Figure 2.8: Cumulative adder: unfolded SIL graph.
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Sequence edge from p2 to pl means that, the token at p1
overrides the token from p2 in determining the valueat d

Figure 2.10: Implementation specification of a multiplexor.

true, the value of d is a if the order is such that value of port p1is communicated rather
than that of port p2. If the order is such that p2 has the overriding influence, then the
value of d is b. While, when c is false the value of b is determined by the port p2, due
to the behavior of the conditional port and join discussed earlier in section 2.2. The
sequence edge in the multiplexor implementation as given in Figure 2.10, imposes that
the value communicated to b is that of port p1 when ¢ is true. Again, when c is false,
port p2 determines the value of b.

2.3 Transformations in SIL

A transformation is viewed as modifying the structure of a graph into another graph.
The modification is done by removing and/or adding nodes and edges. Such modifica-
tions should not violate the behavior of the original graph.

In SIL, there are a number of optimization and refinement transformations [EMH
93]. Many of the optimization transformations are inspired by compiler optimization
techniques such as Common Subexpression Flimination, Cross-Jumping Tail-Merging
and algebraic transformations involving commutativity, associativity, and distributiv-
ity. Other optimization transformations include retiming. Refinement transformations
include type transformations such as real to integer, integer to Boolean, and implement-
ing data relations of the nodes by concrete operators [Mid 94]. We show a retiming
transformation example in Figure 2.11
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Figure 2.11: Example SIL transformation: retiming.
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Chapter 3

Specification and Verification in

PVS

The Prototype Verification System (PVS) [OSR 93,SOR 93-2] is an environment for
specifying entities such as hardware/software models and algorithms, and verifying
properties associated with the entities. An entity is usually specified by asserting a
small number of general properties that are known to be true. These known properties
are then used to derive other desired properties. The process of verification involves
checking relationships that are supposed to hold among entities. The checking is done
by comparing the specified properties of the entities. For example, one can compare if a
register-transfer-level implementation of hardware satisfies the properties expressed by
its high-level specification.

PVS has been used for reasoning in many domains, such as in hardware verifica-
tion [Cyr 93, CRS 94], protocol verification, and algorithm verification [LOR 93]. We
briefly give the features of the PVS specification language in Section 3.1, the PVS ver-
ification features in Section 3.2 and some notes on the syntax of the PVS specification
language in Section 3.3. Finally, in Section 3.4 we give some example specifications and
verification sessions in PVS.

3.1 PVS Specification Language

The specification language [OSR 93] features common programming language constructs
such as arrays, functions, and records. It has built-in types for reals, integers, naturals,
and lists. A type is interpreted as a set of values. One can introduce new types by ex-
plicitly defining the set of values, or indicating the set of values, by providing properties
that have to be satisfied by the values. The language also allows hierarchical structuring
of specifications. Besides other features, it permits overloading of operators, as in some
programming languages and hardware description languages such as VHDL.
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3.2 PVS Verification Features

The PVS verifier [SOR 93-2] is used to determine if the desired properties hold in the
specification of the model. The user interacts with the verifier by a small set of com-
mands. The verifier contains procedures for boolean reasoning, arithmetic and (con-
ditional) rewriting. In particular, Binary Decision Diagram (BDD) [BRB 90, Jan 93]
based simplification may be invoked for Boolean reasoning. It also features a variety
of general induction schemes to tackle large-scale verification. Moreover, different ver-
ification schemes can be combined into general-purpose strategies for similar classes of
problems, such as verification of microprocessors [Cyr 93, CRS 94].

A PVS specification is first parsed and type-checked. At this stage, the type of
every term in the specification is unambiguously known. The verification is done in
the following style: we start with the property to be checked and repeatedly apply
rules on the property. Every such rule application is meant to obtain another property
that is simpler to check. The property holds if such a series of applications of rules
eventually leads to a property that is already known to hold. Examples illustrating the
specification and verification in PVS are described in Section 3.4.

3.3 Notes on Specification Notation

In PVS specifications!, an object followed by a colon and a type indicates that the
object is a constant belonging to that type. If the colon is followed by the key word
VAR and a type, then the object is a variable belonging to that type.

For example,

X: integer
y: VAR integer

describes r as a constant of type integer, and y as a variable of type integer?.

Sets are denoted by {...}: they can be introduced by explicitly defining the elements
of the set, or implicitly by a characteristic function.
For example,

{0,1,2}
{x: integer | even(x) AND x /= 2}

'PVS specifications in this report are enclosed in framed boxes.
2In C, they would be declared as const int z; int y.
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The symbol | has to be read as such that, and the symbol /= stands for not equal to in
general. Thus, the latter example above should be read as “set of all integers x, such
that x is an even number and x is not equal to 2”.

New types are introduced by a key word TYPFE followed by its description as a set
of values. If the key word TYPF is not followed by any description, then it is taken as
an unspecified type.

Some illustrations are:

even_time: TYPE = {x: naturall| even(x)}
unspecified_type: TYPE

One kind of type that is used widely in this work is the record type. A record type
is like the struct type in the C programming language. It is used to package objects of
different types in one type. We can then treat an object of such a type as one single
object externally, but with an internal structure corresponding to the various fields in
the record.

The following operators have their corresponding meanings:

FORALL x: p(x)

means for every x, predicate® p(x) is true

EXISTS x: p(x)

means for at least a single x, predicate p(x) is true

We can impose constraints on the set of values for variables inside FORALL and
EXISTS as in the following example:

FORALL x, (y| y = 3*x): p(x,y)

which should be read as

for every x and y such that y is 3 times z, p(x,y) is true.

A property that is already known to hold without checking is labeled by a name
followed by a colon and the keyword AXIOM. A property that is checked using the rules
available in the verifier is labeled by a name followed by a colon and the keyword
THEOREM. The text followed by a % in any line is a comment in PVS.

We illustrate the syntax as follows:

®A predicate is a function returning a Boolean type: {true, false}.
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ax1l: AXIOM Y% This is a simple axiom
FORALL (x:nat): even(x) = x divisible_by 2

thi: THEOREM % This is a simple theorem
FORALL (x:nat): prime(x) AND x /= 2 IMPLIES NOT even(x)

We also use the terms aziom and theorem in our own explanation with the same mean-
ings. A proofis a sequence of steps that leads to a theorem.

3.4 Specification and Verification Examples in PVS

We illustrate here three examples from arithmetic. The first two examples are taken
from the tutorial [SOR 93-1]. The last example illustrates the use of a general purpose
strategy to automatically prove a theorem of arithmetic. The first example is the sum
of natural numbers up to some arbitrary finite number n is equal to n*(n+1)/2. The
specification is encapsulated in the sum THEORY. Following introduction of n as a natural
number nat, sum(n) is defined as a recursive function with a termination MEASURE as
an identity function on n. Finally, the THEOREM labeled closed_form is stated to be
proved.

sum: THEORY
BEGIN

n: VAR nat

sum(n): RECURSIVE nat =
(IF n = 0 THEN O ELSE n + sum(n - 1) ENDIF)
MEASURE (LAMBDA n: n)

closed_form: THEOREM sum(n) = (n * (n + 1))/2

END sum

The THEORY is first parsed and type checked, and then the prover is invoked on the
closed form THEOREM. The proof is automatic by applying induction and rewriting.
The proof session is as follows:

closed_form :

{1} (FORALL (n: nat): (sum(n) = (n * (n + 1)) / 2))
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Running step: (INDUCT "n")
Inducting on n,

this yields 2 subgoals:
closed_form.1 :

{1} sum(0) = (0 * (0 + 1)) / 2

Running step: (EXPAND "sum")
Expanding the definition of sum,
this simplifies to:
closed_form.1 :

Rerunning step: (ASSERT)
Invoking decision procedures,

This completes the proof of closed_form.1.

closed_form.2 :

{1} (FORALL (j: nat):
(sum(j) = (j = (j + 1) / 2
IMPLIES sum(j + 1) = ((j + 1) * (j + 1 + 1)) / 2))

Running step: (SKOLEM 1 ("j'1"))

For the top quantifier in 1, we introduce Skolem constants: (j!1),
this simplifies to:

closed_form.2 :

{1} sum(§!'1) = (G'1 * (§'1 + 1)) / 2
IMPLIES sum((j!'1 + 1)) = ((j!'1 + 1) = ((j'1 + 1) + 1)) / 2

Running step: (FLATTEN)

Applying disjunctive simplification to flatten sequent,
this simplifies to:

closed_form.2 :
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{-1}  sum(j'1) = (§!'1 = (1 + 1)) / 2

{1} sum((G!1 + 1)) = ((G'1 + 1) * ((G'1 + 1) + 1)) / 2
Running step: (EXPAND "sum" +)

Expanding the definition of sum,

this simplifies to:
closed_form.2 :

{1} Gt + 1) + sum(j'1) = (1 * 311 + 2 % 11+ (11 + 2)) / 2

Running step: (ASSERT)
Invoking decision procedures,

This completes the proof of closed_form.2.

Q.E.D.

Run time = 8.09 secs.
Real time = 9.89 secs.
NIL

>

The next example illustrates that decision procedures solve the steps involving arith-
metic and equality reasoning automatically. While, in the creative step of supplying the
proper instantiation for an existential quantification, the user has to interact with the
prover. We first present the following PVS THEORY specifying that a 3 cent stamp and
a b cent stamp can be used in combination in place of any stamp whose value is at least
8 cents.

stamps : THEORY
BEGIN
i, j, k: VAR nat
stamps: LEMMA (FORALL i: (EXISTS j, k: i+8 = 3%j + bxk))

END stamps

stamps :

26



The proof follows by induction:

{1} (FORALL i: (EXISTS j, k: i + 8 =3 * j + 5 * k))

Running step: (INDUCT "i")
Inducting on i,

this yields 2 subgoals:
stamps.1 :

{1}  (EXISTS (j: nat), (k: nat): (O + 8 =3 *x j + 5 * k))
Here we have to supply an instantiation interactively.

Running step: (QUANT 1 ("1" "1"))

Instantiating the top quantifier in 1 with the terms:
(1 1),

this simplifies to:

stamps.1 :

{1} 0+8=3%1+5x%1

Running step: (ASSERT)
Invoking decision procedures,

This completes the proof of stamps.1.

stamps.2 :

{1} (FORALL (j: nat):
((EXISTS (j_O: nat), (k: nat): (j + 8 =3 * j_O + 5 * k))
IMPLIES (EXISTS (j_1: nat), (k: nat):
(jJ+1+8=3%3j_1+5%*k))))

Running step: (SKOLEM 1 ("j'1"))

For the top quantifier in 1, we introduce Skolem constants: (j!1),
this simplifies to:

stamps.2 :
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{1}  (EXISTS (j_O: nat), (k: nat): (j'1 + 8 =3 * j_O + 5 * k))
IMPLIES (EXISTS (j_1: nat), (k: nat): (j'1 + 1 + 8 =3 % j_1 + 5 % k))

Running step: (FLATTEN)

Applying disjunctive simplification to flatten sequent,
this simplifies to:

stamps.2 :

{-1}  (EXISTS (j_0: nat), (k: nat): (j!1 + 8 =3 * j_O + 5 * k))
{1}  (EXISTS (j_1: nat), (k: nat): (j'1 + 1 + 8 =3 * j_1 + 5 *x k))

Running step: (SKOLEM -1 ("j!'2" "k!1"))

For the top quantifier in -1, we introduce Skolem constants: (j!2 k!1),
this simplifies to:

stamps.2 :

{-1} j'1 +8 =3 % j12 +5 % k!1
[1] (EXISTS (j_1: nat), (k: nat): (j!1 + 1 + 8 =3 % j_1 + 5 * k))
The following steps require user interaction:

Running step: (CASE "k!1=0")
Case splitting on

k!1=0,
this yields 2 subgoals:
stamps.2.1 :

{-13 k't =0
[-2] j'1 +8=3% j!'2 +5 % k't

[1] (EXISTS (j_1: nat), (k: nat): (j!1 + 1 + 8 =3 % j_1 + 5 * k))

Running step: (QUANT 1 ("j!2-3" "2"))

Instantiating the top quantifier in 1 with the terms:
(j'2-3 2),

this yields 2 subgoals:

stamps.2.1.1 :

[-11 k!'1
-2  j'1 +

0
8 =3 % j!2 +5 % k!l
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{1}

Running step: (ASSERT)
Invoking decision procedures,

j'11+1+8=3=%* (j!'2-3) +5 %2

This completes the proof of stamps.2.1.1.

stamps.2.1.2 (TCC):

[-1] k!'1 =0

[-2] j'1 +8=3% j!'2 +5 % k't
| _______

{1} j!12-3>=0

Running step: (QUANT 2 ("j!2+2" "k!1-1"))
No suitable (+ve EXISTS/-ve FORALL) quantified formula found.
No change on: (QUANT 2 (j'!'2+2 k!1-1))

stamps.2.1.2 (TCC):

k!'1

[-1]

[-2] =3 % j!'2 +5 % k!l

Running step: (ASSERT)
Invoking decision procedures,

This completes the proof of stamps.2.1.2.

This completes the proof of stamps.2.1.

stamps.2.2 :

[-1] j'1 +8=3=x* j!'2 +5 * k!l
[—

{1} k!'1 =0

[2] (EXISTS (j_1: nat), (k: nat):

Running step: (ASSERT)
Invoking decision procedures,
this simplifies to:

(j'1 +1 +8=23% j_1+5*k))
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stamps.2.2 :
[-1] j'1 +8=3=x* j!'2 +5 * k!l

[11 k!'1 =0
{2}  (EXISTS (j_1: nat), (k: nat): (j'1 + 9 =3 % j_1 + 5 * k))

Running step: (QUANT 2 ("j!2+2" "k!1-1"))

Instantiating the top quantifier in 2 with the terms:
(jr2+2 k'1-1),

this simplifies to:

stamps.2.2 :

[-1] j'1 + 8 =3 * j!'2 +5 % k!1

[11 k!1 =0
{23  j'1 +9=3* (j'2+2) +5 % (k!'1 - 1)

Running step: (ASSERT)
Invoking decision procedures,

This completes the proof of stamps.2.2.

This completes the proof of stamps.2.

Q.E.D.

Run time = 10.67 secs.
Real time = 11.65 secs.
NIL

>

Finally, the following example illustrates the use of a general purpose strategy
induct-rewrite-bddsimp, that involves induction, rewriting and propositional sim-
plification. The theorem is based on the property of a Fibonacci sequence: 1, 1, 2,
3,5, .... Here, an element, except the first two, is the sum of the its two immediate
predecessors. If we denote the sum of n (n > 0) elements in the sequence by fibsum(n),
then we are required to prove the property that the sum is equal to fib(n+2) + 1. The
PVS specification can be given as follows:
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fib: THEORY
BEGIN

n: VAR nat

fib(n): RECURSIVE nat =
IF n = 0 THEN 1
ELSIF n = 1 THEN 1
ELSE fib(n - 2) + fib(n - 1)
ENDIF
MEASURE LAMBDA n: n

fibsum(n): RECURSIVE nat =
IF n = 0 THEN 3
ELSE fib(n) + fibsum(n - 1)
ENDIF
MEASURE LAMBDA n: n

FibSumThm: THEOREM
fibsum(n) = fib(n + 2) + 1

END fib

The verification proceeds automatically by using a strategy based on induction, rewrit-
ing and propositional simplification as follows:

FibSumThm :

{1} (FORALL (n: nat): fibsum(n) = fib(n + 2) + 1)

Rule? (auto-rewrite-theory "fib")
Adding rewrites from theory fib
Adding rewrite rule fib

Adding rewrite rule fibsum
Auto-rewritten theory fib

Rewriting relative to the theory: fib,
this simplifies to:

FibSumThm :

[1] (FORALL (n: nat): fibsum(n) = fib(n + 2) + 1)

Rule? (induct-rewrite-bddsimp "n'")
fibsum rewrites fibsum(0)
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to 3
fib rewrites fib(0)
to 1
fib rewrites fib(1)
to 1
fib rewrites fib(2)
to 2
fib rewrites fib(j!1 + 1)
to IF j'1 + 1 = 1 THEN 1 ELSE fib(j!'1 + 1 - 2) + fib(j!'1 + 1 - 1) ENDIF
fib rewrites fib(j!1 + 2)
to £ib(j!1)
+ IF j'1t + 1 =1 THEN 1
ELSE fib(j!'1 + 1 - 2) + fib(j'1 + 1 - 1)
ENDIF
fibsum rewrites fibsum(j'1l + 1)
to IF j'1 + 1 = 1 THEN 1 ELSE fib(j!'1 + 1 - 2) + fib(j!'1 + 1 - 1) ENDIF
+ fibsum(j'1)
fib rewrites fib(j'1)
to IF j!1 = 1 THEN 1 ELSE fib(j!1 - 2) + fib(j!1 - 1) ENDIF
fib rewrites fib(j!1 + 3)
to IF j'1 + 1 = 1 THEN 1 ELSE fib(j!'1 + 1 - 2) + fib(j!'1 + 1 - 1) ENDIF
+ £ib(j'1)
+ IF j'1 = 0 THEN 1
ELSE fib(j'1 - 1)
+ IF j'1 =1 THEN 1
ELSE £ib(j!1 - 2) + fib(j!1 - 1)
ENDIF
ENDIF
fib rewrites fib(j'1)
to IF j!1 = 1 THEN 1 ELSE fib(j!1 - 2) + fib(j!1 - 1) ENDIF
By induction on n and rewriting,

Q.E.D.
Run time = 10.43 secs.
Real time = 30.62 secs.
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Chapter 4

Specification of SIL Graph
Structure in PVS

A specification of the structure of SIL graphs is developed step by step in this Chapter.
We introduce an entity in a SIL graph, and give its specification in PVS. We repeat
some of the definitional concepts reviewed in Chapter 2 to put them in the context
of our specification. ~ We explain the specification of ports in Section 4.1, followed
by the specification of edges in Section 4.2 and nodes and SIL graphs in Section 4.3.
Finally, in Section 4.4 we establish the properties that need to hold for a SIL graph to
be well-formed, and thus have a proper behavior.

4.1 Port and Port Array

A port is a placeholder for data values. The set of data values that it can hold can be
restricted, and such a set is denoted by a type. For example, a port that is allowed to
hold only true and false is of Boolean type. We would like to model a SII. graph and
associated transformations for any desired set of data values. We define a port as a
placeholder for an arbitrary set of data values, by defining it as an unspecified type:

port: TYPE

We can create various ports by introducing names such as p0, pI, p2, and declaring
them as variables VAR of type port :

p0, pl, p2: VAR port
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dfe: pred[[port,port]l]
sqe: pred[[port,port]]

Table 4.1: .
PVS types for data-flow edge and sequence edge; see Figure 4.1.

An array of ports is defined as a record type containing two type fields. The first
field size of type nat — the set of natural numbers {0, 1,2, ...} — specifies the size of the
array. The second field is the array of ports, whose size is equal to that specified by
the first field. Such a typing, in which the type of one field depends on another field is
known as dependent typing. The ARRAY is specified as a function that takes a member
from the set of natural numbers less than size and gives a member of type port:

parray: TYPE = [# size:nat,
port_array: ARRAY[{i:nat|i<size} -> port]
#]

4.2 Edges

An edge is a directed line connecting two ports. Mathematically, it is a relation on two
ports. For convenience, we will call the port from which the edge is directed the source,
and the port to which the edge is directed to the sink. There are two kinds of edges in
SIL: data-flow edge and sequence edge. A data-flow edge between two ports indicates
the flow of a token from the source to the sink. A sequence edge between two ports
specifies the ordering between them: we will say that a port A is less than a port B if
and only if, the token fired at B determines the value of a sink port C connected to A
and B, rather than the token fired at A. A data-flow edge between two ports enforces
an implicit ordering between the source and sink. The source is strictly less than the
sink. There is no token flow through a sequence edge.

We specify both kinds of edges as relations on ports. They modify the behavior of
a SIL graph in different ways. We postpone the discussion of the properties of these
relations to the next chapter, and just specify the types of the relations as predicates —
pred — on pairs ports. A true value of the predicate indicates the presence of an edge
between the ports, while a false value indicates the absence of an edge between the
ports. The predicate dfe is the data-flow edge relation, and sge is the sequence edge
relation as shown in Table 4.1.

We can explicitly define corresponding relations between arrays of ports. For exam-
ple, we define the data-flow edges between arrays of ports as:
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Figure 4.1: SIL data-flow and sequence edges; see Table 4.1.

par, par0O: parray

same_size(par,par0) =
size(par) = size(par0)

dfear(par0, (parl:{par|same_size(par,par0)})) =
FORALL (ili<size(par0)):
dfe(port_array(par0)(i),port_array(pari)(i))

The direction of the edges is from the first port to the second port. We illustrate
this in Figure 4.1.

4.3 Node, Conditional Node and Graph

A node is a structure that takes inputs and gives outputs, satisfying a data relation
associated with the node. Some of the typical nodes are adders and multplexers associ-
ated with corresponding addition and multiplexing data relations. We also associate an
order relation, which imposes an order on the inputs and outputs. Externally, a node
receives inputs at input ports, and delivers outputs at output ports. Since a port is a
placeholder for a definite set of data values — of a definite type — the input and output
values should belong to the type of the input and output ports.

A conditional node is a node having special Boolean inputs, which control whether
the data relation between the inputs and outputs holds. Such inputs are known as
conditions. The conditions could appear either inverted or noninverted. If all the
noninverted conditions on a node are true, and all the inverted conditions are false,
then the outputs and inputs of the node satisfy its data relation. But, if any one of
the noninverted conditions is false or any one of the inverted conditions is true, then
the output has an arbitrary value. In such a case, the output value is restricted only
by the type of the output port. Effectively, we can replace all the condition ports of a
conditional node by just one condition port, which takes the conjunction of the condition
inputs with appropriate inversions [EMH 93].

A graph is a structure constructed by using ports, edges, nodes, and conditional
nodes. However, we can hide the structure of a graph, and externally view it as a node
with input and output ports, data and order relations. We can then specify graphs
as nodes with internal structure and internal relations. This allows for hierarchical
construction of smaller graphs into larger graphs.
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cnode: TYPE =
[#
inports: parray,
outport: port,
intports: parray,
condport: port,
cond:pred[port],
datarel: pred[[{p:parraylsize(p)=size(inports)’},portl],
orderrel:pred[[{p:parraylsize(p)=size(inports)},portl],
intrel: pred[[parray,parray]]
#]

Table 4.2: PVS specification of conditional node as a record type; see Figure 4.2.

In our specification, we first introduce a conditional node in PVS as a record type as
shown in Table 4.2, where

e inportsare the input ports declared as parray type — that is, they are taken together
as one array of an unspecified size.

e outportis an output port declared just as a port. In this work we consider a single
output port for convenience in specification. However, in general, output should
also be declared as an array of ports, as is the case for hierarchically built graphs
and for primitive nodes such as SPLIT.

e intports are the internal ports declared as a parray type to specify the internal
ports the conditional node might have internally. Such a conditional node would
be a hierarchically built graph.

e condport is a single port providing access for the condition input.

e cond is a condition function giving the value of the condition on the condition
port: this can be either true or false. This is declared as a type pred/port] — that
is, a predicate on port.

o datarel is the data relation governing the output value based on the inputs. This
is declared as a predicate or relation pred on a tuple. The first type in the tuple
is a subset of port arrays, whose size is the same as the inports, and the second
type is a port corresponding to the outport.

e orderrel is declared as exactly the same type as datarel. The difference lies only
in that, it governs the order of output and input values. This is not seen in the
structural type definition here.
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Figure 4.2: SIL conditional node; see Table 4.2.

e intrelis the internal relation corresponding to the internal structure and connec-
tivity of the conditional node. This is derived from the internal ports and the
edges connecting the internal ports.

The conditional node is shown in Figure 4.2.

We introduce predicates to compare the structures of conditional nodes based on
their number of input ports:

cn0, cnl: cnode

same_size(cnO,cnl) =
size(inports(cn0)) = size(inports(cni))

A node without a conditional port is modeled as a conditional node with the con-
dition on its conditional port being always true. The advantage of such a modeling is
that it captures both an unconditional node and a conditional node whose conditional
port is always set to true. Since they have identical behavior, it minimizes our model
by having just one structure for both. In PVS, a feature known as subtyping allows
one to define a type, which denotes a subset of values of an already defined type. We
specify the node type in Table 4.3 by using this PVS subtyping feature. The Figure 4.3
illustrates this specification.

We model a graph exactly the same as a conditional node, since we have constructed
a conditional node to have internal structure and internal relation. This allows for
viewing a graph as another node, and thus allows for a hierarchical construction of
larger graphs. We specify a graph as a type equal to a conditional node type:
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node: TYPE = {n:cnode| cond(n) = LAMBDA (p:port):TRUE}

Table 4.3: Node as a subtype of a conditional node; see Figure 4.3.

/

Figure 4.3: Node as a subtype of a conditional node; see Table 4.3.
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graph: TYPE = cnode

4.4 Well-formedness of a SIL Graph

A SIL graph has to satisfy certain structural rules governing the connectivity of ports.
Only then can the behavior of a SII. graph be well-defined. For example, we cannot
connect two input ports by a data-flow edge: a source has to be an output port, while
a sink has to be either an input port or a conditional port. The structural rules are
stated as axioms in PVS.

Every port has to be exactly one of an input port, output port, and conditional port:
no port can be left dangling. Even the terminal I/O ports at the SIL graph boundary
are associated with special 1/O nodes. We express this as two axioms — inclusivity and
exclusivity — as follows:

port_inclusive_ax: AXIOM
FORALL (p:port): is_inport(p) OR is_outport(p) OR is_condport(p)

port_exclusive_ax: AXIOM

FORALL (p:port): is_inport(p) IMPLIES
NOT (is_outport(p) OR is_condport(p)) AND
is_outport(p) IMPLIES
NOT (is_inport(p) OR is_condport(p)) AND
is_condport(p) IMPLIES
NOT (is_inport(p) OR is_condport(p))

where is_inport, is_outport, and is_condport are appropriately defined, asserting the
existence of a (conditional) node whose input/output/condition is the port being con-
sidered, as indicated in the following PVS specification:

is_inport(p) = (EXISTS cn, (i:{j:nat|j<size(inports(cn))}):
p=inport(cn,i))

(EXISTS cn: p=outport(cn))

(EXISTS cn: p=condport(cn))

is_outport(p)
is_condport(p)

That a port can be one of the internal ports of a conditional node is consistent with the
properties defined here, because even internal ports should be one of the three types of
ports.

A data-flow edge is legal only if it connects an input port to an output or a conditional
port:
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dfe_port_ax: AXIOM
FORALL pil,p2:
dfe(pl,p2) IMPLIES (is_outport(pl) AND
(is_inport(p2) OR is_condport(p2)))

We can derive that self data-flow edges are forbidden by the properties of ports and
the data-flow edge from the above property. If we make p1 = p2 in the above axiom,
and use the port exclusivity axiom (given earlier) that any port can be exactly one
of input, output and condition, we get the corresponding theorem for preventing self
data-flow edges:

self_edge_not_th: THEOREM
FORALL (p:port): NOT dfe(p,p)

It should be noted that data-flow edges between output ports of a node and the input
ports of the same node are not prohibited.

Self sequence edges are also prohibited, since sequence edges impose strict ordering
on ports. This has to be asserted as an axiom, as we have not imposed any restrictive
property on the sequence edge:

self_seq_edge_not_ax: AXIOM
FORALL (p:port) NOT sqe(p,p)

Since sequence edge introduces ordering on ports, we expect sqe to be transitive. But, in
order to have a clear separation of structure and behavior, we do not impose the property
on sqe here. However, as we will see in Chapter 5, we formalize the ordering due to the
sequence edges, and due to the behavior of a condition node when the condition port
has a false value, by introducing weights on pairs of ports. The transitivity property is
then imposed on the ordering of weights.
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Chapter 5

Specification of SIL Graph
Behavior and Refinement

We informally discussed in Chapter 2, the behavior of a SIL graph. We recall that
the behavior is the set of ordered tuples of data values that the ports of the graph can
assume, and an external or I/O behavior is the set of ordered tuples of values at the I/O
ports of the SIL graph. The behavior of a SIL graph is determined by the data relations
and order relations of the nodes, connectivity due to the data-flow edges, and ordering
imposed by sequence edges. Any implicit state information in a SIL graph is contained
in the data relations of the nodes. Thus, a comparison of behaviors in any given clock
cycle would not require comparing execution histories due to possible implicit states in a
SIL graph. We discuss behavior in Section 5.1, followed by a presentation of refinement
and equivalence in Section 5.2.

5.1 Behavior

A detailed definition of behavior would require establishing a concrete formal semantics
of SIL, since the data values and ordering can be arbitrary. A denotational semantics
of SIL has been discussed by Huijs [HuK 94]. However, at the level of abstraction
we have chosen to specify, we bring about high-level properties of dependency graphs,
refinement and equivalence that should hold independent of a detailed behavior model.
We can thus obviate the need to specify a concrete behavioral model of dependency
graphs. Such mechanisms for specification by defining the properties that have to hold
constitute our axiomatic approach. As we will see in the next chapter, we compare
two SIL graphs by asserting the properties that need to be satisfied by the graphs with
respect to their behavior. We can thus establish the correctness of transformations. A
modification in the concrete behavioral model faithful to the properties on which we
have based our approach would not change our specification and verification results.
Further discussion of the advantages of our approach is postponed to Chapter 7.
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The behavior associated with an access point or a port is described by the same
uninterpreted type, as we used in the introduction of the structural specification of a
port:

port: TYPE

This is the stage where the specification of structure and behavior coincide. The type
denoting the set of values being unspecified gives us the freedom to model the behavior
(as with the structure) irrespective of the value type.

5.2 Refinement and Equivalence

We have developed specification techniques to describe concepts comparing SIL graphs
with respect to behavior. A SIL graph SG2 is a refinement of another SIL graph SG1, if
the behavior exhibited by SG2 is allowed by SG1. SG2 can then be an implementation
of its specification SG1. In order to define graph refinement, we first describe port
refinement, and derive graph refinement from the structural connectivity of a SIL graph.

We introduce an abstract refinement relation on ports:

silimp: pred[[port,portl]

The refinement relation on ports could be interpreted as follows. A port pl is a refine-
ment of a port p2, if the set of data values allowed by p1 is a subset of values allowed by
p2. An instance of such a relation comes about due to the non-deterministic choice as
illustrated in Figure 5.1. Another kind of refinement could be a data type refinement:
when one port is a subtype of another. The refinement relation has to be reflexive and
transitive. We do not impose antisymmetry to allow the definition of equivalence as a
special case of refinement:

silimp(pl,pl)

silimp_trans_ax: AXIOM
silimp(pl,p2) AND silimp(p2,p3) IMPLIES
silimp(pl,p3)

The refinement relation between arrays of ports is introduced by a property stating
that a refinement relation between all corresponding ports of the port arrays implies a
refinement relation between the port arrays.
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value(pl) = {value| value=value(ql)}

valug(p2) = {value| value =vaue(gl) OR
value = valug(g2) OR
value = value(g3)
}

value(pl) C value(p2)
silimp(pl,p2): pl is a refinement of p2

Figure 5.1: Example: refinement of ports due to non-deterministic choice.
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silimp(g11,g22) AND silimp(g12,q22) AND silimp(q13,922)
silimpar(gl1,92)

Figure 5.2: Example: array refinement does not imply every individual port refinement.

parl, par2: parray
silimpar(paril,par2)

silimpar_def_ax: AXIOM
FORALL pari,(par2|same_size(paril,par2):
(FORALL (il i< size(paril)):
EXISTS j: silimp(port_array(paril)(i),port_array(par2)(j))) IFF
silimpar(paril,par2)

It should be noted that the refinement between port arrays does not necessarily imply
the refinement relation between corresponding individual ports of the port arrays. We
illustrate this notion with an example in Figure 5.2. The reason for underconstraining
the definition of port array refinement is to allow refinements for graphs which might
have different numbers of input and output ports. We can thus allow behavioral refine-
ment without overconstraining the structures of the graphs.

The properties of reflexivity and transitivity that have to be satisfied by the refine-

ment relation on port arrays are similar to those satisfied by the refinement relation on
ports:

silimpar_refl_th: THEOREM
silimpar(par,par)

silimpar_trans_ax: AXIOM
silimpar(parl,par2) AND silimpar(par2,par3) IMPLIES
silimpar(paril,par3)
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The equivalence of SIL graphs silegis defined by introducing the symmetry property
in the refinement relations defined above:

sileq(pl,p2) = silimp(pil,p2) AND
silimp(p2,p1)

sileqar(parl,par2) = silimp(pari,par2) AND
silimp(par2,paril)

A data-flow edge connecting two ports modifies the behavior of the sink in accordance
with other data-flow edges connecting the same edge output. If a port is the sink of
multiple data-flow edges, then the behavior of the sink port is determined by an ordering
of the source ports. Such a port is called a join. In terms of the token flow concept,
we recall from Chapter 2, that the ordering depends on the which of the tokens fired
from the source ports determines the value of the join. The sequence edges in a SIL
graph indicate such an ordering. However, since the ordering could be affected by the
behavior of a conditional node, we need a general mechanism to specify the ordering. We
model this ordering by associating weights with the data-flow edges, rather than source
ports. Introducing weights to represent sequence edges also, permits a clear separation
of structure from and behavior: whereas a sequence edge is a structural entity, weight
is a behavioral entity that could be derived not only from sequence edges, but also due
the behavior of a conditional node. We first introduce weight as an uninterpreted type.
A function w on ports would return a weight, while a function war on arrays of ports
would return a weight:

weight: TYPE
w: [port,port -> weight]
war: [parray,parray -> weight]

The ordering is used to determine the behavior of a join. This means that we need to
compare the weights on the data-flow edges that form a join. The weights on data-flow
edges that do not form a join need not be compared. However, the definition of SIL
specifies that no two data-flow edges communicate tokens simultaneously into a join,
and no two weights on the edges forming a join can be equal. This suggests that we need
a reflexive, transitive, and antisymmetric ordering relation on weights: such a relation
is called partial order. We define a partial ordering relation' < on weights, and assert
the fact that the weights are ordered if and only if the associated data-flow edges form
a join. We give the PVS specification of this property in Table 5.1 and illustrate it in
Figure 5.3.

"We do not use the usual notation < to stress that no two weights on different edges forming a join
can be equal.
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<: pred[[weight,weight]]
partial_order(<)

dfe_w_ax: AXIOM
p0 /= p1 IMPLIES
dfe(p0,p2) AND dfe(pl,p2)
IFF
(w(p0,p2) < w(pl,p2) OR
w(pl,p2) < w(p0,p2))

Table 5.1: Using weights for ordering data-flow edges: PVS specification; see Figure
5.3.

pO
w(p0,p2) ) w(p0,p2) <w (p1,p2)
dfe p
OR
@/df/ w(p1,p2) < w(p0,p2)
w(pl,p2)
pl

Figure 5.3: Using weights for ordering data-flow edges; see Table 5.1.
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join_ax: AXIOM
FORALL pi1,p2:
(FORALL p:
w(p,p2) < w(pl,p2)) IMPLIES
silimp(pl,p2)

Table 5.2: Using weights to determine join behavior; see Figure 5.4.

pl

w(pl,p2)

p2 w(pl,p2) isthe maximum
IMPLIES
silimp(pl,p2)

Figure 5.4: Using weights to determine join behavior; see Table 5.2.

We describe the property that the behavior of a join depends on the ordering of
the data-flow edges, by comparing weights on the edges flowing into the join port. The
greater the weight on a data-flow edge, the later the token is communicated through
it. We state the property that the join port is a refinement (an implementation) of the
source whose associated data-flow edge has the maximum weight in the axiom shown
in Table 5.2. It should be noted that we do not impose equivalence sileq, a relation
stronger than refinement silimp. This would give the freedom to connect a port pl to
p2, when the set of data values allowed by p1 is always a subset of the set of data values
allowed by p2. The property is shown in Figure 5.4.

We still have to capture the notion of behavior of ports connected to the output
port of a conditional node. The behavior of the output port of a conditional node, when
the condition port holds a false value, is not defined. In the case where a join port is
connected to a conditional node, the behavior of the join is solely determined by edges
that propagate well-defined values. This situation is specified by making the associated
weight of the data-flow edge emanating out of a conditional node the least of all the
weights associated with other data-flow edges. The other data-flow edges, with which
the comparison is performed should be connecting the join port to output ports of nodes
or conditional nodes whose condition is never false. However, this does not preclude a
join port to have an arbitrary value - because, it does not prohibit a graph construction
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cond_bottom_ax: AXIOM
NOT cond(cn) (condport(cn)) IMPLIES
FORALL p:
dfe(outport(cn),p) IMPLIES
FORALL (n:node): dfe(outport(n),p) IMPLIES
w(outport(cn),p) < w(outport(n),p)

Table 5.3: Weight when the condition on a conditional node is false; see Figure 5.5.

O condport(cn)
\ w(outport(cn),p) isthe LEAST
outport(cn)
® p
/ pl
S

Figure 5.5: Weight when the condition on a conditional node is false; see Table 5.3.

pl p2 No other "dfe" coming into p2:
= ® i.e. p2isnot ajoin.

xdfe

Figure 5.6: Absence of join: exclusive data-flow edge; see Table 5.4.

where the join port is connected exclusively to a single conditional node or multiple
conditional nodes whose conditions are false, and whose output ports are connected to

the join port. The property is specified as an axiom in Table 5.3, and illustrated in
Figure 5.5.

We can derive the behavior due to a data-flow edge whose sink is not the output of
any other data-flow edge. We will call such an edge an exclusive data-flow edge — zdfe
defined in Table 5.4 and shown in Figure 5.6.

We can explicitly define an exclusive data-flow edge relation for arrays of ports as
in Table 5.5. We can prove the property that an exclusive data-flow edge provides a
refinement relation between the source and the sink. However, for this property to hold,
we have to impose a restriction on the source port — that it has to be an output port of
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xdfe(pl,p2) = dfe(pl,p2) AND
FORALL p:
(p /= pl) IMPLIES NOT dfe(p,p2)

Table 5.4: Absence of join: exclusive data-flow edge; see Figure 5.6.

par, par0O: parray

xdfear(par0, (paril:{par|same_size(par,par0)})) =
FORALL (ili<size(par0)):
xdfe(port_array(par0) (i),port_array(par1)(i))

Table 5.5: Array version of exclusive data-flow edge
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dfe2_join_th: THEOREM
(dfe(pl,p3) AND dfe(p2,p3) AND

(FORALL pO:
dfe(p0,p3) IMPLIES ((pO = pl) OR (p0 = p2))))
IMPLIES

IF w(pl,p3) < w(p2,p3) THEN
sileq(p2,p3)

ELSE sileq(p1,p3)

ENDIF

Table 5.6: A theorem on join of exactly two data-flow edges

a nonconditional node. If the source is an output port of a conditional node, then the
value false on the condition port will produce an undefined value on its output port.
However, a data-flow edge transforms the undefined value into an arbitrary value of an
appropriate type of sink. The undefined value is not communicated by a data-flow edge
because the sink could be an input to another node. In practice, as we have pointed out
in Chapter 2, an input is required to be a well-defined value, while an output generated
could be an undefined value:

xdfe_silimp_th: THEOREM
FORALL (nl:node),(p2:port):
xdfe(outport(nl),p2) IMPLIES silimp(outport(ni),p2)

We again point out that the relation between the source and the sink is a refinement
rather than equivalence. This weaker relation would lead more optimization than if it
were equivalence. This issue is discussed further in Chapter 6 as part of generalizations
of transformations.

A useful theorem involving a join of exactly two data-flow edges, shown in Table 5.6,
states that the behavior of a join associated with exactly two data-flow edges is equal
to the behavior of the port from which the edge with a greater weight emanates.

We postulate that the ordering on edges is preserved by behavioral refinement (and
therefore also equivalence). We express the property in PVS as an axiom in Table 5.7 and
show it in Figure 5.7. We can then derive useful extensions of this property of preserving
order by behavioral refinement. One useful extension for comparing SIL graphs expresses
that the order is preserved with an introduction of an exclusive data-flow edge between
an output port of a node and another port. This is shown in Figure 5.8. The statement
of the property is the theorem in Table 5.8.
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po_preserve_ax: AXIOM

w(p0,p2) < w(pi,p2) AND
silimp(p0,p00) AND
silimp(p2,p22) AND
dfe(p00,p22) AND
dfe(pil,p22)

IMPLIES

w(p00,p22) < w(pll,p22)

Table 5.7: Order preserved by refinement and optimization; see Figure 5.7.

o0 . poo

w(p0,p2)
p2
/ """"""""" simp 7
w(pl,p2)

pl

w(pll,p22)
pll

w(pO,pl) < w(pl,p2) IMPLIES w(p00,p22) < w(pll,p22)

Figure 5.7: Order preserved by refinement and optimization; see Table 5.7.

po_preserve_xdfe_th: THEOREM

w(p0,p2) < w(pi,p2) AND

silimp(p2,outport(n3)) AND

xdfe(outport(n3),p4) AND
dfe(p00,p44) AND
dfe(pll,p44) AND
silimp(pO,p00) AND
silimp(pl,p11) AND
silimp(p4,p44)

IMPLIES

w(p00,p44) < w(pll,pd4d)

Table 5.8: Order preserved by refinement and exclusive data-flow edge; see Figure 5.8.
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p0 .

w(p0,p2)

\pZ
@ﬁ

pl

w(p0,p2) < w(pl,p2) IMPLIES w(p00,p44) < w(pll,p44)

Figure 5.8: Order preserved by refinement and exclusive data-flow edge; see Table 5.8.
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sub_kind_implement_ax: AXIOM

FORALL (nO:node),(nl:nodelsame_size(n0O,n1)):
sub_kind(n0,n1) AND silimpar(inports(n0O),inports(nl)) IMPLIES
silimp(outport(n0),outport(ni))

Table 5.9: Graph refinement: property expressing relation between outputs and inputs
of graphs independent of underlying behavior; see Figure 5.9.

Similarly, we have corresponding postulates and theorems for arrays of ports instead
of individual ports. However, we have to make a slight modification on comparing port
arrays for inequality — that is, we will interpret the inequality operator /= to mean
that the port arrays do not have any port in common. We have such a facility of
overloading operators and functions in PVS. In comparing behaviors of SIL graphs, we
find that the properties expressed using arrays of ports instead of individual ports, make
specifications more succinct and economical.

Finally, we need a refinement relation for graphs. A graph refines or implements
another graph, when the data relation of the implementing node is contained in the data
relation of the specification node. We call the implementing graph the sub_kind of the
specification node. Instead of describing the graph refinement by describing containment
of their data relations, we specify the relationship by using a higher level property. It
is the property that, when the inputs of the implementation graph are a refinement
of the inputs of the specification graph, then the outputs of the implementation graph
have to be refinements of the specification graph. It should be noted that any state
information implicit in a SIL graph is encapsulated in the data relations, thus obviating
the need to consider behavior histories, rather than a single clock cycle behavior. The
PVS specification in Table 5.9 illustrates the property in Figure 5.9.

This allows us to compare output ports, given a relationship among the input ports
and the relationship between the nodes. It should be noted that this represents a
typical example of how we express a property for comparing ports, without a detailed
representation of the input/output ports and data relations of the nodes. We also
introduce convenient predicates in Table 5.10 to express that two nodes, having the
same number of input ports (i.e., they are of the same_size), are of the same kind if they
have the same data relations.
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silimpar: 'sub_kind  : Slimp

Figure 5.9: Graph refinement: property expressing relation between outputs and inputs
of graphs independent of underlying behavior; see Table 5.9.

same_kind(cn0O, (cnl|same_size(cnl,cn0))) =
datarel(cn0) = datarel(cnil)

sks(cnO,cnl) =
same_size(cn0,cnl) AND same_kind(cnO,cnl)

Table 5.10: Predicates for expressing the sameness of nodes
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Chapter 6

Specification and Verification of
Transformations

The formal model of the SIL graph structure and behavior can be used to specify and
verify the correctness of transformations. Here, we present optimization transforma-
tions, such as Common Subexpression Elimination and Cross-Jumping Tail-Merging.
We have verified the correctness of other optimization transformations, and a similar
technique can be adopted for verifying the correctness of refinement transformations.
We present an overview of specification and verification of transformations in section 6.1.
We explain in detail common subexpression elimination in Section 6.2 and cross-jumping
tail-merging in section 6.3. We briefly mention specification and verification of other
transformations and proofs in Section 6.4, and generalization and composition of trans-
formations in Section 6.5. In Section 6.6, we illustrate with an example the usefulness of
the axiomatic specification in investigating “what-if” scenarios. Finally, in Section 6.7,
we illustrate a new transformation devised in the process of generalization and “what-
if” analysis. This transformation can be used for further optimization and refinement.
This could not have been achieved by the existing transformations defined in the current
synthesis framework.

6.1 Overview

The general method we employ to specify and verify transformations consists of the
following steps:

1. Specify the structure of SIL graph on which the transformation is to be applied.
The structure specification could be of graph templates or classes of SIL graphs
rather than a particular concrete graph.
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p2

Figure 6.1: Common subexpression elimination; see Table 6.1.

2. Assert that the structure of the SIL graph satisfies the preconditions imposed on
its structure for applying the transformation. The preconditions would consist
of constraints imposed on structural connectivity and ordering through sequence
edges.

3. Specify the structure of the SIL graph expected after the transformation is applied.

4. In the case of verifying refinement, we impose the constraint that the correspond-
ing inputs of the SIL graphs before and after transformation are silimpar — that
is, the set of input values to the SIL graph after transformation is a subset of
the set of input values to the SIL graph before the transformation. For behavioral
equivalence, the constraint is imposed as sileqar: the sets of input values to both
graphs are identical.

5. Verify the property that the outputs of the SIL graph before transformation are
silimpar — that is, the outputs of SIL graph after transformation are refinements
of corresponding outputs of the SIL graph before transformation. In the case of
behavior preserving transformation, the corresponding outputs are verified to be
sileqar.

6.2 Common Subexpression Elimination

In this transformation, two nodes of the same kind, which take identical inputs, are
merged into one node as shown in the Figure 6.1.

We first specify the preconditions imposed on the nodes and the input ports con-
nected to the nodes:

e The nodes must be of the same kind
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e The ports connected to the input ports of one node must be identical to those
connected to the input ports of the other node.

e The input ports should not be left dangling: they are required to have an incoming
data-flow edge.

For convenience, we will assume that the joins at the input ports of the nodes have
been resolved. Such a resolution of the joins would leave exactly one data-flow edge
connecting each input port of the nodes. Relaxing that assumption would not change
our verification of correctness of the transformation, except for an additional step of
resolving the joins before the transformation is applied:

preconds(dot0, (dotl:{dotl|same_kind(dot0,dot1)})) :boolean =

% input ports of dot0 and dotl are connected to identical ports,
% and there exists at least one such set of ports

(FORALL (parlis_outportar(par) AND same_size(par,inports(dot0))):
xdfear(par,inports(dot0)) IFF xdfear(par,inports(dotl))) AND
(EXISTS (parlis_outportar(par) AND same_size(par,inports(dot0))):
xdfear(par, inports(dot0)))

We then specify the structure of the graphs before and after applying the transfor-
mation. The statement of correctness is asserted as a theorem that, if the inputs for
the graph are sileq then the outputs of the graph are sileq. The theorem is stated in
Table 6.1.

6.3 Cross-Jumping Tail-Merging

In the cross-jumping tail-merging transformation, two conditional nodes whose output
ports connect to the same sink are checked for being mutually exclusive — that is, if
the conditions on both of the conditional ports are not true (or false) at the same time
(when exactly one of them is true at any time). In such a case, the two nodes can be
merged into one unconditional node of the same kind, and the conditions moved to the
nodes of the subgraph connecting it. We show this transformation in Figure 6.2.

In the course of our specification in PVS, we found a mistake in the informal spec-
ification of the transformation. We show the erroneous transformation that was given
in the original informal specification in Figure 6.3.

However, the same mistake was discovered later by inspection of the informal spec-
ification [Klo 94] independently, without the aid of our formalization. The error that
occurred in the original informal specification was the incorrect placing of the conditions
on the nodes. With such a placing, the correctness of the transformation depends on
the ordering of the output ports of dot0 and doti. When condition c is true, the values
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CSubE: THEOREM

FORALL dot0O, (dot1l|same_kind(dot1,dot0)),
(dot01|same_kind(dot01,dot0)):

((

preconds(dot0,dotl) AND

% structure before transformation
(FORALL (par|is_outportar(par) AND same_size(par,inports(dot0))):
xdfear(par,inports(dot0)) IFF
(EXISTS (parr|is_outportar(parr) AND
same_size(parr,inports(dot0))):
% ports connecting to dotO and dotO1 are equivalent
(sileqar(par,parr) AND xdfear(parr,inports(dot01)))))
)
IMPLIES

% corresponding output ports of graphs before and after transformation are
% equivalent
(FORALL pi,p2:
((xdfe(outport(dot0),pl) OR
xdfe(outport(dotl),pl)) AND
xdfe(outport(dot01),p2)) IMPLIES
sileq(p1,p2))

Table 6.1: Correctness of common subexpression elimination; see Figure 6.1.

pp0 CTrue (False)

False (True)
@

Figure 6.2: Cross-jumping tail-merging: corrected.

True (False)

False (True)
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True (False)

i False (True) ro

Figure 6.3: Cross-jumping tail-merging: incorrectly specified in informal document.
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wo < wl IFF war0 < warl

ar00
par0 P warQ
00
ppO pp
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%

Figure 6.4: Cross-jumping tail-merging: generalized and verified; see Table 6.3.

at q1 and so r1 are arbitrary, while the values at q0 and r0 are well-defined. Thus if an
ordering is imposed such that the port ppO gets the value at r2, then that value would
be arbitrary. However, in the transformed figure, the condition ¢ being true results in
an ordering such that r01 gets the value of q00, and vice-versa when c is false. Thus,
the transformation would not be correctness preserving.

The placing of the conditions as given in Figure 6.3 is leads to violation of precondi-
tions - because it prohibits comparing two ports joined exclusively to conditional nodes —
that is, adfe(p1,p2) AND is_outport_of-conditionalnode(p1) does not ensure sileq(p1,p2).
We found this violation at the very early stage of stating the theorem corresponding to
the transformation. Further, we could relax the mutual exclusiveness constraint. We
introduce a weak assumption that the ordering of the data-flow edges coming out of the
nodes dot0 and dotl in the original graph is the same as the ordering of the data-flow
edges coming into the node dot01 in the optimized graph. We have suitably modified,
generalized, and verified the transformation. The generalized transformation is shown
in Figure 6.4. The PVS specification of the preconditions is shown in Table 6.2, and
the theorem statement is shown in Table 6.3.

6.4 Other Transformations and Proofs

We have specified and verified other transformations, such as copy propagation, constant
propagation, common subexpression insertion, commutativity, associativity, distributiv-
ity and strength reduction described by Engelen and others [EMH 93].

In general, the proofs of transformations, proceed by rewriting, using axioms and
proved theorems, and finally simplifying to a set of Boolean expressions containing only
relations between ports and port arrays. At this final stage the BDD simplifier in PVS is
used to determine that the conjunction of Boolean expressions is indeed true. We show
the number of high level inference rule applications required for verifying the various
transformations in Table 6.4. The high level inference rules are the rules that the user
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would use to guide the PVS theorem prover to derive a proof of a theorem. Examples
of high level inference rules [SOR 93-2] are skolem! for removing universal quantifiers,
assert to apply arithmetic decision procedures and rewriting, bddsimp for Boolean
reasoning using BDD, and inst? for heuristic instantiation of existential quantifiers.
The PVS decision procedures for rewriting, and arithmetic and Boolean reasoning could
use a number of lower level inference rules that are hidden from the user. Examples of
proof transcripts for common subexpression elimination and cross-jumping tail-merging
are given in Appendix B.

6.5 Generalization and Composition of Transformations

We have seen earlier, in Chapter 6.3, that the specification has assisted in generalizing
the transformation. In addition, we can make other observations on using our work
to generalize many transformations. For example, by replacing the equivalence rela-
tion sileq by silimp, we find that the optimization transformations can be generalized
as refinement transformations, and the preconditions imposed by the transformations
could be relaxed. Having a mechanized formal approach such as ours, as opposed to
approaches that are informal or formal approaches not mechanized has an advantage in
the aspect of modifying specifications - the experiments of modifying specifications could
be performed in a framework, that allows one to rapidly verify that the modifications
do not violate the correctness properties.

The general technique to investigate composition of transformations is to determine
that the preconditions imposed by one transformation are satisfied by another transfor-
mation. This also applies in the case where a transformation could be applied on one
subgraph, while another could be applied on a disjoint subgraph, without having to take
into account the effect of one transformation on the preconditions imposed by another.
For example, common subexpression elimination (CsubE) produces a subgraph with an
output port that is a distribute. Whereas, copy propagation (Copy Prop) [EMH 93]
can be applied only to a subgraph that does not have a distribute output port. We
can determine in our specification that if we perform Csubk, the conjunction of the
subgraph relation thus obtained and the preconditions for performing Copy Prop on
the same subgraph are false.

6.6 Investigations into “What-if?” Scenarios

One of the benefits of our formalism is that it allows us to provide answers to questions
on the applicability of transformations, and provide formal justifications that support
the answer. A question that comes up quite often in a transformational design process
is whether a transformation that has been applied on a graph could still be applied
with small changes in the graph. We illustrate this point in the context of a situation
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NOT (WO < wl IFF wa0 < warl)

ar00
P warQ
pp00
7§ g P
warl
parll

Figure 6.5: Cross-jumping tail-merging: inapplicable when two nodes are merged into
one.

that resulted during the transformational design of a direction detector [Mid 94-2]. It
involved a variation of the cross-jumping tail-merging transformation. In Figure 6.4, if
we merge the nodes nodes dot0O and dot1 in the graph before applying the transforma-
tion, the precondition for the transformation would no longer be true. This is shown in
Figure 6.5.

Since the nodes are merged, w0 = wi. While, due the ordering imposed by join,
either war0 < warl or warl < war(Q. Thus the equivalence relation w0 < wi IFF war0 <
warl no longer holds, and so the precondition for the application of the transformation
is violated. This precludes the application of the transformation on the modified graph.

6.7 Devising New Transformations

In Section 6.6, we argued that cross-jumping tail-merging could not be applied in cases
as shown in Figure 6.5. However, we would like to have such a transformation for fur-
ther optimization in cases as shown in Figure 6.6. We can view this as a transformation
derived from the process of generalizing cross-jumping tail-merging and common subex-
pression elimination. In this transformation, two identical nodes with mutually exclusive
conditions (i.e exactly one node will be active at any time) have inputs from identical
nodes, which in turn have identical inputs. At first, it appears that we could apply a
combination of common subexpression elimination and cross-jumping tail-merging. If
we apply common subexpression elimination first, to obtain a single node whose out-
put is connected to the mutually exclusive nodes, then we cannot apply cross-jumping
tail-merging as shown in Figure 6.7. On the other hand, if we apply cross-jumping
tail-merging first, the outputs of the other pair of identical nodes form a join at the
input of the single node obtained. In this case, we cannot apply common subexpression
elimination as shown in Figure 6.8.

The problem can be solved by devising a new and simple transformation as follows.
In the description of common subexpression elimination shown in Figure 6.1, the outputs
of nodes dot01 and dotl were required to be not connected to join ports. However,
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Datarelations of n0, n1, n01 = R1
Data relations of dotO, dotl, dot01 = R2

a True(FaIse)
b
False (True)
®
pp0 = IF ¢ THEN R2(R1(ab)) ppo0 = R2(R1(ab))
ELSE R2(R1(ab))
Figure 6.6: Further optimization impossible using existing transformations.
Datarelations of n0, n1, n01 = R1
Data relations of dot0, dot1, dot01 = R2
a ppO
True (False) M True (False) PPO
b

False (True) False (True)

Figure 6.7: Inapplicability of cross-jumping tail-merging after common subexpression
elimination: due to precondition restrictions.
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Datarelations of n0, n1, n01 = R1
Datarelations of dotO, dot1, dot01 = R2

True (False)

True (False)

False (True) False (True)

Figure 6.8: Inapplicability of common subexpression elimination after cross-jumping
tail-merging: due to precondition restrictions.
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datarelation of nodenl = R1
data relation of node n2 = R2

a\ o
b7

9

IF ¢ THEN pl=R1(ab) pl = R1(ab)
ELSE pl=R2(ab) ;

sub_kind(n2,n1) AND

sub_kind(n2,nl) IMPLIES R2 € R1

Figure 6.9: A simple new transformation: obvious, post-facto.

we can relax this constraint, and provide a new and simple transformation that can be
used to optimize a dependency graph. We show the new transformation in Figure 6.9.
We could have arrived at the transformation in an ad hoc manner simply by examining
the semantics of a conditional expression. However, we devised the transformation
after examining by doing a “what-if” analysis formally in the problem of composing
two transformations. This suggests that our formal model can be used to devise new
transformations in a methodical manner.
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sks(cnl:cnode,cn2:cnode) = same_kind(cnil,cn2) AND same_size(cnl,cn2)
preconds
(dotoO,
(dot1:{dot|sks(dot,dot0)}),
(dot01:{dot|sks(dot,dot0)}),
(par0:{par|is_outportar(par)&same_size(par,inports(dot0))}),
(pari:{par|is_outportar(par)&same_size(par,inports(dot0))}),
(par00:{par|is_outportar(par)&same_size(par, inports(dot0))}),
(paril:{par|is_outportar(par)&same_size(par,inports(dot0))}),
PpO,pp00)
% connectivity at the input ports of SIL graph before transformation
xdfear(par0,inports(dot0)) AND xdfear(paril,inports(doti)) AND
(w(outport(dot0),pp0) < w(outport(dotl),pp0) IFF
war (par00, inports(dot01)) < war(pariil,inports(dot01))) AND

% connectivity at the output ports of SIL graph before transformation
dfe(outport(dot0),pp0) AND dfe(outport(doti),pp0) AND

(FORALL pp: ((pp /= outport(dot0)) OR (pp /= outport(doti)))

IMPLIES NOT dfe(pp,pp0)) AND

% connectivity at the input ports of SIL graph after transformation
dfear (par00,inports(dot01)) AND dfear(paril,inports(dot01)) AND
(FORALL (parl|size(par)=size(par00)):

(par /= par00 AND par /= parii)

IMPLIES NOT dfear(par,inports(dot01))) AND

% connectivity at the output ports of SIL graph after transformation
xdfe(outport(dot01),pp00) AND

% corresponding input ports of graph before and after transformation
% are equivalent
sileqar(par0,par00) AND sileqar(paril,paril)

Table 6.2: PVS specification of preconditions for cross-jumping tail-merging
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CjtM: THEOREM
FORALL (dotO:cnode):
LET
sks = LAMBDA (cnO:cnode), (cnl:cnode):
same_size(cn0,cnl) AND same_kind(cnO,cnl),
sk = LAMBDA (n:cnode):sks(n,dot0),
ios = LAMBDA par:is_outportar(par) & same_size(par,inports(dot0))
IN
FORALL (dotllsk(dotl)),
(dot01[sk(dot01)),
(par0lios(par0)),
(parilios(parl)),
(par00|ios(par00)),
(paril|ios(paril)):

% structure and preconditions on graphs before and after transformation
preconds(dot0,dot1,dot01,par0,parl,par00,paril,pp0,pp00)
IMPLIES

% corresponding output ports are equivalent
sileq(ppO,pp00)

Table 6.3: Correctness of cross-jumping tail-merging; see Figure 6.4.

‘ Transformation ‘ Number of high level inference rule applications
Common subexpression elimination 30
Common subexpression insertion 25
Cross-jumping tail-merging 56
Copy propagation 10
Constant propagation 2
Strength reduction 2
Commutativity 3
Associativity 3
Distributivity 3
Retiming 3
Self-inverse 1

Table 6.4: Number of high level inference rule applications for various transformations
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Chapter 7

Discussion and Conclusions

One of the goals of high-level synthesis is to achieve designs that are correct by construc-
tion. We recall from Chapter 1 that a transformation is correct if the set of behaviors
allowed by the implementation derived from the transformation is a subset of the be-
haviors permitted by the original specification. In this work, we have attempted to
help accomplish the goal of correctness by construction in verifying the correctness of
transformations used in dependency graph formalisms. However, we have to note the
distinction between the transformations as documented and intended by the informal
specification and the transformations actually implemented in software. We explain this
distinction in Section 7.1. In Section 7.2, we briefly present our experience in developing
a formal specification from an informal document. We highlight the advantages of an
axiomatic approach in Section 7.3. Finally, Section 7.4 summarizes the conclusions.

7.1 Intent versus Implementation

Our verification has addressed the transformations as documented and intended by the
informal specification, and not the transformations actually implemented in software.
One has to determine manually if the implemented transformations do, in fact, carry
out the intended transformations that have been verified. In general, there is no prac-
tical mechanized method to check if software programs (such as those implemented
in C) satisfy their specifications. But, in order to check the correctness of the imple-
mented transformations, one has to first ensure that the intended transformations as
documented are correct.

The correctness problem of the implemented transformations could be partly tackled
in another manner. We can compare the dependency graph that is taken as the input
by the software for transformation with the dependency graph that is the output of
the software after applying the transformation. However, this would entail developing
concrete behavioral models of the dependency graphs. But, a concrete behavior model
basis would make the applicability of the formalization more restricted.
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7.2 From Informal to Formal Specification

The most difficult part in this investigation has been developing a proper formal speci-
fication from informal specifications. Even though the informal specifications were well-
documented, creating a formal specification required expressing informal ideas such as
behavior and mutual exclusiveness in mathematically precise terms. One particular
detail in this respect is the following: the informal document describes a value of a
conditional node as undefined when the condition on its condition port is false. In-
troducing a notion of undefined value would need a special entity to be introduced for
every data type. Further, we would also have to associate a meaning with such special
entities. To avoid specification difficulties in stating what undefined means, we chose to
specify how an undefined value affects the overall behavior of a subgraph in which such
a node is embedded. Such choices have to be made with care towards specification and
verification ease.

One of the first tasks that aids the specification process is the choice of abstraction
level: how much of the detail present in the informal document should the specifica-
tion represent? The choice could be based on how the formal specification has to be
verified. For example, we chose not to represent behavior at all: we could express be-
havioral equivalence (refinement) by an equivalence (refinement) relation, and express
the properties that needed to be satisfied by the SIL graphs.

Another important issue in developing a formal specification from an informal doc-
ument is deciding on data structures to represent entities specified informally. It is
desirable to have a formal specification that very closely resembles the informal docu-
ment. This is essential to map a formal specification back to its informal document. It
is essential also for understanding a formal specification, and for tracing errors that have
been found in the specification back to its informal representation. We can highlight
one such data structure that PVS allows us to use: the record type. As we have seen in
Table 4.2, it permits us to package all the fields of a conditional node cn, and then ac-
cess the individual fields such as inports of the cn by inports(cn). This syntax closely
resembles the informal specification. Besides providing a simple syntax, the record type
also allows making the type of one field depend on the type of another field. We have
seen such dependent typing in our definition of arrays of ports parray in Chapter 4.
Alternatively, we could have used Abstract Data Types (ADT) in our formal specifica-
tion. This would have an advantage of encapsulating well-formedness of the structure
of dependency graphs within the behavior specification. However, this would mean im-
posing an abstract syntax structure for the behavior. Since our investigation primarily
involves transformations which transform structure, it would be difficult to work with
a specification that has an integrated structure and behavior.

The properties we have tabled in our formalism could form the basis of studying how
we could formulate a composite behavior from smaller behavioral relations. In an earlier
work at the register-transfer level [KoW 93], an automatic procedure for functional
verification of retiming, pipelining and buffering optimization has been implemented in
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RetLab as part of the PHIDEO tool at PRL. We have arrived at proofs of properties
that could form the basis of a semiautomatic procedure for checking refinement and
equivalence at higher levels.

7.3 Axiomatic Approach versus Other Formal Ap-
proaches

The advantage in an axiomatic framework is that we could assert properties of SIL
graphs that have to hold, without having to specify in detail the behavioral relations
or their composition and equivalence. We could therefore embed off-the-shelf data-flow
diagrams used in the Structured Analysis/Design approach [TDM 94, HMW 94] in our
formalism. One particular example of the advantage of our approach is establishing
refinement and equivalence, without expressing the concrete relation between outputs
and inputs of nodes. This property, expressed in Table 5.9 and Figure 5.9, does not
use any information on the concrete data and order relations of the nodes. Moreover,
the automatic verification procedures, simple interactive commands, and many features
such as editing and rerunning proofs in PVS made the task of checking properties and
correctness much easier than anticipated.

In contrast to an axiomatic approach, a model-oriented approach would compare two
dependency graph models with respect to behavior. Such a model-comparison method
would involve verifying that the behavior of the transformed model satisfies the behav-
ior of the original model. However, this entails developing concrete behavioral models
of the dependency graphs, and formulating the meaning of behavioral refinement, and
equivalence. Such concrete modeling of behavior, refinement and equivalence would im-
pose restrictions on the domains where the formalization could be applied. Furthermore,
such a modeling would make it inconvenient to study the correctness of transformations
on graphs with arbitrary structure. For example, in our approach, we could handle
nodes with an unspecified number of ports in studying the correctness problem. This
distinction is similar to the contrast between axiomatic semantics and denotational or
operational semantics in the context of programming languages. Denotational and op-
erational models worked out by de Jong and Huijs [GGJ 93, HuK 94] could be used as
a concrete model that satisfies the axiomatic specification discussed in this report.

As a typical example, we are given the behavioral relations of the nodes in a SIL
graph and the structural connectivity of the graph. There is no general way to compose
these relations into a single behavioral relation for comparison with that obtained from
another SIL graph. Moreover, from the behavioral description in SIL, it is not possible in
general to extract a state machine or a finite automaton model, and use state machine or
automata comparison techniques. This is due to the generality of the dependency graph
behavior. In addition, since many synthesis transformations are applied to descriptions
of behavior within a single clock cycle, there is no explicit notion of state in such a
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description. This reinforces the judgment that state machine or automata comparison
techniques are not suitable.

7.4 Conclusions and Future Work

In this work, we have provided an axiomatic specification for a general dependency graph
specification language. We have given a small set of axioms that capture a general no-
tion of refinement and equivalence of dependency graphs. We have specified and verified
about a dozen of the optimization and refinement transformations. We found errors in
this process, and suggested corrections. We have also generalized the transformations
by weakening the preconditions for applying the transformations, and verified their cor-
rectness. In this process, we have devised new transformations for further optimization
and refinement than would have been possible before. We have explored generating
preconditions for transformations semiautomatically from the specifications. Our work
has also aided investigating interactions between the transformations, and thus the im-
portance of the order of applying the transformations. The transformations we have
verified are being used in industry to design hardware from high level specifications.
We also plan to use our framework to investigate the correctness of transformations
involving scheduling and resource allocation.

The approach we have used, based on expressing properties at a high level, does not
depend on the underlying model of behavior. This enabled us to use our formalism for
dependency graph specifications in other areas such as structured analysis in software
design. Thus, the ability to capture an off the shelf formalism underpins our thesis that
an axiomatic specification coupled with an efficient mechanical verification is the most
suitable approach to study the correctness of transformations on generic dependency
graphs. Finally, we have shown that our approach, and formal methods in general can
creatively help discover new techniques in system design. As part of the future work,
we are considering a seemless integration of our verification scheme with VLSI CAD
tools for hardware design and CASE tools for software design.
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Appendix A

Definitions, Axioms and
Theorems

A.1 Definitions

port: TYPE
parray: TYPE = [# size:nat,
port_array: ARRAY[{i:nat|i<size}->port] #]

cnode: TYPE =
[#
inports: parray,
outport: port, % strictly, this should also be
% parray (as in SPLIT) for
% hierarchical nodes.
intports: parray,
condport: port,
cond:pred[port],
datarel: pred[[{p:parraylsize(p)=size(inports)},portl],
orderrel:pred[[{p:parrayl|size(p)=size(inports)},portl],
intrel: pred[[parray,parray]l]
#]

% derive a node as a subtype of cnode
node: TYPE = {n:cnodel|cond(n)=LAMBDA (p:port):TRUE}
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cnO,cnl: VAR cnode
parO,parl: VAR parray

% Useful functions in comparing nodes and parrays
same_size(cn0,cnl):boolean =

size(inports(cn0)) = size(inports(cni))
same_size(par0,parl):boolean =

size(par0) = size(pari)

% same_size appears as a type constraint
same_kind(cn0O, (cnl|same_size(cnl,cn0))) =
datarel(cn0) = datarel(cnil)
sks(cnO,cnl) =
same_size(cn0,cnl) AND same_kind(cnO,cnl)

% refinement/implementation relationship between nodes
sub_kind(cnO, (cnl|same_size(cnl,cn0))):boolean

sbks(cn0,cnl) = same_size(cn0O,cnl) AND sub_kind(cnO,cnl)

% defines behavioral implication of sil graphs/ports
silimp: pred[[port,portl]

pO,pl1,p2: VAR port
par,parl,par2,par3: VAR parray
i: VAR nat

% defines array version of silimp: note the weak axiom def
silimpar(paril,par2):boolean

% defines a behavioral equivalence of sil graphs
sileq(pl,p2) :boolean =
silimp(pl,p2) AND silimp(p2,pil)
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% array version
sileqar(parl,par2):boolean =
FORALL (il i < size(paril)):
sileq(port_array(paril)(i),port_array(par2)(i))

% Arbitrary functions corresponding to data_rel of nodes
silf: VAR [port->port]
silfar: VAR [parray->port]

<: pred[[weight,weight]]

% data flow edge is a relation on ports

dfe: [port,port -> boolean]

% an arbitrary fixed function corresponding to ports
w: [port,port->weight]

P,pO,pl,p2,p3,p4: VAR port
cn,cn0,cnl,cn2,cn3: VAR cnode
n,n0,n1,n2,n3: VAR node

inport(cn, (i:{j:nat|j<size(inports(cn))})):port =
(port_array(inports(cn))) (1)

intport(cn, (i:{j:nat|j<size(intports(cn))})):port =
(port_array(intports(cn))) (i)

% define useful macros

is_outport(p) = (EXISTS cn: p=outport(cn))

is_inport(p) = (EXISTS cn,(i:{j:nat|j<size(inports(cn))l}):
p=inport(cn,i))

is_condport(p) = (EXISTS cn: p=condport(cn))
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% array version of dfear and xdfear and ordering
war: [parray,parray->weight] % or weightarray??

par,parr,par0O,parl,par00,parll,par2,par3: VAR parray

dfear (par0, (parl:{par|same_size(par,par0)})):boolean =
(FORALL (ili<size(par0)):
dfe(port_array(par0) (i) ,port_array(pari)(i)))

xdfear(par0, (paril:{par|same_size(par,par0)})):boolean =
(FORALL (ili<size(par0)):
xdfe(port_array(par0) (i),port_array(parl)(i)))

% array version of the above corresponding theorems -
% illustrates clarity of specification
is_node_outport(p):boolean =

EXISTS n: p = outport(n)

is_outportar(par):boolean =
FORALL (ili<size(par)): is_node_outport(port_array(par)(i))

is_cnode_outport(p):boolean =
EXISTS (cn:cnode): p = outport(cn)

is_cnoutportar(par):boolean =
FORALL (ili<size(par)): is_cnode_outport(port_array(par)(i))

% definition of an assignment node
asignment(cn:cnode) :node =
cn WITH [inports := inports(cn) WITH [size := 1]]
WITH [dataf := LAMBDA (p:parray): outport(cm) =
port_array(inports(cn)) (0)]

% definition of floor function for real-integer
% refinement transformation
floor(x): int =

epsilon (LAMBDA y: y <= x AND y > (x-1))
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A.2 Axioms

cn: VAR cnode

cnode_ax: AXIOM

FORALL cn: cond(cn)(condport(cn)) IMPLIES
datarel(cn) (inports(cn),outport(cn))

silimpar_ax: AXIOM
FORALL pari,(par2|same_size(paril,par2):
(FORALL (il i< size(paril)):
EXISTS j: silimp(port_array(paril)(i),port_array(par2)(j))) IFF
silimpar(paril,par2)

% Reflexivity
silimp_refl_ax: AXIOM silimp(pl,pl)

% Transitivity
silimp_trans_ax: AXIOM
FORALL pO,pi1,p2:
silimp(pO,pl) AND silimp(pi,p2) IMPLIES silimp(p0,p2)
silimpar_trans_ax: AXIOM
silimpar(parl,par2) AND silimpar(par2,par3)

IMPLIES

silimpar(paril,par3)
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% sub kind nodes implement each other
sub_kind_implement_ax: AXIOM
FORALL (nO:node),(nl:nodelsame_size(n0O,n1)):
sub_kind(n0,n1) AND silimpar(inports(n0O),inports(ni))
IMPLIES
silimp(outport(n0),outport(ni))

self_seq_edge_not_ax: AXIOM FORALL (p:port) NOT sqe(p,p)

% partial order relation on weights
partial_order(<:pred[[weight,weight]])

dfe_port_axl: AXIOM
dfe(pl,p2) IMPLIES is_outport(pi)

dfe_port_ax2: AXIOM
dfe(pl,p2) IMPLIES (is_inport(p2) OR is_condport(p2))

% We need these general axioms on dfes and partial order on w’s
dfe_w_ax: AXIOM
(dfe(p0,p2) AND dfe(pl,p2))
IFF
(w(p0,p2) < w(pl,p2) OR
w(pl,p2) < w(p0,p2))

% if the conditional port val is false, then the w involving its
% output port is the least!: this is the property of the bottom
% we want!!
cond_bottom_ax: AXIOM
NOT cond(cn) (condport(cn)) IMPLIES
FORALL p:
dfe(outport(cn),p)
IMPLIES
FORALL (n:node): dfe(outport(n),p) IMPLIES
w(outport(cn),p) < w(outport(n),p)
% Generalized join axiom
join_ax: AXIOM
(dfe(p1,p2) AND
(FORALL p: dfe(p,p2) IMPLIES w(p,p2) < w(pil,p2)))
IMPLIES
silimp(pl,p2)
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% Partial order preservation: Advanced axiom (we can’t prove it
% unless we introduce extra delay axioms for nodes/silimp)
p00,p11,p22,p33,p44: VAR port
po_preserve_ax: AXIOM

(w(p0,p2) < w(pl,p2) AND

silimp(p0,p00) AND

silimp(p2,p22) AND

dfe(p00,p22) AND dfe(plil,p22))

IMPLIES
w(p00,p22) < w(pll,p22)

% Generalized join axiom for arrays
joinar_ax: AXIOM
FORALL pari, (par2|same_size(par2,pari)):
(dfear(paril,par2) AND
(FORALL (par|same_size(par,paril)):
dfear(par,par2) IMPLIES war(par,par2) < war(pari,par2)))
IMPLIES
silimpar(paril,par2)
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A.3 Theorems

% property of an non-conditional node
node_data_rel_th: THEOREM
FORALL (n:node): datarel(n)(inports(n),outport(n))

silimpar_refl_th: THEOREM
silimpar(par,par)

% sileq_ar_refl
sileqar_refl_th: THEOREM
sileqar(pari,pari)

% sileq_ar_sym

sileqar_sym_th: THEOREM

FORALL pari, (par2:{par|same_size(par,pari)}):
sileqar(parl,par2)= sileqar(par2,pari)

% sileq_ar_trans
sileqar_trans_th: THEOREM
FORALL pari, (par2:{par|same_size(par,pari)}),
(par3:{par|same_size(par,pari)l}):
(sileqar(parl,par2) AND sileqar(par2,par3))
IMPLIES
sileqar(pari,par3)

% same kind non-conditional nodes propagate similar outputs
in_eqar_imp_outeq: THEOREM
FORALL (nO:node),(nl:nodelsks(n0,n1)):
sileqar (inports(n0),inports(nil))
IMPLIES
sileq(outport(n0) ,outport(ni))
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% Make sure of no joins in this theorem:

% Holds only if the dfe comnnects an outport of a

% non-conditional node: partly taken care of by typing
% (n1 is an ordinary node type)

xdfe_sileq_th: THEOREM

xdfe(outport(nl),p2) IMPLIES sileq(outport(ni),p2)

% partial order preservation extension theorem
po_preserve_xdfe_th: THEOREM

(w(p0,p2) < w(pl,p2) AND

sileq(p2,outport(n3)) AND

xdfe(outport(n3),p4) AND

dfe(p00,p44) AND dfe(pll,p44) AND silimp(pO,p00) AND
silimp(pl,p11) AND silimp(p4,p44))

IMPLIES
w(p00,p44) < w(pll,ps4)

% Join of 2 dfes

dfe2_join_th: THEOREM

(dfe(pl,p3) AND dfe(p2,p3) AND

(FORALL pO:

((p0 /= p1) OR (pO /= p2))
IMPLIES NOT dfe(p0,p3)))
IMPLIES

IF w(pi,p3) < w(p2,p3) THEN
sileq(p2,p3)

ELSE sileq(pl,p3)

ENDIF

88




% array version theorems
inports_sileqar_th: THEOREM
FORALL (nd:node):
FORALL (nO:nodel|same_size(n0,nd)), (nl:nodel|same_size(ni,nd)):
(
(FORALL (il|i<size(inports(nd))),n:
xdfe(outport(n),inport(n0,i)) IFF
(EXISTS (nn:node): sileq(outport(m),outport(nn)) AND
xdfe(outport(nn),inport(ni,i))
)
) AND
(FORALL (ili<size(inports(nd))):
EXISTS n: xdfe(outport(n),inport(n0,i)))
IMPLIES
sileqar(inports(n0),inports(ni)))

inports_eqar_th: THEOREM
FORALL (nO:node),(nl:nodelsame_size(n0O,n1)):
(

(FORALL (il|i<size(inports(n0))),n:
xdfe(outport(n),inport(n0,i)) IFF
xdfe(outport(n), inport(ni,i))) AND

(FORALL (ili<size(inports(n0))):

EXISTS n: xdfe(outport(n),inport(n0,i)))
IMPLIES
sileqar(inports(n0),inports(nil)))

xdfear_sileqar_th: THEOREM

FORALL (parO|is_outportar(par0)),
(parl|same_size(parl,par0)):

xdfear(par0O,parl) IMPLIES sileqar(par0O,pari)
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% Inports connected by exclusive data flow edge arrays

% to identical ports are sileqar

inportsar_eqar_th: THEOREM

FORALL (nO:node),(nl:nodelsame_size(n0O,n1)):

((
(FORALL (par|is_outportar(par) AND same_size(par,inports(n0))):

xdfear(par, inports(n0)) IFF xdfear(par,inports(nl))) AND
(EXISTS (par|is_outportar(par) AND same_size(par,inports(n0))):
xdfear(par, inports(n0)))

IMPLIES
sileqar(inports(n0),inports(ni)))

% Inports connected by exclusive data flow edge arrays
% to sileq port arrays sileqar
inportsar_sileqar_th: THEOREM
FORALL (nO:node),(nl:nodelsame_size(n0O,n1)):
((
(FORALL (par|is_outportar(par) AND same_size(par,inports(n0))):
xdfear(par,inports(n0)) IFF
(EXISTS (parr|is_outportar(par) AND
same_size(parr,inports(n0))):
(sileqar(par,parr) AND
xdfear(parr,inports(nl))))) AND
EXISTS (par|is_outportar(par) AND same_size(par,inports(n0))):
xdfear(par, inports(n0))
)
IMPLIES sileqar(inports(n0),inports(nl)))
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dfear2_join_th: THEOREM
FORALL pari, (par2|same_size(par2,parl)),
(par3|same_size(par3,pari)):
(dfear(paril,par3) AND dfear(par2,par3)) AND
(FORALL (par|same_size(par,paril)):
(par /= parl OR par /= par2)
IMPLIES

NOT dfear(par,par3))

IMPLIES
IF war(paril,par3) <= war(par2,par3)
THEN sileqar(par2,par3)
ELSE sileqar(pari,par3)
ENDIF

% Common Subexpression Elimination Transformation

pO,pl1,p2,p3: VAR port

par,parr: VAR parray

dotO,dotl1,dot01: VAR node

% The preconditions can be weakend at par, such as -

% to exists parl: silimp(paril,par)

preconds(dot0, (dotl:{dotl|same_kind(dot0,dot1)})) :boolean =
(FORALL (parlis_outportar(par) AND same_size(par,inports(dot0))):
xdfear(par,inports(dot0)) IFF xdfear(par,inports(dotl))) AND
(EXISTS (parlis_outportar(par) AND same_size(par,inports(dot0))):

xdfear(par, inports(dot0)))

CsubE: THEOREM
FORALL dot0O, (dot1l|same_kind(dot1,dot0)),
(dot01|same_kind(dot01,dot0)):
«(
preconds(dot0,dotl) AND
(FORALL (par|is_outportar(par) AND same_size(par,inports(dot0))):
xdfear(par,inports(dot0)) IFF
(EXISTS (parr|is_outportar(parr) AND
same_size(parr,inports(dot0))):
(sileqar(par,parr) AND xdfear(parr,inports(dot01)))))

IMPLIES
(FORALL p1,p2:
((xdfe(outport(dot0),pl) OR xdfe(outport(dotl),pl)) AND
xdfe(outport(dot01),p2)) IMPLIES sileq(pi,p2))
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% Cross Jumping Tail Merging Theorem

p0,p00,p1,p11,p2,p22,p3,p33,pp,pp0,pp00: VAR port

n,dot,dot0,dotl,dot01: VAR node

cn2,cn3,cn22,cn33: VAR cnode

par,par0,parl,par00,parll,par2,par3: VAR parray

% preconditions

preconds (dotO,
(dot1:{dot|sks(dot,dot0)}),
(dot01:{dot|sks(dot,dot0)}),
(par0:{par|is_outportar(par)&same_size(par,inports(dot0))}),
(pari:{par|is_outportar(par)&same_size(par,inports(dot0))}),
(par00:{par|is_outportar(par)&same_size(par,inports(dot0))}),
(paril:{par|is_outportar(par)&same_size(par,inports(dot0))}),

ppO,pp00) =

xdfear(par0,inports(dot0)) AND xdfear(paril,inports(doti))
AND

(w(outport(dot0),pp0) < w(outport(dotl),pp0O)
IFF

war (par00,inports(dot01)) < war(paril,inports(dot01)))
AND

dfe(outport(dot0),pp0) AND dfe(outport(dotl),pp0)
AND

(FORALL pp: ((pp /= outport(dot0)) OR (pp /= outport(doti)))

IMPLIES
NOT dfe(pp,pp0))

AND

dfear (par00, inports(dot01)) AND dfear(pariil,inports(dot01))
AND

(FORALL (parl|size(par)=size(par00)):
(par /= par00 OR par /= paril)
IMPLIES
NOT dfear(par,inports(dot01)))
AND
xdfe(outport(dot01),pp00) AND
sileqar(par0,par00) AND
sileqar(pari,parii)

92




% Cross jumping tail merging transformations is correct when
% the preconditions are satisfied

CjtM: THEOREM

FORALL dotO:

LET sk = LAMBDA n:sks(n,dot0),

ios = LAMBDA par:is_outportar(par) &
same_size(par, inports(dot0))
In
FORALL (doti|sk(dot1)),(dot01]|sk(dot01)), (par0lios(par0)),
(parilios(parl)), (par00|ios(par00)), (paril|ios(paril)):

preconds(dot0,dot1,dot01,par0,parl,par00,paril,pp0,pp00)
IMPLIES

sileq(ppO,pp00)
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Appendix B

Proof Transcripts

B.1 Common Subexpression Elimination

Terse proof for CSubE.
CSubE:

{1} V dot0, (dotl | same_kind(dotl, dot0)),
(dot01 | same_kind(dot01, dot0)) :
((preconds(dot0, dotl)
A
(V (par | is_outportar(par) A size(par) = size(inports(dot0))) :
xdfear(par, inports(dot0))
-
(3 (parr
| is_outportar(parr) A size(parr) = size(inports(dot0))) :
(sileqar(par, parr) A xdfear(parr, inports(dot01))))))
D)
(¥ p1,
p2:
((xdfe(outport(dot0), py) V xdfe(outport(dotl), p1))
A xdfe(outport(dot01), pa))

D sileq(p1, p2)))

Expanding the definition of preconds,

For the top quantifier in 1, we introduce Skolem constants: (dot0!1 dot1!1 dot01!1),
Applying disjunctive simplification to flatten sequent,

Applying inportsar_eqar_th where ngy gets dot0!1, ny gets dot1!1,

Replacing using formula -2,

Replacing using formula -3,
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Invoking decision procedures,

Applying inportsar_sileqar_th where ny gets dot0!1, n; gets dot01!1,
Replacing using formula -5,

Replacing using formula -4,

Invoking decision procedures,

Deleting some formulas,

For the top quantifier in 1, we introduce Skolem constants: (p} p5),

Applying sileqar_trans_inv_th where parl gets inports(dot0!1), par2 gets inports(dot1!1),
par3 gets inports(dot01!1),

Invoking decision procedures,

Applying in_eqar_imp_outeq where ny gets dot0!1, n; gets dot01!1,
Applying in_eqar_imp_outeq where ny gets dot1!1l, n; gets dot01!1,
Applying xdfe_sileq_th where

Instantiating quantified variables,

Instantiating quantified variables,

Instantiating quantified variables,

Invoking decision procedures,

Deleting some formulas,

Applying sileq_trans_inv_th where

Instantiating the top quantifier in -1 with the terms: outport(dot0!l), p},
outport(dot0111),

Instantiating the top quantifier in -1 with the terms: outport(dotl!l), p),
outport(dot0111),

Applying sileq_trans_ax where
Instantiating the top quantifier in -1 with the terms: p/, outport(dot01!1), ph,

Applying bddsimp, which is trivially true. This completes the proof of CSubE.
Q.E.D.
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B.2 Cross Jumping Tail Merging

Terse proof for CjtM.
CjtM:

{1} (¥ (pp0, pp00 : port) :
V (dot0 : node) :
LET sk : [node — bool] =
A (n: node) : same.size(n, dot0) A same kind(n, dot0),
ios : [parray — bool] =
A (par : parray) : is_outportar(par)
A size(par) = size(inports(dot0))
IN V (dotl : node | sk(dotl)), (dot01 : node | sk(dot01)),
(par0 : parray | ios(par0)),(parl: parray | ios(parl)),
(par00 : parray | ios(par00)),
(parll : parray | ios(parll)) :
preconds(dot0, dotl, dot01, par0, parl, par00, parll, pp0, pp00)
D sileq(pp0, pp00))

Expanding the definition of preconds,
For the top quantifier in 1, we introduce Skolem constants: (pp0!1 pp00!1),
For the top quantifier in 1, we introduce Skolem constants: (dot0!1),

For the top quantifier in 1, we introduce Skolem constants: (dot1!l dot01!1 par0!1
parl!l par00!l parl1!1),

Applying disjunctive simplification to flatten sequent,

Applying xdfear_sileqar_th where

Instantiating quantified variables,

Instantiating quantified variables,

Applying dfe2 join_th where

Instantiating the top quantifier in -1 with the terms: outport(dot0!1), outport(dot1!1),
ppO!1,

Replacing using formula -8,

Replacing using formula -9,

Replacing using formula -10,

Applying dfear2 join_th where

Instantiating the top quantifier in -1 with the terms: par00!1, par11!1, inports(dot01!1),

Replacing using formula -12,

Replacing using formula -13,
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Replacing using formula -14,

Letting war01 name war(par0!1, inports(dot0!1)) < war(parl!l, inports(dotl1!1)),

) < war(parll!l, inports(dot01!1)),
outport(dot1!1), pp0!l),

Letting war001 name war(par00!1, inports(dot01!1

e ~—

Letting w1 name w(outport(dot0!1), pp0ll) < w
Replacing using formula -1,

Hiding formulas: -1,

Replacing using formula -1,

Hiding formulas: -1,

Replacing using formula -1,

Hiding formulas: -1,

Invoking decision procedures,

Deleting some formulas,

Deleting some formulas,

Replacing using formula -6,

Replacing using formula -5,

Hiding formulas: -5, -6,

Applying sileqar_trans_inv_th where

Instantiating the top quantifier in -1 with the terms: par0!1, inports(dot0!1), par00!1,
Instantiating the top quantifier in -1 with the terms: parl!l, inports(dot1!1), par11!1,
Applying in_eqar_imp_outeq where

Instantiating the top quantifier in -1 with the terms: dot0!1, dot01!1,

Instantiating the top quantifier in -1 with the terms: dot1!1, dot01!1,

Applying xdfe_sileq_th where

Instantiating quantified variables,

Invoking decision procedures,

Deleting some formulas,

Applying sileqar_trans_th where

Instantiating the top quantifier in -1 with the terms: inports(dotl!l), parll!l,
inports(dot0111),

Instantiating the top quantifier in -1 with the terms: inports(dot0!1), par00!1,
inports(dot0111),

Invoking decision procedures,
Deleting some formulas,

Applying sileq_trans_inv_th where
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Instantiating the top quantifier in -1 with the terms: outport(dot0!1), pp0!l,
outport(dot0111),

Instantiating the top quantifier in -1 with the terms: outport(dotl!l), pp0!l,
outport(dot0111),

Applying sileq_trans_ax where

Instantiating the top quantifier in -1 with the terms: pp0!1, outport(dot01!1), pp00!1,
Applying bddsimp,

which is trivially true.

This completes the proof of CjtM.

Q.E.D.
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