
Transformations in High-Level Synthesis:Formal Speci�cation and E�cient MechanicalVeri�cationP. Sreeranga RajanComputer Science LaboratorySRI InternationalMenlo Park CA 94025 USAsree@csl.sri.comPhone: +1 (415) 859-2873 Fax: +1 (415) 859-2844Technical Report CSL-94-10October 1994

AbstractDependency graphs are used to model data and control
ow in hardware and softwaredesign. In high-level synthesis of hardware, optimization and re�nement transforma-tions are used to transform dependency-graph-based speci�cations at the behavior levelto dependency-graph-based implementations at the register-transfer level. Register-transfer-level implementations are mapped to gate-level hardware designs by low-levellogic synthesis. In this work, we investigated the speci�cation and mechanical veri�ca-tion of the correctness of transformations used in high-level synthesis of hardware.We have provided a formal speci�cation of dependency graphs, and veri�ed the cor-rectness of a variety of transformations used in an industrial synthesis framework. Errorshave been discovered in the transformations, and modi�cations have been proposed andincorporated. Further, the formal speci�cation has permitted us to examine the gener-alization and composition of transformations. In the process, we have discovered newtransformations that could be used for further optimization and re�nement than werepossible before. The speci�cation and veri�cation schemes are general enough for ap-plications in other synthesis frameworks and software design, where a transformationaldesign approach is used.In order to present our work in a concrete context, we focus on the high-level synthe-sis part of the SPRITE project at Philips Research Laboratories. The transformations inthe high-level synthesis system are used for re�nement and optimization of descriptionsspeci�ed in a dependency graph language called the SPRITE Input Language (SIL).SIL is an intermediate language used during the synthesis of hardware described usinglanguages such as VHDL, SILAGE and ELLA. Besides being an intermediate language,it forms the backbone of the TRADES synthesis system of the University of Twente.SIL has been used in the design of hardware for audio and video applications.We used the Prototype Veri�cation System (PVS) from SRI International to specifyand mechanically verify the correctness of the transformations. The PVS speci�cationlanguage allows us to investigate the correctness problem using a convenient level of rep-resentation. The PVS veri�er features automatic procedures and interactive veri�cationrules to check properties of speci�cations.

ContentsAcknowledgments vi1 Introduction 11.1 Related Work : 61.1.1 LAMBDA : 71.1.2 Formal Ruby : 71.1.3 Digital Design Derivation : 81.1.4 Transformations in SAW : 81.1.5 Veri�cation of Transformations in SILAGE : : : : : : : : : : : : 81.1.6 Synchronized Transitions in LP : : : : : : : : : : : : : : : : : : : 81.1.7 Transformations in Software Design : : : : : : : : : : : : : : : : 92 Overview of SIL 112.1 Structural Aspects of SIL : 112.2 Behavioral Aspects of SIL : 122.3 Transformations in SIL : 183 Speci�cation and Veri�cation in PVS 213.1 PVS Speci�cation Language : 213.2 PVS Veri�cation Features : 223.3 Notes on Speci�cation Notation : 223.4 Speci�cation and Veri�cation Examples in PVS : : : : : : : : : : : : : : 244 Speci�cation of SIL Graph Structure in PVS 334.1 Port and Port Array : 334.2 Edges : 344.3 Node, Conditional Node and Graph : 354.4 Well-formedness of a SIL Graph : 39i

5 Speci�cation of SIL Graph Behavior and Re�nement 415.1 Behavior : 415.2 Re�nement and Equivalence : 426 Speci�cation and Veri�cation of Transformations 556.1 Overview : 556.2 Common Subexpression Elimination : 566.3 Cross-Jumping Tail-Merging : 576.4 Other Transformations and Proofs : 606.5 Generalization and Composition of Transformations : : : : : : : : : : : 616.6 Investigations into \What-if?" Scenarios : : : : : : : : : : : : : : : : : : 616.7 Devising New Transformations : 627 Discussion and Conclusions 697.1 Intent versus Implementation : 697.2 From Informal to Formal Speci�cation : : : : : : : : : : : : : : : : : : : 707.3 Axiomatic Approach versus Other Formal Approaches : : : : : : : : : : 717.4 Conclusions and Future Work : 72A De�nitions, Axioms and Theorems 79A.1 De�nitions : 79A.2 Axioms : 83A.3 Theorems : 87B Proof Transcripts 95B.1 Common Subexpression Elimination : 95B.2 Cross Jumping Tail Merging : 97
ii

List of Figures1.1 Cross jumping tail merging: incorrectly speci�ed in informal document. 21.2 Example of a dependency graph with control speci�cation. : : : : : : : : 31.3 SIL transformations and veri�cation in PVS in the context of high levelsynthesis. : 52.1 Di�erent kinds of SIL ports. : 112.2 An example of a SIL graph description. : : : : : : : : : : : : : : : : : : 122.3 SIL node: informal description. : 132.4 SIL edges: informal description. : 152.5 SIL Join and Distribute: informal description. : : : : : : : : : : : : : : : 152.6 Combinational adder: SIL graph repeated over clock cycles. : : : : : : : 152.7 Cumulative adder: SIL graph with DELAY node. : : : : : : : : : : : : : 162.8 Cumulative adder: unfolded SIL graph. : : : : : : : : : : : : : : : : : : 162.9 Partial speci�cation of a multiplexor. : 172.10 Implementation speci�cation of a multiplexor. : : : : : : : : : : : : : : : 182.11 Example SIL transformation: retiming. : : : : : : : : : : : : : : : : : : : 194.1 SIL data-
ow and sequence edges. : 354.2 SIL conditional node. : 374.3 Node as a subtype of a conditional node. : : : : : : : : : : : : : : : : : : 385.1 Example: re�nement of ports due to non-deterministic choice. : : : : : : 435.2 Example: array re�nement does not imply every individual port re�nement. 445.3 Using weights for ordering data-
ow edges : : : : : : : : : : : : : : : : : 465.4 Using weights to determine join behavior. : : : : : : : : : : : : : : : : : 475.5 Weight when the condition on a conditional node is false. : : : : : : : : 485.6 Absence of join: exclusive data-
ow edge. : : : : : : : : : : : : : : : : : 48iii

5.7 Order preserved by re�nement and optimization. : : : : : : : : : : : : : 515.8 Order preserved by re�nement and exclusive data-
ow edge. : : : : : : : 525.9 Graph re�nement: property expressing relation between outputs and in-puts of graphs independent of underlying behavior. : : : : : : : : : : : : 546.1 Common subexpression elimination. : 566.2 Cross-jumping tail-merging: corrected. : : : : : : : : : : : : : : : : : : : 586.3 Cross-jumping tail-merging: incorrectly speci�ed in informal document. 596.4 Cross-jumping tail-merging: generalized and veri�ed. : : : : : : : : : : : 606.5 Cross-jumping tail-merging: inapplicable when two nodes are mergedinto one. : 626.6 Further optimization impossible using existing transformations. : : : : : 636.7 Inapplicability of cross-jumping tail-merging after common subexpressionelimination: due to precondition restrictions. : : : : : : : : : : : : : : : 636.8 Inapplicability of common subexpression elimination after cross-jumpingtail-merging: due to precondition restrictions. : : : : : : : : : : : : : : : 646.9 A simple new transformation: obvious, post-facto. : : : : : : : : : : : : 65

iv

List of Tables4.1 PVS types for data-
ow edge and sequence edge : : : : : : : : : : : : : 344.2 PVS speci�cation of conditional node as a record type : : : : : : : : : : 364.3 Node as a subtype of a conditional node : : : : : : : : : : : : : : : : : : 385.1 Using weights for ordering data-
ow edges: PVS speci�cation : : : : : : 465.2 Using weights to determine join behavior. : : : : : : : : : : : : : : : : : 475.3 Weight when the condition on a conditional node is false : : : : : : : : : 485.4 Absence of join: exclusive data-
ow edge : : : : : : : : : : : : : : : : : : 495.5 Array version of exclusive data-
ow edge : : : : : : : : : : : : : : : : : : 495.6 A theorem on join of exactly two data-
ow edges : : : : : : : : : : : : : 505.7 Order preserved by re�nement and optimization : : : : : : : : : : : : : 515.8 Order preserved by re�nement and exclusive data-
ow edge : : : : : : : 515.9 Graph re�nement: property expressing relation between outputs and in-puts of graphs independent of underlying behavior : : : : : : : : : : : : 535.10 Predicates for expressing the sameness of nodes : : : : : : : : : : : : : : 546.1 Correctness of common subexpression elimination : : : : : : : : : : : : : 586.2 PVS speci�cation of preconditions for cross-jumping tail-merging : : : : 666.3 Correctness of cross- jumping tail-merging : : : : : : : : : : : : : : : : : 676.4 Number of high level inference rule applications for various transformations 67
v

AcknowledgmentsA major part of the work presented in this report was done at Philips Research Labora-tories, Eindhoven, The Netherlands, from September 1993 through April 1994. I thankTon Kostelijk for the invitation to work on the project, and for providing illuminatingsuggestions, support and a homelike environment. I am grateful to Corrie Huijs, WimKloosterhuis, Thijs Krol, Jaap Hofstede, Peter Middelhoek, and Wim Smits for theircooperation, review, and corrections. Thanks to group leader Gerard Beenker for ar-ranging a pleasant stay in Eindhoven and providing constant support for the project, andappreciation to the group members for a lively and stimulating atmosphere. Thanks toIskender Agi, Mark Moriconi, Peter Neumann, Sam Owre, John Rushby, and N. Shankarfor comments and suggestions, and M.K. Srivas for providing in-depth corrections andremarks. Thanks to Jens Ulrik Skakkebaek of TU Denmark, Jozef Hooman and GeertJanssen of TU Eindhoven, and Paul Miner of NASA for remarks and interesting discus-sions related to this work. I am grateful to Je� Joyce of UBC for the encouragement,and for suggesting applications of the work in software engineering. Thanks to PaulGilmore for detailed observations, and to Alan Mackworth and Mabo Ito of UBC forinsightful remarks.
vi

Chapter 1IntroductionDependency graphs1 are graph-based speci�cations of data and control
ow in a system.They are used to model systems at a high level of abstraction in both hardware and soft-ware design. In high-level synthesis of hardware, a sequence of transformations is usedfor re�nement of dependency-graph-based speci�cations at an abstract behavior levelinto dependency-graph-based implementations at the register-transfer level. Further,register-transfer-level implementations could be converted to concrete hardware designsby low-level logic synthesis. Typically, dependency graphs are represented pictorially asgraph structures with an associated behavior. A transformation transforms one graphstructure into another by removing or adding nodes and edges. An informal represen-tation would lead to subtle errors, making it di�cult to verify the correctness of thetransformations. The problem we have addressed in this work is, how the correctnessof transformations on dependency graphs can be formally speci�ed and veri�ed.The behavior2 of a dependency graph is the set of all tuples, where each tuple hasinput data values and corresponding output data values of the dependency graph. Atransformation is correct if the sequence of behaviors allowed by the implementation isa subsequence of the behaviors permitted by the speci�cation. Trivial implementationsthat allow an empty sequence of behaviors can be ruled out by showing either, thatat least one behavior is allowed by the implementation, or that the implementation isequivalent to its speci�cation with respect to behavior. The solution to the problem ofverifying the correctness of transformations we have sought in this work, is independentof the model of behavior underlying dependency graphs.A typical transformation employed in high-level synthesis is cross-jumping tail-merging [EMH 93], shown in Figure 1.1. In this transformation, two identical nodeson dependency paths that are never active at the same time are merged into one node.However, as we found out using the formal approach explained in this paper, the trans-formation does not preserve behavior. Informally, the reason is as follows. In graph G1,1In literature, they are also known as control-
ow/data-
ow graphs and signal-
ow graphs.2Usually known as input/output behavior. 1

pp0

Behavior(G1) = ?

True (False)

False (True)

c

c

q00

q11

q0

q1

True (False)

False (True)

pp00
+

*

+

*

x1

x2

y1

y2

y2

y1

x2

x1p0

p1

p01

G1 G2

Behavior(G1) = Behavior(G2) =

Behavior(G2)

IF c THEN q0 = (x1 + x2)
;ELSE q1 = (y1 * y2)

IF c THEN q00 = (x1 + x2)

pp00 = p01
;

ELSE q11 = (y1 * y2);
(p0 = q0) AND (p1 = q1); (p01 = q00) OR (p01 = q11);
(pp0 = p0) OR (pp0 = p1)

:=

:=

:=

Figure 1.1: Cross jumping tail merging: incorrectly speci�ed in informal document.when c is false, the value of q0 is arbitrary, and so is the value of p0. If we choose thevalue of pp0 to be that of p0, the value of pp0 is also arbitrary. In graph G2, when cis false, we could choose the value of p01 to be that of q11. In this case, the value ofpp00 is (y1 * y2). Because the corresponding outputs could be unequal with identicalinputs, the behaviors of the graphs are not equivalent. A corrected and generalizedcross-jumping tail-merging transformation is presented in Chapter 6.The main contributions of this work are the following:� A formal speci�cation of dependency graphs has been achieved.� A set of optimization and re�nement transformations on dependency graphs usedin high level synthesis have been veri�ed. Generalization of transformations havealso been proposed.� Errors have been discovered in the transformations used in industrial strengthhardware design. Modi�cations for the erroneous transformations have been pro-posed and incorporated.� New transformations have been devised that could be used for further optimizationand re�nement than were possible before.2

a

b

c

d

+
*

r = d * (IF c THEN (a+b))Figure 1.2: Example of a dependency graph with control speci�cation.Formal methods could be divided into two main categories: property-oriented meth-ods and model-oriented methods [JMW 90]. In a property oriented method, the systemunder consideration is speci�ed by asserting properties of the system, minimizing thedetails of how the system is constructed. While, in a model-oriented method, the spec-i�cation describes the construction of the system from its components. An axiomaticapproach is a property-oriented method. Typically, a small set of properties, calledaxioms, are asserted to be true, while other properties, called theorems, are derived.In this work, we have chosen a property oriented method. We propose an axiomaticspeci�cation coupled with an e�cient veri�cation method to study the correctness oftransformations on dependency graphs. As we discuss later in Chapter 7, an axiomaticapproach does not require us to develop a concrete behavioral model for dependencygraphs, thus enabling it to be simpler and more general than other formal approaches.Dependency graph3 is a graph-based representation of the behavior of a system. Itconsists of nodes representing operations or processes, and directed edges representingdata dependencies and data
ow through the system. In addition, control
ow couldalso be represented in a dependency graph in several ways. We show an example of sucha graph in Figure 1.2.In order to present our work in a concrete context, we consider a transformationaldesign approach used in the high-level behavioral synthesis system as part of the SPRITEproject at Philips Research Labs (PRL). In this approach, transformations are used foroptimization and re�nement of descriptions speci�ed using the SPRITE Input Language(SIL). Descriptions in SIL at a register-transfer level could eventually be converted togate-level hardware designs by a logic synthesis application such as PHIDEO at PRL.SIL is an intermediate language used during the synthesis of hardware describedusing hardware description languages such as VHDL [VHD 88], SILAGE [Hil 85], andELLA [ELL 90]. It also forms the backbone of the TRADES synthesis system at theUniversity of Twente. Important features of SIL include hierarchy and design free-dom. Design freedom is provided by permitting several implementation choices for a3In this report, the term dependency graph includes control-
ow/data-
ow graphs and signal-
owgraphs. 3

SIL description. Implementation choices are constrained by allowing an implementa-tion suggestion in a SIL description. The implementation suggestion may be tailoredby using re�nement and optimization transformations. SIL has been used in the designof hardware for audio and video signal processing applications such as a direction de-tector for the progressive scan conversion algorithm [WMM 94,Mid 94-2]. In one of theapplications [Mid 94], a reduction of power consumption by 50% has been achieved.Many of the optimization transformations used in SIL are inspired by those usedin compiler optimization, such as dead-code elimination and common subexpressionelimination. An optimized SIL graph has to satisfy the original graph with respectto behavior. This satisfaction can be guaranteed by showing the correctness of theoptimization transformations. Correctness means that every behavior allowed by anoptimized SIL graph implementation is required to be one of the behaviors allowed byits SIL graph speci�cation. An informal speci�cation of SIL has been presented anddocumented as part of the SPRITE project [Klo 92,Kro 92]. A detailed denotationalsemantics of SIL for showing the correctness of transformations has been worked outearlier [HHK 92,HuK 94]. The optimization and re�nement transformations have beenspeci�ed informally as part of the SPRITE project [EMH 93,Mid 93,Mid 94].We use the Prototype Veri�cation System (PVS) [OSR 93], an environment for for-mal speci�cation and veri�cation. The PVS speci�cation language, based on typedhigher-order logic, permits an axiomatic method to develop speci�cations. This methodentails expressing properties of a system at a convenient level of abstraction. The choiceof a high level of abstraction obviates the need to provide a detailed de�nition of the be-havior of dependency graphs. For example, a behavior model could be based on behaviorexpressions [McP 83], an imperative semantics [Cam 89], a denotational model [GGJ93,HuK 94], or an operational model [GGJ 93]. In the axiomatic framework we discussin this report, we can compare descriptions with respect to their behavior, and thusestablish correctness of transformations, without specifying a behavioral model of a SILdescription. However, we stress that this work addresses the transformations as intendedin their informal speci�cation, and not veri�cation of the software implementations oftransformations. We show SIL and our work in the context of the synthesis system inFigure 1.3.The rest of this report is organized as follows: Chapter 2 gives an overview of SIL. InChapter 3, we give a brief description of the PVS system. In Chapter 4, we describe thespeci�cation of structure of SIL graphs, while in Chapter 5 we describe the speci�cationof behavior, re�nement, and equivalence of SIL graphs. We present the speci�cationand veri�cation of transformations in Chapter 6. In that chapter, we also illustrate howour generalization and composition of transformations leads to new transformations forfurther optimization and re�nement than would have been possible before. Finally,following a general discussion, conclusions are summarized in Chapter 7. A listing ofthe speci�cation of SIL and its veri�ed properties as it appears in PVS is given inAppendix A. Transcripts of the veri�cation in PVS for two transformations discussed4

PVS

SILAGE

PHIDEO

GATE LEVEL

SIL

ELLA VHDL

TRANSFORMATIONS

Specified in

Verified by

Figure 1.3: SIL transformations and veri�cation in PVS in the context of high levelsynthesis.
5

in detail in this paper are listed in Appendix B. In the remainder of this chapter, wediscuss related work done in the past.1.1 Related WorkThere have been some e�orts in analysis and veri�cation of re�nement transformationsin the past. However, few have dealt with transformations on dependency graphs ingeneral. Most of the e�orts have concentrated on specialized hardware descriptionlanguages and programming languages.A formal model was proposed for verifying correctness of high-level transformationsby McFarland and Parker [McP 83]. Transformations used in YIF (Yorktown InternalForm) [YIF 88] have been proved to be behavior preserving [Cam 89]. In this work,a strong notion of behavior equivalence based on an imperative semantics tied to aparticular model of representation is used. A formal system using transformations forhardware synthesis has been discussed by Fourman [Fou 90]. We brie
y discuss this workin Section 1.1.1. A synthesis system for a language based on an algebraic formalism hasbeen presented by Jones and Sheeran [Jon 90], and its formalization has been presentedby Rossen [Ros 90]. This e�ort is explained brie
y in Section 1.1.2. Another algebraicapproach to transformational design of hardware has been worked out by Johnson [Joh94]. A short discussion on this approach is presented in Section 1.1.3. In the work ontying formal veri�cation to silicon compilation [JRS 91], a preliminary study with anemphasis on the use of formal veri�cation at higher levels of VLSI design was presented.Correctness of register-transfer-level transformations for scheduling and allocation hasbeen dealt with in [Vem 90].An automatic method for functional veri�cation of retiming, pipelining and bu�er-ing optimization has been presented by Kostelijk [KoW 93]. It has been implemented ina CAD tool called RetLab as part of PHIDEO at PRL. A formal analysis of transforma-tions used in Systems Architect Workbench (SAW) high-level synthesis was studied byMcFarland [McF 93]. This work is discussed brie
y in Section 1.1.4. A post-facto veri-�cation method for comparing logic level designs against a restricted class of data-
owgraphs in SILAGE was presented by Aelten and others [AAD 93,Ael 94]. Denotationaland operational models of generalized data-
ow graphs have been developed, but theyhave not been used to study the correctness of transformations [GGJ 93]. A formaliza-tion of SILAGE transformations in HOL was studied by Angelo [Ang 94]. A concisedescription of this work appears in Section 1.1.5. An approach based on the executionmodel for representation languages in BEDROC high-level synthesis system [CBL 92]has been used to verify the correctness of optimization transformations. A formal veri�-cation of an implementation of a logic synthesis system has been reported by Aagard andLeeser [AaL 94], but it does not provide a mechanical veri�cation for transformationsin high-level synthesis. A brief discussion of the work on veri�cation of transformationsin synchronized transitions [Sta 90] is given in Section 1.1.6. In Section 1.1.7, we brie
y6

discuss the work on formal speci�cation and veri�cation of re�nement transformationin software design.1.1.1 LAMBDALAMBDA [Fou 90] is formal system based on higher order logic for designing hardwarefrom high level speci�cations. In this formalism, a design state is represented as aninference rule derived within the framework of higher order logic. A re�nement is arule derived within this logic that can be applied to an abstract design state to arriveat a concrete design state. The di�erent kinds of re�nements that are applied aretemporal, data and behavioral. However, a de�nite set of re�nement and optimizationtransformations have not been presented. ELLA, a hardware description language hasbeen formalized in LAMBDA.1.1.2 Formal RubyIn this work, an algorithmic speci�cation of sequential and combinational circuits isspeci�ed in a language called Ruby [Jon 90], based on an algebraic formalism. Thealgebraic formalism consists of relations and operations on relations such as composition,inverse and conjugation. Types are de�ned as equivalence relations. Data structuressuch as lists and tuples are used to represent larger hardware structures. A parallelcomposition operator allows to specify hardware composed of independent modules.Other operators such as row and column are introduced for succinct speci�cation ofregular structures such as systolic arrays.Ruby has been formalized [Ros 90] in a proof checking system called ISABELLE.ISABELLE, based on type theory, allows syntactic embedding other logics. A fragmentof Ruby corresponding to combinational circuits, delay element, serial composition andparallel composition called Pure Ruby is speci�ed as a type. Properties and proof rulessuch as induction on Ruby terms is then derived on the type de�nition. The rest of thelanguage is then speci�ed using this type.The axiomatization speci�es signals as functions of time and properties of relationson signals. General properties of Ruby relations have been formalized. However, inorder to derive properties, the semantic embedding involves signals corresponding to acircuit implementation. A Ruby speci�cation itself, and hence its formalization even ata high level is geared to be directly translatable to a circuit realization having a regularstructure. Thus, this formalism is at a lower level of abstraction than our formalizationof SIL. A general concept of re�nement is not formalized. The formalism does notpresent a well-de�ned set of transformations, to be used to re�ne and optimize Rubyprograms, other than retiming. 7

1.1.3 Digital Design DerivationThis is an algebraic approach to transformational design of hardware [Joh 94]. In thisformalism, a functional speci�cation is translated into a representation of a Determin-istic Finite State Machine speci�cation called behavior tables [RTJ 93]. The behaviortables are transformed into a digital design. In a behavior table, rows represent statetransitions and columns represent both control and data
ow. Some examples of trans-formations are column merging, deletion and renaming. The transformations are notformally veri�ed.1.1.4 Transformations in SAWIn this work, a formal analysis of transformations [McF 93] used in System Architect'sWorkbench (SAW) [Tho 98] is carried out. In this system, hardware described at theregister-transfer level or higher using ISPB [Bar 81] is translated into behavior expres-sions. Behavior expressions use sequences and relations on sequences to represent theinput/output behavior of the speci�ed hardware. Optimization transformations are car-ried out on the behavior expressions representations. A number of transformations suchas constant folding and loop unwinding have been analyzed revealing a few conceptualerrors.1.1.5 Veri�cation of Transformations in SILAGESILAGE [Hil 85] is an applicative hardware description language. This language isused to describe hardware represented as data-
ow graphs. Transformations such ascommutativity and retiming are used to optimize and re�ne SILAGE descriptions. Inthis work [Ang 94], the syntax and semantics of SILAGE programs have been formalizedas predicates in HOL [GoM 93]. The denotational semantics of SILAGE have beenformalized in HOL. The equivalence of SILAGE programs is speci�ed with respect tothis denotational semantics. The transformations are then speci�ed as functions fromone formal SILAGE program to another. The correctness of transformations are thusveri�ed with respect to the denotational semantic notion of equivalence.1.1.6 Synchronized Transitions in LPSynchronization Transitions (ST) [Sta 90] is a formalism to specify states and transitionsbetween states. It is based on UNITY [UNI 88] model of computation as a collectionof atomic conditional assignments to state variables without explicit
ow of control.The transitions are speci�ed by guarded commands. State variables model storage andsharing of state variables model communication. This is unlike message passing inCSP [Hoa 85] formalism and token passing in SIL. There is no concept of clocks andsequencing. The temporal behavior is determined by guards. The formalism is geared8

towards direct realizations in synchronous and asynchronous circuits. The optimizationand re�nement transformations are not de�ned in the language. The conditions to besatis�ed by an abstraction function, mapping a concrete state set to an abstract stateset have been presented.The speci�cation that an ST program has to satisfy can be described as an invariant.An ST program could then be directly translated into Larch Prover (LP) [GaG 89],and invariants translated as proof obligations to be discharged. LP is a rewrite ruleprover based on �rst order equational logic. Thus, an ST program can be both directlytranslated to LP and veri�ed, and realized in hardware through synthesis.1.1.7 Transformations in Software DesignThere have been several e�orts in speci�cation and veri�cation of re�nements usedin program development from high level speci�cations Most of the e�orts choose aspeci�cation formalism and develop a notion of correctness, and an associated set oftransformations based on the semantics of the formalism.The re�nement calculus [Bac 88] for speci�cations based on Dijkstra's guarded com-mand language and weakest precondition semantics has been formalized in HOL [WrS91]. Transformations such as data re�nement and superposition have been veri�ed to becorrect. A formalization of incremental development of programs from speci�cations fordistributed real-time systems has been worked out in PVS [Hoo 94]. In this formalism,an assertional method based on a compositional framework of classical Hoare triples isdeveloped for step-wise re�nement of speci�cations into programs.The KIDS [Kid 90] system is a program derivation system. High level speci�cationswritten in a language called Re�ne are transformed by data type re�nements and op-timization transformations such as partial evaluation, �nite di�erencing, into a Re�neprogram.
9

10

Chapter 2Overview of SILThe descriptions in SIL are characterized as graphs. They are used to describe syn-chronous systems. A denotational semantics of SIL has been worked out by Huijs [HuK94]. The behavior of a SIL graph is derived from the behaviors of structural build-ing blocks of the graph. We brie
y explain the structural aspects in section 2.1, thebehavioral aspects in Section 2.2, and the transformational approach in Section 2.32.1 Structural Aspects of SILThe basic building blocks of a SIL graph are the nodes for operations such as addition,multiplication, and multiplexing. The nodes have ports (also known as access points)for input, output, and an optional condition input. Every port is associated with a type,which speci�es the set of data values that the port can hold. We show the di�erent kindsof port in Figure 2.1.While input and output ports can be of any type, a condition input port is alwaysBoolean. A node with condition input port is known as a conditional node to stress thepresence of the condition inputs.The ports of the nodes are connected by edges. SIL has di�erent kinds of edges, ofwhich, we address sequence edge and data-
ow edge:
Non-inverted Condition Access point

Inverted Condition Access point

Input Access point

Output Access pointFigure 2.1: Di�erent kinds of SIL ports.11

output access point

data flow edge

sequence edge

input access point

condition access point

node
hierachical

node

Figure 2.2: An example of a SIL graph description.� A data-
ow edge is used to specify the direction of communication of data valuesfrom a source port to a sink port. Each data-
ow edge has exactly one port at itshead and exactly one port at its tail. A source port can be the tail of more thanone data-
ow edge, in which case it is called a distribute, and a sink port the headof more than edge, in which case it is called a join.� A sequence edge speci�es an ordering between two ports. The ordering is used toindicate that one of the ports has the overriding in
uence on the value of the sinkport, to which the two ports are connected by data-
ow edges. Each sequenceedge has exactly one port as its tail and one port as its head. Sequence edgesare primarily used to resolve potential con
icts at joins. All source ports that aretails of data-
ow edges with a join as a head must be linearly ordered by sequenceedges.� The nodes and edges form a SIL graph. A SIL graph itself can be viewed as onesingle node, and used to construct another SIL graph in a hierarchical manner.Figure 2.2 is an example of a SIL graph.2.2 Behavioral Aspects of SILThe behavior of a SIL graph is determined by the behavior of individual nodes andtheir connectivity, which determines the data
ow. By behavior, we mean the set of12

R(i, j, out)

data relation = R

appears_later_than jout

= undefinedout
R =

i

j

out

non-conditional node

order relation = appears_later_thanout i AND

=

addition

FALSE

i

j

R

conditional node with "FALSE" condition

additionFigure 2.3: SIL node: informal description.tuples, where each tuple has input data values and corresponding data values of internaland output ports. The values of internal and output ports are constrained by the datarelations of the nodes and the connectivity of the ports in the graph. When the portsof interest are the outermost input / output (I/O) ports of the SIL graph, then it iscalled external or I/O behavior.Each node is associated with a data relation and an order relation. The data relationof a node constrains the outputs of the node according to the inputs of the node.That this is a relation, and not a function, implies nondeterminism allowing severalimplementation choices for the nodes. This contributes to design freedom. Any stateinformation implicit in the node is incorporated into its data relation. In the case of aconditional node, the output is constrained by the data relation only when the conditioninput of the node is true. When the condition input is false, the output is not de�ned.The order relation speci�es constraints such as, the output port of a node assumes avalue after the value of its input ports have been asserted. This is particularly importantin a hierarchically built node. We illustrate these concepts in Figure 2.3.The communication of data values in a SIL graph is modeled by a single token
ow concept, similar to the concept in Signal FLow Graphs (SFG) [Hil 85]. A tokenis an atomic symbol denoting data. A token generated at an output port (source) istransmitted through a data-
ow edge, emanating from the source, exactly once. Thetoken is consumed at an input port (sink) to which the edge is connected. The action ofcommunicating a token through a data-
ow edge makes the sequence of values that thesink can assume equal to the sequence of values that the source can assume. However,there is one exception to this when a token communicated to the conditional port ofa conditional node denotes a data value that is false. In this case, the output port,unconstrained by the data relation of the conditional node, is not de�ned. When suchan output is a source of a data-
ow edge, we force the sink of such a data-
ow edge toassume some well-de�ned arbitrary value. If we do not make this exception, the sinkdata values would also not be well-de�ned. Since a sink is an input port, it is undesirableto have unde�ned inputs in practice. In terms of the token
ow concept, a sequence13

edge from port A to port B describes that the token �red from B determines the valueof a sink port C connected to A and B by data-
ow edges, overriding the e�ect on thevalue of C due to the token �red from A. In such a case, we say that the sequence edgeorders port A less than port B. A data-
ow edge has an implicit sequence edge from itssource to its sink. We depict these ideas in Figure 2.4. It should be noted that the token
ow concept is an abstract model of the behavior of a SIL graph. The sequence edge isan artifact used to resolve con
icts at joins. A sequence edge does not indicate temporalordering of the data values that ports would assume when a SIL graph is executed.The ordering of token communication plays an important part in resolving con
ictsat ports. One such con
ict occurs when multiple data-
ow edges from di�erent sourcesconnect into a single sink. Such a sink port is called a join, as shown in Figure 2.5.To resolve the con
ict at a join, �rst all the data-
ow edges that have sources thatcan assume well-de�ned data values are selected. Then, among those selected data-
owedges, the edge that is responsible for communicating the last token determines thebehavior of the join. With the de�nition of SIL, there will be exactly one such data-
owedge. Thus, the source ports are linearly ordered, so that the last of the well-de�neddata values arriving at the sink is always speci�ed. If all the data-
ow edges to the joinoriginate from sources whose data values are unde�ned, then the data value that canappear at the join is arbitrary.The counterpart of a join is a source from which multiple data-
ow edges originate.Such an port, known as a distribute, is shown in Figure 2.5. If a distribute is a sourcethat assumes well-de�ned data values, then the sink to which it is connected by a data-
ow edge, will assume a sequence of data values identical to the distribute. Otherwise,if the data values that may appear at the distribute are not de�ned, the sequence ofdata values that may appear at the corresponding sink ports are arbitrary.A SIL graph models the behavior of a system during a single clock cycle. Thereis no explicit notion of state in a SIL graph. The repetition of a SIL graph, calledunfold ing over multiple clock cycles gives the behavior of the system across clock cycles.We depict an example of a combinational adder in Figure 2.6 unfolded over three clockcycles. The DELAY node, one of the primitive nodes in SIL is used to model data
owbetween clock cycles, and thus encapsulates state information. We can unfold the SILgraph shown in Figure 2.7 over multiple clock cycles to result in a SIL graph withoutthe DELAY node. The cumulative adder example in Figure 2.8 illustrates the unfoldingof a SIL graph with a DELAY node. It should be noted that comparing two graphs withrespect to behavior would not involve the state information encapsulated in a DELAYnode - since the behavior of a SIL graph would be a snapshot of the execution of theSIL graph in a single clock cycle. In contrast, the execution histories would have to betaken into account for comparing two state machine models.The ordering imposed by sequence edges reduce non-determinism This leads to arestriction on implementation choices allowed by its corresponding speci�cation. Weillustrate the implementation of a simple multiplexor in Figure 2.10 by reducing non-determinism in a speci�cation shown in Figure 2.9 using a sequence edge. When c is14

data flow edge data flow edge

value =
well-defined arbitrary

value=v value=v value =
undefined

sequence edge

v1 v2

A B

v2 appears_later_than v1Figure 2.4: SIL edges: informal description.
distributejoinFigure 2.5: SIL Join and Distribute: informal description.

t = 0

t = 1

t = 2

t = 3

+

+

+

c(0) = a (0) + b(0)

c (1) = a(1) + b(1)

c (2) = a(2) + b(2)b(2)

a(2)

a(1)

b(1)

a(0)

b(0)

Figure 2.6: Combinational adder: SIL graph repeated over clock cycles.15

DELAY
= 1

+
a c(t) = a(t) + c(t-1)Figure 2.7: Cumulative adder: SIL graph with DELAY node.

t = 0

t = 1

t = 2

t = 3

+
a

+
a

0

+
a c(2) = a(2) + c(1)

c(1) = a(1) + c(0)

c(0) = a(0) + 0

c(-1) = 0

c(t) = a(t) + c(t-1) Figure 2.8: Cumulative adder: unfolded SIL graph.16

d

b

a

c

p1

p2

e2

e1 = (NOT c)
IMPLIES
bFigure 2.9: Partial speci�cation of a multiplexor.

17

b

a

c

p1

p2

e1

e2

d = IF c
THEN a
ELSE b

overrides the token from p2 in determining the value at d
Sequence edge from p2 to p1 means that, the token at p1Figure 2.10: Implementation speci�cation of a multiplexor.true, the value of d is a if the order is such that value of port p1 is communicated ratherthan that of port p2. If the order is such that p2 has the overriding in
uence, then thevalue of d is b. While, when c is false the value of b is determined by the port p2, dueto the behavior of the conditional port and join discussed earlier in section 2.2. Thesequence edge in the multiplexor implementation as given in Figure 2.10, imposes thatthe value communicated to b is that of port p1 when c is true. Again, when c is false,port p2 determines the value of b.2.3 Transformations in SILA transformation is viewed as modifying the structure of a graph into another graph.The modi�cation is done by removing and/or adding nodes and edges. Such modi�ca-tions should not violate the behavior of the original graph.In SIL, there are a number of optimization and re�nement transformations [EMH93]. Many of the optimization transformations are inspired by compiler optimizationtechniques such as Common Subexpression Elimination, Cross-Jumping Tail-Mergingand algebraic transformations involving commutativity, associativity, and distributiv-ity. Other optimization transformations include retiming. Re�nement transformationsinclude type transformations such as real to integer, integer to Boolean, and implement-ing data relations of the nodes by concrete operators [Mid 94]. We show a retimingtransformation example in Figure 2.11 18

ADD

DELAY

DELAY

DELAYADDFigure 2.11: Example SIL transformation: retiming.
19

20

Chapter 3Speci�cation and Veri�cation inPVSThe Prototype Veri�cation System (PVS) [OSR 93, SOR 93-2] is an environment forspecifying entities such as hardware/software models and algorithms, and verifyingproperties associated with the entities. An entity is usually speci�ed by asserting asmall number of general properties that are known to be true. These known propertiesare then used to derive other desired properties. The process of veri�cation involveschecking relationships that are supposed to hold among entities. The checking is doneby comparing the speci�ed properties of the entities. For example, one can compare if aregister-transfer-level implementation of hardware satis�es the properties expressed byits high-level speci�cation.PVS has been used for reasoning in many domains, such as in hardware veri�ca-tion [Cyr 93,CRS 94], protocol veri�cation, and algorithm veri�cation [LOR 93]. Webrie
y give the features of the PVS speci�cation language in Section 3.1, the PVS ver-i�cation features in Section 3.2 and some notes on the syntax of the PVS speci�cationlanguage in Section 3.3. Finally, in Section 3.4 we give some example speci�cations andveri�cation sessions in PVS.3.1 PVS Speci�cation LanguageThe speci�cation language [OSR 93] features common programming language constructssuch as arrays, functions, and records. It has built-in types for reals, integers, naturals,and lists. A type is interpreted as a set of values. One can introduce new types by ex-plicitly de�ning the set of values, or indicating the set of values, by providing propertiesthat have to be satis�ed by the values. The language also allows hierarchical structuringof speci�cations. Besides other features, it permits overloading of operators, as in someprogramming languages and hardware description languages such as VHDL.21

3.2 PVS Veri�cation FeaturesThe PVS veri�er [SOR 93-2] is used to determine if the desired properties hold in thespeci�cation of the model. The user interacts with the veri�er by a small set of com-mands. The veri�er contains procedures for boolean reasoning, arithmetic and (con-ditional) rewriting. In particular, Binary Decision Diagram (BDD) [BRB 90, Jan 93]based simpli�cation may be invoked for Boolean reasoning. It also features a varietyof general induction schemes to tackle large-scale veri�cation. Moreover, di�erent ver-i�cation schemes can be combined into general-purpose strategies for similar classes ofproblems, such as veri�cation of microprocessors [Cyr 93,CRS 94].A PVS speci�cation is �rst parsed and type-checked. At this stage, the type ofevery term in the speci�cation is unambiguously known. The veri�cation is done inthe following style: we start with the property to be checked and repeatedly applyrules on the property. Every such rule application is meant to obtain another propertythat is simpler to check. The property holds if such a series of applications of ruleseventually leads to a property that is already known to hold. Examples illustrating thespeci�cation and veri�cation in PVS are described in Section 3.4.3.3 Notes on Speci�cation NotationIn PVS speci�cations1 , an object followed by a colon and a type indicates that theobject is a constant belonging to that type. If the colon is followed by the key wordVAR and a type, then the object is a variable belonging to that type.For example,x: integery: VAR integerdescribes x as a constant of type integer, and y as a variable of type integer2.Sets are denoted by f:::g: they can be introduced by explicitly de�ning the elementsof the set, or implicitly by a characteristic function.For example,{0,1,2}{x: integer | even(x) AND x /= 2}1PVS speci�cations in this report are enclosed in framed boxes.2In C, they would be declared as const int x; int y.22

The symbol j has to be read as such that, and the symbol /= stands for not equal to ingeneral. Thus, the latter example above should be read as \set of all integers x, suchthat x is an even number and x is not equal to 2".New types are introduced by a key word TYPE followed by its description as a setof values. If the key word TYPE is not followed by any description, then it is taken asan unspeci�ed type.Some illustrations are:even_time: TYPE = {x: natural| even(x)}unspecified_type: TYPEOne kind of type that is used widely in this work is the record type. A record typeis like the struct type in the C programming language. It is used to package objects ofdi�erent types in one type. We can then treat an object of such a type as one singleobject externally, but with an internal structure corresponding to the various �elds inthe record.The following operators have their corresponding meanings:FORALL x: p(x)means for every x, predicate3 p(x) is trueEXISTS x: p(x)means for at least a single x, predicate p(x) is trueWe can impose constraints on the set of values for variables inside FORALL andEXISTS as in the following example:FORALL x, (y| y = 3*x): p(x,y)which should be read asfor every x and y such that y is 3 times x, p(x,y) is true.A property that is already known to hold without checking is labeled by a namefollowed by a colon and the keyword AXIOM. A property that is checked using the rulesavailable in the veri�er is labeled by a name followed by a colon and the keywordTHEOREM. The text followed by a % in any line is a comment in PVS.We illustrate the syntax as follows:3A predicate is a function returning a Boolean type: ftrue, falseg.23

ax1: AXIOM % This is a simple axiomFORALL (x:nat): even(x) = x divisible_by 2th1: THEOREM % This is a simple theoremFORALL (x:nat): prime(x) AND x /= 2 IMPLIES NOT even(x)We also use the terms axiom and theorem in our own explanation with the same mean-ings. A proof is a sequence of steps that leads to a theorem.3.4 Speci�cation and Veri�cation Examples in PVSWe illustrate here three examples from arithmetic. The �rst two examples are takenfrom the tutorial [SOR 93-1]. The last example illustrates the use of a general purposestrategy to automatically prove a theorem of arithmetic. The �rst example is the sumof natural numbers up to some arbitrary �nite number n is equal to n*(n+1)/2 . Thespeci�cation is encapsulated in the sum THEORY. Following introduction of n as a naturalnumber nat, sum(n) is de�ned as a recursive function with a termination MEASURE asan identity function on n. Finally, the THEOREM labeled closed form is stated to beproved.sum: THEORYBEGINn: VAR natsum(n): RECURSIVE nat =(IF n = 0 THEN 0 ELSE n + sum(n - 1) ENDIF)MEASURE (LAMBDA n: n)closed_form: THEOREM sum(n) = (n * (n + 1))/2END sumThe THEORY is �rst parsed and type checked, and then the prover is invoked on theclosed form THEOREM. The proof is automatic by applying induction and rewriting.The proof session is as follows:closed_form :|-------{1} (FORALL (n: nat): (sum(n) = (n * (n + 1)) / 2))24

Running step: (INDUCT "n")Inducting on n,this yields 2 subgoals:closed_form.1 :|-------{1} sum(0) = (0 * (0 + 1)) / 2Running step: (EXPAND "sum")Expanding the definition of sum,this simplifies to:closed_form.1 :|-------{1} 0 = 0 / 2Rerunning step: (ASSERT)Invoking decision procedures,This completes the proof of closed_form.1.closed_form.2 :|-------{1} (FORALL (j: nat):(sum(j) = (j * (j + 1)) / 2IMPLIES sum(j + 1) = ((j + 1) * (j + 1 + 1)) / 2))Running step: (SKOLEM 1 ("j!1"))For the top quantifier in 1, we introduce Skolem constants: (j!1),this simplifies to:closed_form.2 :|-------{1} sum(j!1) = (j!1 * (j!1 + 1)) / 2IMPLIES sum((j!1 + 1)) = ((j!1 + 1) * ((j!1 + 1) + 1)) / 2Running step: (FLATTEN)Applying disjunctive simplification to flatten sequent,this simplifies to:closed_form.2 : 25

{-1} sum(j!1) = (j!1 * (j!1 + 1)) / 2|-------{1} sum((j!1 + 1)) = ((j!1 + 1) * ((j!1 + 1) + 1)) / 2Running step: (EXPAND "sum" +)Expanding the definition of sum,this simplifies to:closed_form.2 :[-1] sum(j!1) = (j!1 * (j!1 + 1)) / 2|-------{1} (j!1 + 1) + sum(j!1) = (j!1 * j!1 + 2 * j!1 + (j!1 + 2)) / 2Running step: (ASSERT)Invoking decision procedures,This completes the proof of closed_form.2.Q.E.D.Run time = 8.09 secs.Real time = 9.89 secs.NIL> The next example illustrates that decision procedures solve the steps involving arith-metic and equality reasoning automatically. While, in the creative step of supplying theproper instantiation for an existential quanti�cation, the user has to interact with theprover. We �rst present the following PVS THEORY specifying that a 3 cent stamp anda 5 cent stamp can be used in combination in place of any stamp whose value is at least8 cents.stamps : THEORYBEGINi, j, k: VAR natstamps: LEMMA (FORALL i: (EXISTS j, k: i+8 = 3*j + 5*k))END stampsstamps : 26

The proof follows by induction:|-------{1} (FORALL i: (EXISTS j, k: i + 8 = 3 * j + 5 * k))Running step: (INDUCT "i")Inducting on i,this yields 2 subgoals:stamps.1 :|-------{1} (EXISTS (j: nat), (k: nat): (0 + 8 = 3 * j + 5 * k))Here we have to supply an instantiation interactively.Running step: (QUANT 1 ("1" "1"))Instantiating the top quantifier in 1 with the terms:(1 1),this simplifies to:stamps.1 :|-------{1} 0 + 8 = 3 * 1 + 5 * 1Running step: (ASSERT)Invoking decision procedures,This completes the proof of stamps.1.stamps.2 :|-------{1} (FORALL (j: nat):((EXISTS (j_0: nat), (k: nat): (j + 8 = 3 * j_0 + 5 * k))IMPLIES (EXISTS (j_1: nat), (k: nat):(j + 1 + 8 = 3 * j_1 + 5 * k))))Running step: (SKOLEM 1 ("j!1"))For the top quantifier in 1, we introduce Skolem constants: (j!1),this simplifies to:stamps.2 :|------- 27

{1} (EXISTS (j_0: nat), (k: nat): (j!1 + 8 = 3 * j_0 + 5 * k))IMPLIES (EXISTS (j_1: nat), (k: nat): (j!1 + 1 + 8 = 3 * j_1 + 5 * k))Running step: (FLATTEN)Applying disjunctive simplification to flatten sequent,this simplifies to:stamps.2 :{-1} (EXISTS (j_0: nat), (k: nat): (j!1 + 8 = 3 * j_0 + 5 * k))|-------{1} (EXISTS (j_1: nat), (k: nat): (j!1 + 1 + 8 = 3 * j_1 + 5 * k))Running step: (SKOLEM -1 ("j!2" "k!1"))For the top quantifier in -1, we introduce Skolem constants: (j!2 k!1),this simplifies to:stamps.2 :{-1} j!1 + 8 = 3 * j!2 + 5 * k!1|-------[1] (EXISTS (j_1: nat), (k: nat): (j!1 + 1 + 8 = 3 * j_1 + 5 * k))The following steps require user interaction:Running step: (CASE "k!1=0")Case splitting onk!1=0,this yields 2 subgoals:stamps.2.1 :{-1} k!1 = 0[-2] j!1 + 8 = 3 * j!2 + 5 * k!1|-------[1] (EXISTS (j_1: nat), (k: nat): (j!1 + 1 + 8 = 3 * j_1 + 5 * k))Running step: (QUANT 1 ("j!2-3" "2"))Instantiating the top quantifier in 1 with the terms:(j!2-3 2),this yields 2 subgoals:stamps.2.1.1 :[-1] k!1 = 0[-2] j!1 + 8 = 3 * j!2 + 5 * k!1|------- 28

{1} j!1 + 1 + 8 = 3 * (j!2 - 3) + 5 * 2Running step: (ASSERT)Invoking decision procedures,This completes the proof of stamps.2.1.1.stamps.2.1.2 (TCC):[-1] k!1 = 0[-2] j!1 + 8 = 3 * j!2 + 5 * k!1|-------{1} j!2 - 3 >= 0Running step: (QUANT 2 ("j!2+2" "k!1-1"))No suitable (+ve EXISTS/-ve FORALL) quantified formula found.No change on: (QUANT 2 (j!2+2 k!1-1))stamps.2.1.2 (TCC):[-1] k!1 = 0[-2] j!1 + 8 = 3 * j!2 + 5 * k!1|-------{1} j!2 - 3 >= 0Running step: (ASSERT)Invoking decision procedures,This completes the proof of stamps.2.1.2.This completes the proof of stamps.2.1.stamps.2.2 :[-1] j!1 + 8 = 3 * j!2 + 5 * k!1|-------{1} k!1 = 0[2] (EXISTS (j_1: nat), (k: nat): (j!1 + 1 + 8 = 3 * j_1 + 5 * k))Running step: (ASSERT)Invoking decision procedures,this simplifies to: 29

stamps.2.2 :[-1] j!1 + 8 = 3 * j!2 + 5 * k!1|-------[1] k!1 = 0{2} (EXISTS (j_1: nat), (k: nat): (j!1 + 9 = 3 * j_1 + 5 * k))Running step: (QUANT 2 ("j!2+2" "k!1-1"))Instantiating the top quantifier in 2 with the terms:(j!2+2 k!1-1),this simplifies to:stamps.2.2 :[-1] j!1 + 8 = 3 * j!2 + 5 * k!1|-------[1] k!1 = 0{2} j!1 + 9 = 3 * (j!2 + 2) + 5 * (k!1 - 1)Running step: (ASSERT)Invoking decision procedures,This completes the proof of stamps.2.2.This completes the proof of stamps.2.Q.E.D.Run time = 10.67 secs.Real time = 11.65 secs.NIL> Finally, the following example illustrates the use of a general purpose strategyinduct-rewrite-bddsimp, that involves induction, rewriting and propositional sim-pli�cation. The theorem is based on the property of a Fibonacci sequence: 1, 1, 2,3, 5, : : :. Here, an element, except the �rst two, is the sum of the its two immediatepredecessors. If we denote the sum of n (n > 0) elements in the sequence by fibsum(n),then we are required to prove the property that the sum is equal to fib(n+2) + 1. ThePVS speci�cation can be given as follows: 30

fib: THEORYBEGINn: VAR natfib(n): RECURSIVE nat =IF n = 0 THEN 1ELSIF n = 1 THEN 1ELSE fib(n - 2) + fib(n - 1)ENDIFMEASURE LAMBDA n: nfibsum(n): RECURSIVE nat =IF n = 0 THEN 3ELSE fib(n) + fibsum(n - 1)ENDIFMEASURE LAMBDA n: nFibSumThm: THEOREMfibsum(n) = fib(n + 2) + 1END fibThe veri�cation proceeds automatically by using a strategy based on induction, rewrit-ing and propositional simpli�cation as follows:FibSumThm :|-------{1} (FORALL (n: nat): fibsum(n) = fib(n + 2) + 1)Rule? (auto-rewrite-theory "fib")Adding rewrites from theory fibAdding rewrite rule fibAdding rewrite rule fibsumAuto-rewritten theory fibRewriting relative to the theory: fib,this simplifies to:FibSumThm :|-------[1] (FORALL (n: nat): fibsum(n) = fib(n + 2) + 1)Rule? (induct-rewrite-bddsimp "n")fibsum rewrites fibsum(0) 31

to 3fib rewrites fib(0)to 1fib rewrites fib(1)to 1fib rewrites fib(2)to 2fib rewrites fib(j!1 + 1)to IF j!1 + 1 = 1 THEN 1 ELSE fib(j!1 + 1 - 2) + fib(j!1 + 1 - 1) ENDIFfib rewrites fib(j!1 + 2)to fib(j!1)+ IF j!1 + 1 = 1 THEN 1ELSE fib(j!1 + 1 - 2) + fib(j!1 + 1 - 1)ENDIFfibsum rewrites fibsum(j!1 + 1)to IF j!1 + 1 = 1 THEN 1 ELSE fib(j!1 + 1 - 2) + fib(j!1 + 1 - 1) ENDIF+ fibsum(j!1)fib rewrites fib(j!1)to IF j!1 = 1 THEN 1 ELSE fib(j!1 - 2) + fib(j!1 - 1) ENDIFfib rewrites fib(j!1 + 3)to IF j!1 + 1 = 1 THEN 1 ELSE fib(j!1 + 1 - 2) + fib(j!1 + 1 - 1) ENDIF+ fib(j!1)+ IF j!1 = 0 THEN 1ELSE fib(j!1 - 1)+ IF j!1 = 1 THEN 1ELSE fib(j!1 - 2) + fib(j!1 - 1)ENDIFENDIFfib rewrites fib(j!1)to IF j!1 = 1 THEN 1 ELSE fib(j!1 - 2) + fib(j!1 - 1) ENDIFBy induction on n and rewriting,Q.E.D.Run time = 10.43 secs.Real time = 30.62 secs.
32

Chapter 4Speci�cation of SIL GraphStructure in PVSA speci�cation of the structure of SIL graphs is developed step by step in this Chapter.We introduce an entity in a SIL graph, and give its speci�cation in PVS. We repeatsome of the de�nitional concepts reviewed in Chapter 2 to put them in the contextof our speci�cation. We explain the speci�cation of ports in Section 4.1, followedby the speci�cation of edges in Section 4.2 and nodes and SIL graphs in Section 4.3.Finally, in Section 4.4 we establish the properties that need to hold for a SIL graph tobe well-formed, and thus have a proper behavior.4.1 Port and Port ArrayA port is a placeholder for data values. The set of data values that it can hold can berestricted, and such a set is denoted by a type. For example, a port that is allowed tohold only true and false is of Boolean type. We would like to model a SIL graph andassociated transformations for any desired set of data values. We de�ne a port as aplaceholder for an arbitrary set of data values, by de�ning it as an unspeci�ed type:port: TYPEWe can create various ports by introducing names such as p0, p1, p2, and declaringthem as variables VAR of type port :p0, p1, p2: VAR port 33

dfe: pred[[port,port]]sqe: pred[[port,port]] Table 4.1: .PVS types for data-
ow edge and sequence edge; see Figure 4.1.An array of ports is de�ned as a record type containing two type �elds. The �rst�eld size of type nat { the set of natural numbers f0; 1; 2; : : :g { speci�es the size of thearray. The second �eld is the array of ports, whose size is equal to that speci�ed bythe �rst �eld. Such a typing, in which the type of one �eld depends on another �eld isknown as dependent typing. The ARRAY is speci�ed as a function that takes a memberfrom the set of natural numbers less than size and gives a member of type port:parray: TYPE = [# size:nat,port_array: ARRAY[{i:nat|i<size} -> port]#]4.2 EdgesAn edge is a directed line connecting two ports. Mathematically, it is a relation on twoports. For convenience, we will call the port from which the edge is directed the source,and the port to which the edge is directed to the sink. There are two kinds of edges inSIL: data-
ow edge and sequence edge. A data-
ow edge between two ports indicatesthe
ow of a token from the source to the sink. A sequence edge between two portsspeci�es the ordering between them: we will say that a port A is less than a port B ifand only if, the token �red at B determines the value of a sink port C connected to Aand B, rather than the token �red at A. A data-
ow edge between two ports enforcesan implicit ordering between the source and sink. The source is strictly less than thesink. There is no token
ow through a sequence edge.We specify both kinds of edges as relations on ports. They modify the behavior ofa SIL graph in di�erent ways. We postpone the discussion of the properties of theserelations to the next chapter, and just specify the types of the relations as predicates {pred { on pairs ports. A true value of the predicate indicates the presence of an edgebetween the ports, while a false value indicates the absence of an edge between theports. The predicate dfe is the data-
ow edge relation, and sqe is the sequence edgerelation as shown in Table 4.1.We can explicitly de�ne corresponding relations between arrays of ports. For exam-ple, we de�ne the data-
ow edges between arrays of ports as:34

sqedfeFigure 4.1: SIL data-
ow and sequence edges; see Table 4.1.par, par0: parraysame_size(par,par0) =size(par) = size(par0)dfear(par0,(par1:{par|same_size(par,par0)})) =FORALL (i|i<size(par0)):dfe(port_array(par0)(i),port_array(par1)(i))The direction of the edges is from the �rst port to the second port. We illustratethis in Figure 4.1.4.3 Node, Conditional Node and GraphA node is a structure that takes inputs and gives outputs, satisfying a data relationassociated with the node. Some of the typical nodes are adders and multplexers associ-ated with corresponding addition and multiplexing data relations. We also associate anorder relation, which imposes an order on the inputs and outputs. Externally, a nodereceives inputs at input ports, and delivers outputs at output ports. Since a port is aplaceholder for a de�nite set of data values { of a de�nite type { the input and outputvalues should belong to the type of the input and output ports.A conditional node is a node having special Boolean inputs, which control whetherthe data relation between the inputs and outputs holds. Such inputs are known asconditions. The conditions could appear either inverted or noninverted. If all thenoninverted conditions on a node are true, and all the inverted conditions are false,then the outputs and inputs of the node satisfy its data relation. But, if any one ofthe noninverted conditions is false or any one of the inverted conditions is true, thenthe output has an arbitrary value. In such a case, the output value is restricted onlyby the type of the output port. E�ectively, we can replace all the condition ports of aconditional node by just one condition port, which takes the conjunction of the conditioninputs with appropriate inversions [EMH 93].A graph is a structure constructed by using ports, edges, nodes, and conditionalnodes. However, we can hide the structure of a graph, and externally view it as a nodewith input and output ports, data and order relations. We can then specify graphsas nodes with internal structure and internal relations. This allows for hierarchicalconstruction of smaller graphs into larger graphs.35

cnode: TYPE =[#inports: parray,outport: port,intports: parray,condport: port,cond:pred[port],datarel: pred[[{p:parray|size(p)=size(inports)},port]],orderrel:pred[[{p:parray|size(p)=size(inports)},port]],intrel: pred[[parray,parray]]#]Table 4.2: PVS speci�cation of conditional node as a record type; see Figure 4.2.In our speci�cation, we �rst introduce a conditional node in PVS as a record type asshown in Table 4.2, where� inports are the input ports declared as parray type { that is, they are taken togetheras one array of an unspeci�ed size.� outport is an output port declared just as a port. In this work we consider a singleoutput port for convenience in speci�cation. However, in general, output shouldalso be declared as an array of ports, as is the case for hierarchically built graphsand for primitive nodes such as SPLIT.� intports are the internal ports declared as a parray type to specify the internalports the conditional node might have internally. Such a conditional node wouldbe a hierarchically built graph.� condport is a single port providing access for the condition input.� cond is a condition function giving the value of the condition on the conditionport: this can be either true or false. This is declared as a type pred[port] { thatis, a predicate on port.� datarel is the data relation governing the output value based on the inputs. Thisis declared as a predicate or relation pred on a tuple. The �rst type in the tupleis a subset of port arrays, whose size is the same as the inports, and the secondtype is a port corresponding to the outport.� orderrel is declared as exactly the same type as datarel. The di�erence lies onlyin that, it governs the order of output and input values. This is not seen in thestructural type de�nition here. 36

R

IR

cond

inports intports intrel

outport

condport

datarel
orderel

Figure 4.2: SIL conditional node; see Table 4.2.� intrel is the internal relation corresponding to the internal structure and connec-tivity of the conditional node. This is derived from the internal ports and theedges connecting the internal ports.The conditional node is shown in Figure 4.2.We introduce predicates to compare the structures of conditional nodes based ontheir number of input ports:cn0, cn1: cnodesame_size(cn0,cn1) =size(inports(cn0)) = size(inports(cn1))A node without a conditional port is modeled as a conditional node with the con-dition on its conditional port being always true. The advantage of such a modeling isthat it captures both an unconditional node and a conditional node whose conditionalport is always set to true. Since they have identical behavior, it minimizes our modelby having just one structure for both. In PVS, a feature known as subtyping allowsone to de�ne a type, which denotes a subset of values of an already de�ned type. Wespecify the node type in Table 4.3 by using this PVS subtyping feature. The Figure 4.3illustrates this speci�cation.We model a graph exactly the same as a conditional node, since we have constructeda conditional node to have internal structure and internal relation. This allows forviewing a graph as another node, and thus allows for a hierarchical construction oflarger graphs. We specify a graph as a type equal to a conditional node type:37

node: TYPE = {n:cnode| cond(n) = LAMBDA (p:port):TRUE}Table 4.3: Node as a subtype of a conditional node; see Figure 4.3.
TRUEFigure 4.3: Node as a subtype of a conditional node; see Table 4.3.

38

graph: TYPE = cnode4.4 Well-formedness of a SIL GraphA SIL graph has to satisfy certain structural rules governing the connectivity of ports.Only then can the behavior of a SIL graph be well-de�ned. For example, we cannotconnect two input ports by a data-
ow edge: a source has to be an output port, whilea sink has to be either an input port or a conditional port. The structural rules arestated as axioms in PVS.Every port has to be exactly one of an input port, output port, and conditional port:no port can be left dangling. Even the terminal I/O ports at the SIL graph boundaryare associated with special I/O nodes. We express this as two axioms { inclusivity andexclusivity { as follows:port_inclusive_ax: AXIOMFORALL (p:port): is_inport(p) OR is_outport(p) OR is_condport(p)port_exclusive_ax: AXIOMFORALL (p:port): is_inport(p) IMPLIESNOT (is_outport(p) OR is_condport(p)) ANDis_outport(p) IMPLIESNOT (is_inport(p) OR is_condport(p)) ANDis_condport(p) IMPLIESNOT (is_inport(p) OR is_condport(p))where is inport, is outport, and is condport are appropriately de�ned, asserting theexistence of a (conditional) node whose input/output/condition is the port being con-sidered, as indicated in the following PVS speci�cation:is_inport(p) = (EXISTS cn, (i:{j:nat|j<size(inports(cn))}):p=inport(cn,i))is_outport(p) = (EXISTS cn: p=outport(cn))is_condport(p)= (EXISTS cn: p=condport(cn))That a port can be one of the internal ports of a conditional node is consistent with theproperties de�ned here, because even internal ports should be one of the three types ofports.A data-
ow edge is legal only if it connects an input port to an output or a conditionalport: 39

dfe_port_ax: AXIOMFORALL p1,p2:dfe(p1,p2) IMPLIES (is_outport(p1) AND(is_inport(p2) OR is_condport(p2)))We can derive that self data-
ow edges are forbidden by the properties of ports andthe data-
ow edge from the above property. If we make p1 = p2 in the above axiom,and use the port exclusivity axiom (given earlier) that any port can be exactly oneof input, output and condition, we get the corresponding theorem for preventing selfdata-
ow edges:self_edge_not_th: THEOREMFORALL (p:port): NOT dfe(p,p)It should be noted that data-
ow edges between output ports of a node and the inputports of the same node are not prohibited.Self sequence edges are also prohibited, since sequence edges impose strict orderingon ports. This has to be asserted as an axiom, as we have not imposed any restrictiveproperty on the sequence edge:self_seq_edge_not_ax: AXIOMFORALL (p:port) NOT sqe(p,p)Since sequence edge introduces ordering on ports, we expect sqe to be transitive. But, inorder to have a clear separation of structure and behavior, we do not impose the propertyon sqe here. However, as we will see in Chapter 5, we formalize the ordering due to thesequence edges, and due to the behavior of a condition node when the condition porthas a false value, by introducing weights on pairs of ports. The transitivity property isthen imposed on the ordering of weights.
40

Chapter 5Speci�cation of SIL GraphBehavior and Re�nementWe informally discussed in Chapter 2, the behavior of a SIL graph. We recall thatthe behavior is the set of ordered tuples of data values that the ports of the graph canassume, and an external or I/O behavior is the set of ordered tuples of values at the I/Oports of the SIL graph. The behavior of a SIL graph is determined by the data relationsand order relations of the nodes, connectivity due to the data-
ow edges, and orderingimposed by sequence edges. Any implicit state information in a SIL graph is containedin the data relations of the nodes. Thus, a comparison of behaviors in any given clockcycle would not require comparing execution histories due to possible implicit states in aSIL graph. We discuss behavior in Section 5.1, followed by a presentation of re�nementand equivalence in Section 5.2.5.1 BehaviorA detailed de�nition of behavior would require establishing a concrete formal semanticsof SIL, since the data values and ordering can be arbitrary. A denotational semanticsof SIL has been discussed by Huijs [HuK 94]. However, at the level of abstractionwe have chosen to specify, we bring about high-level properties of dependency graphs,re�nement and equivalence that should hold independent of a detailed behavior model.We can thus obviate the need to specify a concrete behavioral model of dependencygraphs. Such mechanisms for speci�cation by de�ning the properties that have to holdconstitute our axiomatic approach. As we will see in the next chapter, we comparetwo SIL graphs by asserting the properties that need to be satis�ed by the graphs withrespect to their behavior. We can thus establish the correctness of transformations. Amodi�cation in the concrete behavioral model faithful to the properties on which wehave based our approach would not change our speci�cation and veri�cation results.Further discussion of the advantages of our approach is postponed to Chapter 7.41

The behavior associated with an access point or a port is described by the sameuninterpreted type, as we used in the introduction of the structural speci�cation of aport:port: TYPEThis is the stage where the speci�cation of structure and behavior coincide. The typedenoting the set of values being unspeci�ed gives us the freedom to model the behavior(as with the structure) irrespective of the value type.5.2 Re�nement and EquivalenceWe have developed speci�cation techniques to describe concepts comparing SIL graphswith respect to behavior. A SIL graph SG2 is a re�nement of another SIL graph SG1, ifthe behavior exhibited by SG2 is allowed by SG1. SG2 can then be an implementationof its speci�cation SG1. In order to de�ne graph re�nement, we �rst describe portre�nement, and derive graph re�nement from the structural connectivity of a SIL graph.We introduce an abstract re�nement relation on ports:silimp: pred[[port,port]]The re�nement relation on ports could be interpreted as follows. A port p1 is a re�ne-ment of a port p2, if the set of data values allowed by p1 is a subset of values allowed byp2. An instance of such a relation comes about due to the non-deterministic choice asillustrated in Figure 5.1. Another kind of re�nement could be a data type re�nement:when one port is a subtype of another. The re�nement relation has to be re
exive andtransitive. We do not impose antisymmetry to allow the de�nition of equivalence as aspecial case of re�nement:silimp(p1,p1)silimp_trans_ax: AXIOMsilimp(p1,p2) AND silimp(p2,p3) IMPLIESsilimp(p1,p3)The re�nement relation between arrays of ports is introduced by a property statingthat a re�nement relation between all corresponding ports of the port arrays implies are�nement relation between the port arrays.42

q2

q3

p1

q1

q2

q3

p2

q1

value(p2) = {value | value = value(q1) OR

value = value(q2) OR

value = value(q3)

}

value(p1) value(p2)

silimp(p1,p2): p1 is a refinement of p2

value(p1) = {value | value = value(q1)}

Figure 5.1: Example: re�nement of ports due to non-deterministic choice.
43

q11

q12

q13

q21

q22

q23

q1 q2

silimp(q11,q22) AND silimp(q12,q22) AND silimp(q13,q22)

silimpar(q1,q2)Figure 5.2: Example: array re�nement does not imply every individual port re�nement.par1, par2: parraysilimpar(par1,par2)silimpar_def_ax: AXIOMFORALL par1,(par2|same_size(par1,par2):(FORALL (i| i< size(par1)):EXISTS j: silimp(port_array(par1)(i),port_array(par2)(j))) IFFsilimpar(par1,par2)It should be noted that the re�nement between port arrays does not necessarily implythe re�nement relation between corresponding individual ports of the port arrays. Weillustrate this notion with an example in Figure 5.2. The reason for underconstrainingthe de�nition of port array re�nement is to allow re�nements for graphs which mighthave di�erent numbers of input and output ports. We can thus allow behavioral re�ne-ment without overconstraining the structures of the graphs.The properties of re
exivity and transitivity that have to be satis�ed by the re�ne-ment relation on port arrays are similar to those satis�ed by the re�nement relation onports:silimpar_refl_th: THEOREMsilimpar(par,par)silimpar_trans_ax: AXIOMsilimpar(par1,par2) AND silimpar(par2,par3) IMPLIESsilimpar(par1,par3) 44

The equivalence of SIL graphs sileq is de�ned by introducing the symmetry propertyin the re�nement relations de�ned above:sileq(p1,p2) = silimp(p1,p2) ANDsilimp(p2,p1)sileqar(par1,par2) = silimp(par1,par2) ANDsilimp(par2,par1)A data-
ow edge connecting two ports modi�es the behavior of the sink in accordancewith other data-
ow edges connecting the same edge output. If a port is the sink ofmultiple data-
ow edges, then the behavior of the sink port is determined by an orderingof the source ports. Such a port is called a join. In terms of the token
ow concept,we recall from Chapter 2, that the ordering depends on the which of the tokens �redfrom the source ports determines the value of the join. The sequence edges in a SILgraph indicate such an ordering. However, since the ordering could be a�ected by thebehavior of a conditional node, we need a general mechanism to specify the ordering. Wemodel this ordering by associating weights with the data-
ow edges, rather than sourceports. Introducing weights to represent sequence edges also, permits a clear separationof structure from and behavior: whereas a sequence edge is a structural entity, weightis a behavioral entity that could be derived not only from sequence edges, but also duethe behavior of a conditional node. We �rst introduce weight as an uninterpreted type.A function w on ports would return a weight, while a function war on arrays of portswould return a weight:weight: TYPEw: [port,port -> weight]war: [parray,parray -> weight]The ordering is used to determine the behavior of a join. This means that we need tocompare the weights on the data-
ow edges that form a join. The weights on data-
owedges that do not form a join need not be compared. However, the de�nition of SILspeci�es that no two data-
ow edges communicate tokens simultaneously into a join,and no two weights on the edges forming a join can be equal. This suggests that we needa re
exive, transitive, and antisymmetric ordering relation on weights: such a relationis called partial order. We de�ne a partial ordering relation1 < on weights, and assertthe fact that the weights are ordered if and only if the associated data-
ow edges forma join. We give the PVS speci�cation of this property in Table 5.1 and illustrate it inFigure 5.3.1We do not use the usual notation � to stress that no two weights on di�erent edges forming a joincan be equal. 45

<: pred[[weight,weight]]partial_order(<)dfe_w_ax: AXIOMp0 /= p1 IMPLIESdfe(p0,p2) AND dfe(p1,p2)IFF(w(p0,p2) < w(p1,p2) ORw(p1,p2) < w(p0,p2))Table 5.1: Using weights for ordering data-
ow edges: PVS speci�cation; see Figure5.3.
OR

w(p1,p2) < w(p0,p2)

w(p0,p2) < w (p1,p2)

p0

p1

p2
w(p0,p2)

w(p1,p2)

dfe

dfeFigure 5.3: Using weights for ordering data-
ow edges; see Table 5.1.46

join_ax: AXIOMFORALL p1,p2:(FORALL p:w(p,p2) < w(p1,p2)) IMPLIESsilimp(p1,p2)Table 5.2: Using weights to determine join behavior; see Figure 5.4.
IMPLIES

silimp(p1,p2)

w(p1,p2) is the maximump2dfe

p1

p

dfe

dfe

dfe

w(p1,p2)

Figure 5.4: Using weights to determine join behavior; see Table 5.2.We describe the property that the behavior of a join depends on the ordering ofthe data-
ow edges, by comparing weights on the edges
owing into the join port. Thegreater the weight on a data-
ow edge, the later the token is communicated throughit. We state the property that the join port is a re�nement (an implementation) of thesource whose associated data-
ow edge has the maximum weight in the axiom shownin Table 5.2. It should be noted that we do not impose equivalence sileq, a relationstronger than re�nement silimp. This would give the freedom to connect a port p1 top2, when the set of data values allowed by p1 is always a subset of the set of data valuesallowed by p2. The property is shown in Figure 5.4.We still have to capture the notion of behavior of ports connected to the outputport of a conditional node. The behavior of the output port of a conditional node, whenthe condition port holds a false value, is not de�ned. In the case where a join port isconnected to a conditional node, the behavior of the join is solely determined by edgesthat propagate well-de�ned values. This situation is speci�ed by making the associatedweight of the data-
ow edge emanating out of a conditional node the least of all theweights associated with other data-
ow edges. The other data-
ow edges, with whichthe comparison is performed should be connecting the join port to output ports of nodesor conditional nodes whose condition is never false. However, this does not preclude ajoin port to have an arbitrary value - because, it does not prohibit a graph construction47

cond_bottom_ax: AXIOMNOT cond(cn)(condport(cn)) IMPLIESFORALL p:dfe(outport(cn),p) IMPLIESFORALL (n:node): dfe(outport(n),p) IMPLIESw(outport(cn),p) < w(outport(n),p)Table 5.3: Weight when the condition on a conditional node is false; see Figure 5.5.
FALSE

cn

condport(cn)

outport(cn)
w(outport(cn),p) is the LEAST

p

p1Figure 5.5: Weight when the condition on a conditional node is false; see Table 5.3.
xdfe

p1 p2 No other "dfe" coming into p2:

i.e. p2 is not a join.Figure 5.6: Absence of join: exclusive data-
ow edge; see Table 5.4.where the join port is connected exclusively to a single conditional node or multipleconditional nodes whose conditions are false, and whose output ports are connected tothe join port. The property is speci�ed as an axiom in Table 5.3, and illustrated inFigure 5.5.We can derive the behavior due to a data-
ow edge whose sink is not the output ofany other data-
ow edge. We will call such an edge an exclusive data-
ow edge { xdfede�ned in Table 5.4 and shown in Figure 5.6.We can explicitly de�ne an exclusive data-
ow edge relation for arrays of ports asin Table 5.5. We can prove the property that an exclusive data-
ow edge provides are�nement relation between the source and the sink. However, for this property to hold,we have to impose a restriction on the source port { that it has to be an output port of48

xdfe(p1,p2) = dfe(p1,p2) ANDFORALL p:(p /= p1) IMPLIES NOT dfe(p,p2)Table 5.4: Absence of join: exclusive data-
ow edge; see Figure 5.6.
par, par0: parrayxdfear(par0,(par1:{par|same_size(par,par0)})) =FORALL (i|i<size(par0)):xdfe(port_array(par0)(i),port_array(par1)(i))Table 5.5: Array version of exclusive data-
ow edge49

dfe2_join_th: THEOREM(dfe(p1,p3) AND dfe(p2,p3) AND(FORALL p0:dfe(p0,p3) IMPLIES ((p0 = p1) OR (p0 = p2))))IMPLIESIF w(p1,p3) < w(p2,p3) THENsileq(p2,p3)ELSE sileq(p1,p3)ENDIF Table 5.6: A theorem on join of exactly two data-
ow edgesa nonconditional node. If the source is an output port of a conditional node, then thevalue false on the condition port will produce an unde�ned value on its output port.However, a data-
ow edge transforms the unde�ned value into an arbitrary value of anappropriate type of sink. The unde�ned value is not communicated by a data-
ow edgebecause the sink could be an input to another node. In practice, as we have pointed outin Chapter 2, an input is required to be a well-de�ned value, while an output generatedcould be an unde�ned value:xdfe_silimp_th: THEOREMFORALL (n1:node),(p2:port):xdfe(outport(n1),p2) IMPLIES silimp(outport(n1),p2)We again point out that the relation between the source and the sink is a re�nementrather than equivalence. This weaker relation would lead more optimization than if itwere equivalence. This issue is discussed further in Chapter 6 as part of generalizationsof transformations.A useful theorem involving a join of exactly two data-
ow edges, shown in Table 5.6,states that the behavior of a join associated with exactly two data-
ow edges is equalto the behavior of the port from which the edge with a greater weight emanates.We postulate that the ordering on edges is preserved by behavioral re�nement (andtherefore also equivalence). We express the property in PVS as an axiom in Table 5.7 andshow it in Figure 5.7. We can then derive useful extensions of this property of preservingorder by behavioral re�nement. One useful extension for comparing SIL graphs expressesthat the order is preserved with an introduction of an exclusive data-
ow edge betweenan output port of a node and another port. This is shown in Figure 5.8. The statementof the property is the theorem in Table 5.8.50

po_preserve_ax: AXIOMw(p0,p2) < w(p1,p2) ANDsilimp(p0,p00) ANDsilimp(p2,p22) ANDdfe(p00,p22) ANDdfe(p11,p22)IMPLIESw(p00,p22) < w(p11,p22)Table 5.7: Order preserved by re�nement and optimization; see Figure 5.7.
p00

p11

p22

p0

p1

p2
w(p0,p2)

w(p1,p2) w(p11,p22)

w(p00,p22)

silimp

w(p0,p1) < w(p1,p2) IMPLIES w(p00,p22) < w(p11,p22)

silimpFigure 5.7: Order preserved by re�nement and optimization; see Table 5.7.po_preserve_xdfe_th: THEOREMw(p0,p2) < w(p1,p2) ANDsilimp(p2,outport(n3)) ANDxdfe(outport(n3),p4) ANDdfe(p00,p44) ANDdfe(p11,p44) ANDsilimp(p0,p00) ANDsilimp(p1,p11) ANDsilimp(p4,p44)IMPLIESw(p00,p44) < w(p11,p44)Table 5.8: Order preserved by re�nement and exclusive data-
ow edge; see Figure 5.8.51

p2

w(p0,p2) < w(p1,p2) IMPLIES w(p00,p44) < w(p11,p44)

n3

p00

w(p11,p22)

w(p00,p22)

silimp

silimp

p44

p11

p0

p1

w(p0,p2)

w(p1,p2) silimp

silimp

outport(n3)

xdfe

p4

Figure 5.8: Order preserved by re�nement and exclusive data-
ow edge; see Table 5.8.
52

sub_kind_implement_ax: AXIOMFORALL (n0:node),(n1:node|same_size(n0,n1)):sub_kind(n0,n1) AND silimpar(inports(n0),inports(n1)) IMPLIESsilimp(outport(n0),outport(n1))Table 5.9: Graph re�nement: property expressing relation between outputs and inputsof graphs independent of underlying behavior; see Figure 5.9.Similarly, we have corresponding postulates and theorems for arrays of ports insteadof individual ports. However, we have to make a slight modi�cation on comparing portarrays for inequality { that is, we will interpret the inequality operator /= to meanthat the port arrays do not have any port in common. We have such a facility ofoverloading operators and functions in PVS. In comparing behaviors of SIL graphs, we�nd that the properties expressed using arrays of ports instead of individual ports, makespeci�cations more succinct and economical.Finally, we need a re�nement relation for graphs. A graph re�nes or implementsanother graph, when the data relation of the implementing node is contained in the datarelation of the speci�cation node. We call the implementing graph the sub kind of thespeci�cation node. Instead of describing the graph re�nement by describing containmentof their data relations, we specify the relationship by using a higher level property. Itis the property that, when the inputs of the implementation graph are a re�nementof the inputs of the speci�cation graph, then the outputs of the implementation graphhave to be re�nements of the speci�cation graph. It should be noted that any stateinformation implicit in a SIL graph is encapsulated in the data relations, thus obviatingthe need to consider behavior histories, rather than a single clock cycle behavior. ThePVS speci�cation in Table 5.9 illustrates the property in Figure 5.9.This allows us to compare output ports, given a relationship among the input portsand the relationship between the nodes. It should be noted that this represents atypical example of how we express a property for comparing ports, without a detailedrepresentation of the input/output ports and data relations of the nodes. We alsointroduce convenient predicates in Table 5.10 to express that two nodes, having thesame number of input ports (i.e., they are of the same size), are of the same kind if theyhave the same data relations. 53

silimpar

n1

n0

silimpsub_kind

inports(n0)

inports(n1)

outport(n0)

outport(n1)Figure 5.9: Graph re�nement: property expressing relation between outputs and inputsof graphs independent of underlying behavior; see Table 5.9.
same_kind(cn0,(cn1|same_size(cn1,cn0))) =datarel(cn0) = datarel(cn1)sks(cn0,cn1) =same_size(cn0,cn1) AND same_kind(cn0,cn1)Table 5.10: Predicates for expressing the sameness of nodes54

Chapter 6Speci�cation and Veri�cation ofTransformationsThe formal model of the SIL graph structure and behavior can be used to specify andverify the correctness of transformations. Here, we present optimization transforma-tions, such as Common Subexpression Elimination and Cross-Jumping Tail-Merging.We have veri�ed the correctness of other optimization transformations, and a similartechnique can be adopted for verifying the correctness of re�nement transformations.We present an overview of speci�cation and veri�cation of transformations in section 6.1.We explain in detail common subexpression elimination in Section 6.2 and cross-jumpingtail-merging in section 6.3. We brie
y mention speci�cation and veri�cation of othertransformations and proofs in Section 6.4, and generalization and composition of trans-formations in Section 6.5. In Section 6.6, we illustrate with an example the usefulness ofthe axiomatic speci�cation in investigating \what-if" scenarios. Finally, in Section 6.7,we illustrate a new transformation devised in the process of generalization and \what-if" analysis. This transformation can be used for further optimization and re�nement.This could not have been achieved by the existing transformations de�ned in the currentsynthesis framework.6.1 OverviewThe general method we employ to specify and verify transformations consists of thefollowing steps:1. Specify the structure of SIL graph on which the transformation is to be applied.The structure speci�cation could be of graph templates or classes of SIL graphsrather than a particular concrete graph.55

parr

dot1

dot0 p1
p2

dot01

par

Figure 6.1: Common subexpression elimination; see Table 6.1.2. Assert that the structure of the SIL graph satis�es the preconditions imposed onits structure for applying the transformation. The preconditions would consistof constraints imposed on structural connectivity and ordering through sequenceedges.3. Specify the structure of the SIL graph expected after the transformation is applied.4. In the case of verifying re�nement, we impose the constraint that the correspond-ing inputs of the SIL graphs before and after transformation are silimpar { thatis, the set of input values to the SIL graph after transformation is a subset ofthe set of input values to the SIL graph before the transformation. For behavioralequivalence, the constraint is imposed as sileqar: the sets of input values to bothgraphs are identical.5. Verify the property that the outputs of the SIL graph before transformation aresilimpar { that is, the outputs of SIL graph after transformation are re�nementsof corresponding outputs of the SIL graph before transformation. In the case ofbehavior preserving transformation, the corresponding outputs are veri�ed to besileqar.6.2 Common Subexpression EliminationIn this transformation, two nodes of the same kind, which take identical inputs, aremerged into one node as shown in the Figure 6.1.We �rst specify the preconditions imposed on the nodes and the input ports con-nected to the nodes:� The nodes must be of the same kind56

� The ports connected to the input ports of one node must be identical to thoseconnected to the input ports of the other node.� The input ports should not be left dangling: they are required to have an incomingdata-
ow edge.For convenience, we will assume that the joins at the input ports of the nodes havebeen resolved. Such a resolution of the joins would leave exactly one data-
ow edgeconnecting each input port of the nodes. Relaxing that assumption would not changeour veri�cation of correctness of the transformation, except for an additional step ofresolving the joins before the transformation is applied:preconds(dot0,(dot1:{dot1|same_kind(dot0,dot1)})):boolean =% input ports of dot0 and dot1 are connected to identical ports,% and there exists at least one such set of ports(FORALL (par|is_outportar(par) AND same_size(par,inports(dot0))):xdfear(par,inports(dot0)) IFF xdfear(par,inports(dot1))) AND(EXISTS (par|is_outportar(par) AND same_size(par,inports(dot0))):xdfear(par,inports(dot0)))We then specify the structure of the graphs before and after applying the transfor-mation. The statement of correctness is asserted as a theorem that, if the inputs forthe graph are sileq then the outputs of the graph are sileq. The theorem is stated inTable 6.1.6.3 Cross-Jumping Tail-MergingIn the cross-jumping tail-merging transformation, two conditional nodes whose outputports connect to the same sink are checked for being mutually exclusive { that is, ifthe conditions on both of the conditional ports are not true (or false) at the same time(when exactly one of them is true at any time). In such a case, the two nodes can bemerged into one unconditional node of the same kind, and the conditions moved to thenodes of the subgraph connecting it. We show this transformation in Figure 6.2.In the course of our speci�cation in PVS, we found a mistake in the informal spec-i�cation of the transformation. We show the erroneous transformation that was givenin the original informal speci�cation in Figure 6.3.However, the same mistake was discovered later by inspection of the informal spec-i�cation [Klo 94] independently, without the aid of our formalization. The error thatoccurred in the original informal speci�cation was the incorrect placing of the conditionson the nodes. With such a placing, the correctness of the transformation depends onthe ordering of the output ports of dot0 and dot1. When condition c is true, the values57

CSubE: THEOREMFORALL dot0,(dot1|same_kind(dot1,dot0)),(dot01|same_kind(dot01,dot0)):((preconds(dot0,dot1) AND% structure before transformation(FORALL (par|is_outportar(par) AND same_size(par,inports(dot0))):xdfear(par,inports(dot0)) IFF(EXISTS (parr|is_outportar(parr) ANDsame_size(parr,inports(dot0))):% ports connecting to dot0 and dot01 are equivalent(sileqar(par,parr) AND xdfear(parr,inports(dot01))))))IMPLIES% corresponding output ports of graphs before and after transformation are% equivalent(FORALL p1,p2:((xdfe(outport(dot0),p1) ORxdfe(outport(dot1),p1)) ANDxdfe(outport(dot01),p2)) IMPLIESsileq(p1,p2))) Table 6.1: Correctness of common subexpression elimination; see Figure 6.1.
True (False)

False (True)

pp0

n1

n0

dot1

dot0

False (True)

True (False) pp00

n00

n11

dot01Figure 6.2: Cross-jumping tail-merging: corrected.58

pp0 True (False)

False (True)

n00

n11

dot01

pp00

True (False)

False (True)

b0

n1

dot0

dot1

c

c

q00

q11

q0

q1

r0

r1

r01Figure 6.3: Cross-jumping tail-merging: incorrectly speci�ed in informal document.
59

w0 < w1 IFF war0 < war1

par1

par0
dot0

dot1

w0

w1

pp0

par11

par00

dot01
pp00

war1

war0

Figure 6.4: Cross-jumping tail-merging: generalized and veri�ed; see Table 6.3.at q1 and so r1 are arbitrary, while the values at q0 and r0 are well-de�ned. Thus if anordering is imposed such that the port pp0 gets the value at r2, then that value wouldbe arbitrary. However, in the transformed �gure, the condition c being true results inan ordering such that r01 gets the value of q00, and vice-versa when c is false. Thus,the transformation would not be correctness preserving.The placing of the conditions as given in Figure 6.3 is leads to violation of precondi-tions - because it prohibits comparing two ports joined exclusively to conditional nodes {that is, xdfe(p1,p2) AND is outport of conditionalnode(p1) does not ensure sileq(p1,p2).We found this violation at the very early stage of stating the theorem corresponding tothe transformation. Further, we could relax the mutual exclusiveness constraint. Weintroduce a weak assumption that the ordering of the data-
ow edges coming out of thenodes dot0 and dot1 in the original graph is the same as the ordering of the data-
owedges coming into the node dot01 in the optimized graph. We have suitably modi�ed,generalized, and veri�ed the transformation. The generalized transformation is shownin Figure 6.4. The PVS speci�cation of the preconditions is shown in Table 6.2, andthe theorem statement is shown in Table 6.3.6.4 Other Transformations and ProofsWe have speci�ed and veri�ed other transformations, such as copy propagation, constantpropagation, common subexpression insertion, commutativity, associativity, distributiv-ity and strength reduction described by Engelen and others [EMH 93].In general, the proofs of transformations, proceed by rewriting, using axioms andproved theorems, and �nally simplifying to a set of Boolean expressions containing onlyrelations between ports and port arrays. At this �nal stage the BDD simpli�er in PVS isused to determine that the conjunction of Boolean expressions is indeed true. We showthe number of high level inference rule applications required for verifying the varioustransformations in Table 6.4. The high level inference rules are the rules that the user60

would use to guide the PVS theorem prover to derive a proof of a theorem. Examplesof high level inference rules [SOR 93-2] are skolem! for removing universal quanti�ers,assert to apply arithmetic decision procedures and rewriting, bddsimp for Booleanreasoning using BDD, and inst? for heuristic instantiation of existential quanti�ers.The PVS decision procedures for rewriting, and arithmetic and Boolean reasoning coulduse a number of lower level inference rules that are hidden from the user. Examples ofproof transcripts for common subexpression elimination and cross-jumping tail-mergingare given in Appendix B.6.5 Generalization and Composition of TransformationsWe have seen earlier, in Chapter 6.3, that the speci�cation has assisted in generalizingthe transformation. In addition, we can make other observations on using our workto generalize many transformations. For example, by replacing the equivalence rela-tion sileq by silimp, we �nd that the optimization transformations can be generalizedas re�nement transformations, and the preconditions imposed by the transformationscould be relaxed. Having a mechanized formal approach such as ours, as opposed toapproaches that are informal or formal approaches not mechanized has an advantage inthe aspect of modifying speci�cations - the experiments of modifying speci�cations couldbe performed in a framework, that allows one to rapidly verify that the modi�cationsdo not violate the correctness properties.The general technique to investigate composition of transformations is to determinethat the preconditions imposed by one transformation are satis�ed by another transfor-mation. This also applies in the case where a transformation could be applied on onesubgraph, while another could be applied on a disjoint subgraph, without having to takeinto account the e�ect of one transformation on the preconditions imposed by another.For example, common subexpression elimination (CsubE) produces a subgraph with anoutput port that is a distribute. Whereas, copy propagation (Copy Prop) [EMH 93]can be applied only to a subgraph that does not have a distribute output port. Wecan determine in our speci�cation that if we perform CsubE, the conjunction of thesubgraph relation thus obtained and the preconditions for performing Copy Prop onthe same subgraph are false.6.6 Investigations into \What-if?" ScenariosOne of the bene�ts of our formalism is that it allows us to provide answers to questionson the applicability of transformations, and provide formal justi�cations that supportthe answer. A question that comes up quite often in a transformational design processis whether a transformation that has been applied on a graph could still be appliedwith small changes in the graph. We illustrate this point in the context of a situation61

w0
= w1 pp0

dot0
par0

par1

par11

par00

dot01
pp00

war1

war0

NOT (w0 < w1 IFF war0 < war1)

Figure 6.5: Cross-jumping tail-merging: inapplicable when two nodes are merged intoone.that resulted during the transformational design of a direction detector [Mid 94-2]. Itinvolved a variation of the cross-jumping tail-merging transformation. In Figure 6.4, ifwe merge the nodes nodes dot0 and dot1 in the graph before applying the transforma-tion, the precondition for the transformation would no longer be true. This is shown inFigure 6.5.Since the nodes are merged, w0 = w1. While, due the ordering imposed by join,either war0 < war1 or war1< war0. Thus the equivalence relation w0 < w1 IFF war0 <war1 no longer holds, and so the precondition for the application of the transformationis violated. This precludes the application of the transformation on the modi�ed graph.6.7 Devising New TransformationsIn Section 6.6, we argued that cross-jumping tail-merging could not be applied in casesas shown in Figure 6.5. However, we would like to have such a transformation for fur-ther optimization in cases as shown in Figure 6.6. We can view this as a transformationderived from the process of generalizing cross-jumping tail-merging and common subex-pression elimination. In this transformation, two identical nodes with mutually exclusiveconditions (i.e exactly one node will be active at any time) have inputs from identicalnodes, which in turn have identical inputs. At �rst, it appears that we could apply acombination of common subexpression elimination and cross-jumping tail-merging. Ifwe apply common subexpression elimination �rst, to obtain a single node whose out-put is connected to the mutually exclusive nodes, then we cannot apply cross-jumpingtail-merging as shown in Figure 6.7. On the other hand, if we apply cross-jumpingtail-merging �rst, the outputs of the other pair of identical nodes form a join at theinput of the single node obtained. In this case, we cannot apply common subexpressionelimination as shown in Figure 6.8.The problem can be solved by devising a new and simple transformation as follows.In the description of common subexpression elimination shown in Figure 6.1, the outputsof nodes dot01 and dot1 were required to be not connected to join ports. However,62

ELSE R2(R1(a,b))
pp0 = IF c THEN R2(R1(a,b))

pp00

dot01
True (False)

False (True)

pp0

n1

n0

dot1

dot0

a

b

pp00 = R2(R1(a,b))

Data relations of dot0, dot1, dot01 = R2
Data relations of n0, n1, n01 = R1

a

b

n01

Figure 6.6: Further optimization impossible using existing transformations.
True (False)

False (True)

pp0

n1

n0

dot1

dot0

a

b

True (False)

False (True)

pp0

dot1

dot0

n0

b

a

Data relations of n0, n1, n01 = R1

Data relations of dot0, dot1, dot01 = R2

Figure 6.7: Inapplicability of cross-jumping tail-merging after common subexpressionelimination: due to precondition restrictions.63

True (False)

False (True)

pp0

n1

n0

dot1

dot0

a

b dot0

n1

n0

a

b False (True)

True (False)
pp0

Data relations of n0, n1, n01 = R1

Data relations of dot0, dot1, dot01 = R2

Figure 6.8: Inapplicability of common subexpression elimination after cross-jumpingtail-merging: due to precondition restrictions.
64

c

R1sub_kind(n2,n1) IMPLIES R2

p1

p1

a

b

a

b

n1

n2

data relation of node n1 = R1
data relation of node n2 = R2

c

IF c THEN p1 = R1(a,b)
ELSE p1 = R2(a,b)

p1 = R1(a,b)

sub_kind(n2,n1) AND
;

n1

Figure 6.9: A simple new transformation: obvious, post-facto.we can relax this constraint, and provide a new and simple transformation that can beused to optimize a dependency graph. We show the new transformation in Figure 6.9.We could have arrived at the transformation in an ad hoc manner simply by examiningthe semantics of a conditional expression. However, we devised the transformationafter examining by doing a \what-if" analysis formally in the problem of composingtwo transformations. This suggests that our formal model can be used to devise newtransformations in a methodical manner.
65

sks(cn1:cnode,cn2:cnode) = same_kind(cn1,cn2) AND same_size(cn1,cn2)preconds(dot0,(dot1:{dot|sks(dot,dot0)}),(dot01:{dot|sks(dot,dot0)}),(par0:{par|is_outportar(par)&same_size(par,inports(dot0))}),(par1:{par|is_outportar(par)&same_size(par,inports(dot0))}),(par00:{par|is_outportar(par)&same_size(par,inports(dot0))}),(par11:{par|is_outportar(par)&same_size(par,inports(dot0))}),pp0,pp00)=% connectivity at the input ports of SIL graph before transformationxdfear(par0,inports(dot0)) AND xdfear(par1,inports(dot1)) AND(w(outport(dot0),pp0) < w(outport(dot1),pp0) IFFwar(par00,inports(dot01)) < war(par11,inports(dot01))) AND% connectivity at the output ports of SIL graph before transformationdfe(outport(dot0),pp0) AND dfe(outport(dot1),pp0) AND(FORALL pp: ((pp /= outport(dot0)) OR (pp /= outport(dot1)))IMPLIES NOT dfe(pp,pp0)) AND% connectivity at the input ports of SIL graph after transformationdfear(par00,inports(dot01)) AND dfear(par11,inports(dot01)) AND(FORALL (par|size(par)=size(par00)):(par /= par00 AND par /= par11)IMPLIES NOT dfear(par,inports(dot01))) AND% connectivity at the output ports of SIL graph after transformationxdfe(outport(dot01),pp00) AND% corresponding input ports of graph before and after transformation% are equivalentsileqar(par0,par00) AND sileqar(par1,par11)Table 6.2: PVS speci�cation of preconditions for cross-jumping tail-merging66

CjtM: THEOREMFORALL (dot0:cnode):LETsks = LAMBDA (cn0:cnode),(cn1:cnode):same_size(cn0,cn1) AND same_kind(cn0,cn1),sk = LAMBDA (n:cnode):sks(n,dot0),ios = LAMBDA par:is_outportar(par) & same_size(par,inports(dot0))INFORALL (dot1|sk(dot1)),(dot01|sk(dot01)),(par0|ios(par0)),(par1|ios(par1)),(par00|ios(par00)),(par11|ios(par11)):% structure and preconditions on graphs before and after transformationpreconds(dot0,dot1,dot01,par0,par1,par00,par11,pp0,pp00)IMPLIES% corresponding output ports are equivalentsileq(pp0,pp00)Table 6.3: Correctness of cross-jumping tail-merging; see Figure 6.4.Transformation Number of high level inference rule applicationsCommon subexpression elimination 30Common subexpression insertion 25Cross-jumping tail-merging 56Copy propagation 10Constant propagation 2Strength reduction 2Commutativity 3Associativity 3Distributivity 3Retiming 3Self-inverse 1Table 6.4: Number of high level inference rule applications for various transformations67

68

Chapter 7Discussion and ConclusionsOne of the goals of high-level synthesis is to achieve designs that are correct by construc-tion. We recall from Chapter 1 that a transformation is correct if the set of behaviorsallowed by the implementation derived from the transformation is a subset of the be-haviors permitted by the original speci�cation. In this work, we have attempted tohelp accomplish the goal of correctness by construction in verifying the correctness oftransformations used in dependency graph formalisms. However, we have to note thedistinction between the transformations as documented and intended by the informalspeci�cation and the transformations actually implemented in software. We explain thisdistinction in Section 7.1. In Section 7.2, we brie
y present our experience in developinga formal speci�cation from an informal document. We highlight the advantages of anaxiomatic approach in Section 7.3. Finally, Section 7.4 summarizes the conclusions.7.1 Intent versus ImplementationOur veri�cation has addressed the transformations as documented and intended by theinformal speci�cation, and not the transformations actually implemented in software.One has to determine manually if the implemented transformations do, in fact, carryout the intended transformations that have been veri�ed. In general, there is no prac-tical mechanized method to check if software programs (such as those implementedin C) satisfy their speci�cations. But, in order to check the correctness of the imple-mented transformations, one has to �rst ensure that the intended transformations asdocumented are correct.The correctness problem of the implemented transformations could be partly tackledin another manner. We can compare the dependency graph that is taken as the inputby the software for transformation with the dependency graph that is the output ofthe software after applying the transformation. However, this would entail developingconcrete behavioral models of the dependency graphs. But, a concrete behavior modelbasis would make the applicability of the formalization more restricted.69

7.2 From Informal to Formal Speci�cationThe most di�cult part in this investigation has been developing a proper formal speci-�cation from informal speci�cations. Even though the informal speci�cations were well-documented, creating a formal speci�cation required expressing informal ideas such asbehavior and mutual exclusiveness in mathematically precise terms. One particulardetail in this respect is the following: the informal document describes a value of aconditional node as unde�ned when the condition on its condition port is false. In-troducing a notion of unde�ned value would need a special entity to be introduced forevery data type. Further, we would also have to associate a meaning with such specialentities. To avoid speci�cation di�culties in stating what unde�ned means, we chose tospecify how an unde�ned value a�ects the overall behavior of a subgraph in which sucha node is embedded. Such choices have to be made with care towards speci�cation andveri�cation ease.One of the �rst tasks that aids the speci�cation process is the choice of abstractionlevel: how much of the detail present in the informal document should the speci�ca-tion represent? The choice could be based on how the formal speci�cation has to beveri�ed. For example, we chose not to represent behavior at all: we could express be-havioral equivalence (re�nement) by an equivalence (re�nement) relation, and expressthe properties that needed to be satis�ed by the SIL graphs.Another important issue in developing a formal speci�cation from an informal doc-ument is deciding on data structures to represent entities speci�ed informally. It isdesirable to have a formal speci�cation that very closely resembles the informal docu-ment. This is essential to map a formal speci�cation back to its informal document. Itis essential also for understanding a formal speci�cation, and for tracing errors that havebeen found in the speci�cation back to its informal representation. We can highlightone such data structure that PVS allows us to use: the record type. As we have seen inTable 4.2, it permits us to package all the �elds of a conditional node cn, and then ac-cess the individual �elds such as inports of the cn by inports(cn). This syntax closelyresembles the informal speci�cation. Besides providing a simple syntax, the record typealso allows making the type of one �eld depend on the type of another �eld. We haveseen such dependent typing in our de�nition of arrays of ports parray in Chapter 4.Alternatively, we could have used Abstract Data Types (ADT) in our formal speci�ca-tion. This would have an advantage of encapsulating well-formedness of the structureof dependency graphs within the behavior speci�cation. However, this would mean im-posing an abstract syntax structure for the behavior. Since our investigation primarilyinvolves transformations which transform structure, it would be di�cult to work witha speci�cation that has an integrated structure and behavior.The properties we have tabled in our formalism could form the basis of studying howwe could formulate a composite behavior from smaller behavioral relations. In an earlierwork at the register-transfer level [KoW 93], an automatic procedure for functionalveri�cation of retiming, pipelining and bu�ering optimization has been implemented in70

RetLab as part of the PHIDEO tool at PRL. We have arrived at proofs of propertiesthat could form the basis of a semiautomatic procedure for checking re�nement andequivalence at higher levels.7.3 Axiomatic Approach versus Other Formal Ap-proachesThe advantage in an axiomatic framework is that we could assert properties of SILgraphs that have to hold, without having to specify in detail the behavioral relationsor their composition and equivalence. We could therefore embed o�-the-shelf data-
owdiagrams used in the Structured Analysis/Design approach [TDM 94,HMW 94] in ourformalism. One particular example of the advantage of our approach is establishingre�nement and equivalence, without expressing the concrete relation between outputsand inputs of nodes. This property, expressed in Table 5.9 and Figure 5.9, does notuse any information on the concrete data and order relations of the nodes. Moreover,the automatic veri�cation procedures, simple interactive commands, and many featuressuch as editing and rerunning proofs in PVS made the task of checking properties andcorrectness much easier than anticipated.In contrast to an axiomatic approach, a model-oriented approach would compare twodependency graph models with respect to behavior. Such a model-comparison methodwould involve verifying that the behavior of the transformed model satis�es the behav-ior of the original model. However, this entails developing concrete behavioral modelsof the dependency graphs, and formulating the meaning of behavioral re�nement, andequivalence. Such concrete modeling of behavior, re�nement and equivalence would im-pose restrictions on the domains where the formalization could be applied. Furthermore,such a modeling would make it inconvenient to study the correctness of transformationson graphs with arbitrary structure. For example, in our approach, we could handlenodes with an unspeci�ed number of ports in studying the correctness problem. Thisdistinction is similar to the contrast between axiomatic semantics and denotational oroperational semantics in the context of programming languages. Denotational and op-erational models worked out by de Jong and Huijs [GGJ 93,HuK 94] could be used asa concrete model that satis�es the axiomatic speci�cation discussed in this report.As a typical example, we are given the behavioral relations of the nodes in a SILgraph and the structural connectivity of the graph. There is no general way to composethese relations into a single behavioral relation for comparison with that obtained fromanother SIL graph. Moreover, from the behavioral description in SIL, it is not possible ingeneral to extract a state machine or a �nite automaton model, and use state machine orautomata comparison techniques. This is due to the generality of the dependency graphbehavior. In addition, since many synthesis transformations are applied to descriptionsof behavior within a single clock cycle, there is no explicit notion of state in such a71

description. This reinforces the judgment that state machine or automata comparisontechniques are not suitable.7.4 Conclusions and Future WorkIn this work, we have provided an axiomatic speci�cation for a general dependency graphspeci�cation language. We have given a small set of axioms that capture a general no-tion of re�nement and equivalence of dependency graphs. We have speci�ed and veri�edabout a dozen of the optimization and re�nement transformations. We found errors inthis process, and suggested corrections. We have also generalized the transformationsby weakening the preconditions for applying the transformations, and veri�ed their cor-rectness. In this process, we have devised new transformations for further optimizationand re�nement than would have been possible before. We have explored generatingpreconditions for transformations semiautomatically from the speci�cations. Our workhas also aided investigating interactions between the transformations, and thus the im-portance of the order of applying the transformations. The transformations we haveveri�ed are being used in industry to design hardware from high level speci�cations.We also plan to use our framework to investigate the correctness of transformationsinvolving scheduling and resource allocation.The approach we have used, based on expressing properties at a high level, does notdepend on the underlying model of behavior. This enabled us to use our formalism fordependency graph speci�cations in other areas such as structured analysis in softwaredesign. Thus, the ability to capture an o� the shelf formalism underpins our thesis thatan axiomatic speci�cation coupled with an e�cient mechanical veri�cation is the mostsuitable approach to study the correctness of transformations on generic dependencygraphs. Finally, we have shown that our approach, and formal methods in general cancreatively help discover new techniques in system design. As part of the future work,we are considering a seemless integration of our veri�cation scheme with VLSI CADtools for hardware design and CASE tools for software design.
72

References[AaL 94] M. Aagaard and M. LeeserPBS: Proven Boolean Algorithm, IEEE Trans. on CAD of ICs. Vol 13, No. 4, April1994.[AAD 93] F.V. Aelten, J. Allen, and S. DevadasVeri�cation of Relations between Synchronous Machines, IEEE Trans. on CAD ofICs. Vol. 12, No. 12, December 1993.[Ael 94] F.V. Aelten, J. Allen, and S. DevadasEven-Based Veri�cation of Synchronous Globally Controlled, Logic Designs AgainstSignal Flow Graphs, IEEE Trans. on CAD of ICs., Vol. 13, No. 1 January 1994.[Ang 94] C. AngeloFormal Hardware Veri�cation in a Silicon Compilation Environment by means oftheorem proving, PhD Thesis, IMEC, Leuven, Belgium, February 1994.[Bac 88] R.J.R. BackA Calculus of Re�nements for Program Derivations, Acta Informatica, Vol. 25,pp.593-624, 1988.[Bar 81] M. R. BarbacciInstruction Set Processor Speci�cations (ISPS): The notation and applications,IEEE Trans. on Computers, C-30(1): pp 24-40, 1981.[BRB 90] K.S. Brace, R.L. Rudell, and R.E. BryantE�cient Implementation of a BDD Package, Proceedings of the 27th ACM/IEEEDesign Automation Conference, Orlando, Florida, June 24-28, 1990, pp. 40-45.[YIF 88] R.K. Brayton, R. Camposano, G. DeMicheli, R.H.J.M. Otten, and J.T.J. vanEijndhovenThe Yorktown Silicon Compiler System, Silicon Compilation, D. Gajski (Ed.),Addison-Wesley, 1988.[BCM 90] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and J. HwangSymbolic Model Checking: 1020 states and beyond, Proceedings of the Fifth AnnualSymposium on Logic in Computer Science, June 1990.73

[Cam 89] R. CamposanoBehavior Preserving Transformations in High Level Synthesis, Hardware Speci�-cation, Veri�cation and Synthesis: Mathematical Aspects, Cornell MSI Workshop,Lecture Notes in Computer Science 408, pp 106-128, Springer-Verlag, July 1989.[UNI 88] M. Chandy and J. MisraParallel Program Design: a foundation, Reading, Mass. : Addison-Wesley Pub.Co., c1988.[CBL 92] R. Chapman, G. Brown, and M. LeeserVeri�ed High-Level Synthesis in BEDROC, Proceedings of the 1992 EuropeanDesign Automation Conference, March 1992, IEEE Press.[ELL 90] Computer General Electronic DesignThe ELLA Language Reference Manual, The New Church,Henry St. Bath BA1 1JR, U.K., issue 4.0, 1990.[Cyr 93] D. CyrlukMicroprocessor Veri�cation in PVS: A methodology and simple example,SRI-CSL-93-12, Technical Report, Computer Science Laboratory, SRI Interna-tional, Menlo Park, CA, December 1993.[CRS 94] D. Cyrluk, S. Rajan, N. Shankar, and M. SrivasE�ective Theorem Proving for Hardware Veri�cation, Proceedings of the 2nd Inter-national Conference on Theorem Provers in Circuit Design, Bad Heerenalb (Black-forest), Germany, 26-29 September, 1994.[TDM 94] Tom DeMarcoStructured Analysis and System Speci�cation, Yourdon Press, New Jersey, USA,1979.[EMH 93] W.J.A Engelen, P.F.A. Middelhoek, C. Huijs, J. Hofstede, and Th. KrolApplying Software Transformations to SIL,SPRITE deliverable Ls.a.5.2/UT/Y5/M6/1A, June 1993.[Fou 90] M. P. FourmanFormal System Design, Formal Methods for VLSI Design, J. Staunstrup (ed.),North-Holland, IFIP 1990.[GaG 89] S. J. Garland and J. V. GuttagAn Overview of LP: the Larch Prover, Proceedings of the Third InternationalConference on Rewriting Techniques and Applications, Springer-Verlag, 1989.[GoM 93] M. J. C. Gordon and T. F. Melham (Ed.)Introduction to HOL: a theorem proving environment for higher order logic, Cam-bridge University Press, 1993. 74

[Hoa 85] C. A. R. HoareCommunicating Sequential Processes, Prentice Hall, Hemel Hempstead, UK, 1985.[Hil 85] P. N. Hil�ngerSilage: a High-level Language and Silicon Compiler for Digital Signal Processing,Proceedings of IEEE Custom Integrated Circuits Conference pp 213-216, Portland,OR, May 1985.[Hoo 94] Jozef HoomanCorrectness of Real Time Systems by Construction, Proceedings, Symposium onFormal Techniques in Real Time and Fault Tolerant Systems, LNCS, Springer-Verlag, September 20-24, 1994 (to appear).[HHK 92] C. Huijs, J. Hofstede, and Th. KrolTransformations and semantical checks for SIL-1,SPRITE deliverable LS.a.5.1/UT/Y4/M6/1, November 1992.[HuK 94] C. Huijs and Th. KrolA Formal Semantic Model to �t SIL for Transformational Design, to appear in:Microprocessing and Microprogramming 39 (1994) Proceedings of Euromicro '94,September 5-8-1994 Liverpool.[VHD 88] The Institute of Electrical and Electronics EngineersIEEE Standard VHDL Language Reference Manual, IEEE std. 1076-88, IEEEPress, New York, 1988.[Jan 93] G. JanssenROBDD software, Department of Electrical Engineering, Technical University ofEindhoven, Eindhoven, Netherlands, October 1993.[Joh 94] S. D. JohnsonSynthesis of Digital Designs from Recursion Equations, MIT Press, Cambridge,1984.[Jon 90] G. Jones and M. SheeranCircuit Design in Ruby, Formal Methods for VLSI Design, J. Staunstrup (ed.),North-Holland, IFIP 1990.[GGJ 93] G.G de JongGeneralized data
ow graphs: theory and applications, PhD Thesis, EindhovenUniversity of Technology, October 1993.[JRS 91] J. Joyce, E. Liu, J. Rushby, N. Shankar, R. Suaya, and F. von HenkeFrom Formal Veri�cation to Silicon Compilation, Proceedings of the IEEE Com-pcon, San Francisco, CA, February 1991, pp. 450-45575

[Klo 92] W.E.H. Kloosterhuis, M.R.R. eyckmans, J. Hofstede, C. Huijs, Th. Krol, O.P.McArdle, W.J.M. Smits, and L.G.L. SvenssonThe SPRITE Input Language SIL-1, Language Report, SPRITE, deliverable Ls.a.a/ Philips / Y3 / M12 / 2, October 1992.[Klo 94] W.E.H. KloosterhuisPersonal Communication, January 1994.[KoW 93] A. P. Kostelijk and A. van der WerfFunctional Veri�cation for Retiming and Rebu�ering Optimization, Proceedingsof The European Conference on Design Automation with the European Event inASIC Design, Paris, France, Feb 22-25, 1993, IEEE Computer Society Press.[Kro 92] Th. Krol, J.v. Meerbergen, C. Niessen, W. Smits, and J. HuiskenThe SPRITE Input Language, An intermediate format for High Level Synthesis,Proceedings of EDAC 92, Brussels, 16-19 March 1992, pp 186-192.[LOR 93] Patrick Lincoln, Sam Owre, John Rushby, N. Shankar, F. von HenkeEight Papers on Formal Veri�cation, Technical Report SRI-CSL-93-4, ComputerScience Laboratory, SRI International, Menlo Park, CA, May 1993.[McF 93] M.C. McFarlandFormal Analysis of Correctness of Behavioral Transformations, Formal Methodsin Systems Design Vol.2, No.3 pp. 231-257, Kluwer, June 1993.[McP 83] M.C. McFarland and A.C. ParkerAn Abstract Model of Behavior for Hardware Descriptions, IEEE Trans. on Com-puters C-32(7), pp.621-36, July 1983.[KLM 92] Kenneth L. McMillanSymbolic Model Checking, PhD Thesis, Technical Report, CMU-CS-92-131 pp 97-99, May 1992.[Mid 93] P.F.A. MiddelhoekTransformational Design of Digital Circuits, Proceedings of the Seventh WorkshopComputersystems, 26 November 1993, Eindhoven, The Netherlands, pp. 57-68.[Mid 94] P.F.A. MiddelhoekTransformational Design of Digital Signal Processing Applications, Proceedings ofthe ProRISC/IEEE workshop on CSSP, 24 March 1994, pp. 175-180.[Mid 94-2] P.F.A. MiddelhoekTransformational Design of a Direction Detector for the Progressive Scan Con-version Algorithm, Preliminary, Department of Computer Science, University ofTwente, May 25, 1994. 76

[OSR 93] S. Owre, N. Shankar, and J.M. RushbyUser Guide for the PVS Speci�cation and Veri�cation System, Language, and ProofChecker (Beta Release), Computer Science Laboratory, SRI International, MenloPark, CA, USA, February, 1993.[RTJ 93] Kamlesh Rath, M. Esen Tuna, and Steven D. JohnsonAn Introduction to Behavior Tables, Technical Report No. 392, Computer ScienceDepartment, Indiana University, December 1993.[Ros 90] Lars RossenFormal Ruby, Formal Methods for VLSI Design, J. Staunstrup (ed.), North-Holland, IFIP 1990.[Sax 93] J. B. Saxe, J.J. Horning, J.V. Guttag, and S.J. GarlandUsing Transformations and Veri�cation in Circuit Design, Formal Methods inSystems Design Vol.3, No.3, pp. 181-209, Kluwer, December 1993.[SOR 93-1] N. Shankar, S. Owre, and J.M. RushbyA Tutorial on Speci�cation and Veri�cation using PVS (Beta Release), ComputerScience Laboratory, SRI International, Menlo Park, CA, USA, March 31, 1993.[SOR 93-2] N. Shankar, S. Owre, and J.M. RushbyThe PVS Proof Checker, A Reference Manual (Beta Release), Computer ScienceLaboratory, SRI International, Menlo Park, CA, USA, March 31, 1993.[Kid 90] Douglas R. SmithKIDS: A Semi-Automatic Program Development System, Transactions on SoftwareEngineering: Special Issue on Formal Methods, Vol. 16, No. 9, September, 1990.[Sta 90] J. Staunstrup and M. GreenstreetSynchronized Transitions, Formal Methods for VLSI Design, J. Staunstrup (ed.),North-Holland, IFIP 1990.[Tho 98] D. Thomas, E.M. Dirkes, R.A. Walker, J.V. Rajan, J.A. Nestor, and R.L.BlackburnThe System Architect's Workbench, Proceedings of the 25th Design AutomationConference, ACM/IEEE, pp 337-343, 1988.[Vem 90] R. VemuriHow to Prove the Completeness of a Set of Register Level Design Transformations,Proceedings of the 27th Design Automation Conference, pp. 207-212, ACM/IEEE,June 1990[WMM 94] A. van der Werf, J.L. van Meerbergen, O. McArdle, P.E.R. Lippens, W.F.J.Verhaegh, and D. GrantProcessing Unit Design, Proceedings of the SPRITE workshop on \VLSI Synthesisfor DSP", Section 12, Philips Research Labs, Eindhoven, March 1994.77

[JMW 90] Jeannette M. WingA Speci�er's Introduction to Formal Methods, IEEE Computer, Vol. 23, Number9, pp 8-22, IEEE Computer Society Press, September 1990[HMW 94] M. WongInformal, Semi-formal, and Formal Approaches to the speci�cation of software Re-quirements, Masters Thesis, Department of Computer Science, UBC, September1994.[WrS 91] J. von Wright and K. SereProgram Transformations and Re�nements in HOL, Higher Order Logic TheoremProving and its Applications, International Workshop, Proceedings, M. Archer,J.J. Joyce, K.N. Levitt and P.J. Windley (Eds.), IEEE Computer Society Press,August 28-30, 1991.

78

Appendix ADe�nitions, Axioms andTheoremsA.1 De�nitionsport: TYPEparray: TYPE = [# size:nat,port_array: ARRAY[{i:nat|i<size}->port] #]cnode: TYPE =[#inports: parray,outport: port, % strictly, this should also be% parray (as in SPLIT) for% hierarchical nodes.intports: parray,condport: port,cond:pred[port],datarel: pred[[{p:parray|size(p)=size(inports)},port]],orderrel:pred[[{p:parray|size(p)=size(inports)},port]],intrel: pred[[parray,parray]]#]% derive a node as a subtype of cnodenode: TYPE = {n:cnode|cond(n)=LAMBDA (p:port):TRUE}79

cn0,cn1: VAR cnodepar0,par1: VAR parray% Useful functions in comparing nodes and parrayssame_size(cn0,cn1):boolean =size(inports(cn0)) = size(inports(cn1))same_size(par0,par1):boolean =size(par0) = size(par1)% same_size appears as a type constraintsame_kind(cn0,(cn1|same_size(cn1,cn0))) =datarel(cn0) = datarel(cn1)sks(cn0,cn1) =same_size(cn0,cn1) AND same_kind(cn0,cn1)% refinement/implementation relationship between nodessub_kind(cn0,(cn1|same_size(cn1,cn0))):booleansbks(cn0,cn1) = same_size(cn0,cn1) AND sub_kind(cn0,cn1)% defines behavioral implication of sil graphs/portssilimp: pred[[port,port]]p0,p1,p2: VAR portpar,par1,par2,par3: VAR parrayi: VAR nat% defines array version of silimp: note the weak axiom defsilimpar(par1,par2):boolean% defines a behavioral equivalence of sil graphssileq(p1,p2):boolean =silimp(p1,p2) AND silimp(p2,p1)
80

% array versionsileqar(par1,par2):boolean =FORALL (i| i < size(par1)):sileq(port_array(par1)(i),port_array(par2)(i))% Arbitrary functions corresponding to data_rel of nodessilf: VAR [port->port]silfar: VAR [parray->port]<: pred[[weight,weight]]% data flow edge is a relation on portsdfe: [port,port -> boolean]% an arbitrary fixed function corresponding to portsw: [port,port->weight]p,p0,p1,p2,p3,p4: VAR portcn,cn0,cn1,cn2,cn3: VAR cnoden,n0,n1,n2,n3: VAR nodeinport(cn,(i:{j:nat|j<size(inports(cn))})):port =(port_array(inports(cn)))(i)intport(cn,(i:{j:nat|j<size(intports(cn))})):port =(port_array(intports(cn)))(i)% define useful macrosis_outport(p) = (EXISTS cn: p=outport(cn))is_inport(p) = (EXISTS cn,(i:{j:nat|j<size(inports(cn))}):p=inport(cn,i))is_condport(p) = (EXISTS cn: p=condport(cn))
81

% array version of dfear and xdfear and orderingwar: [parray,parray->weight] % or weightarray??par,parr,par0,par1,par00,par11,par2,par3: VAR parraydfear(par0,(par1:{par|same_size(par,par0)})):boolean =(FORALL (i|i<size(par0)):dfe(port_array(par0)(i),port_array(par1)(i)))xdfear(par0,(par1:{par|same_size(par,par0)})):boolean =(FORALL (i|i<size(par0)):xdfe(port_array(par0)(i),port_array(par1)(i)))% array version of the above corresponding theorems -% illustrates clarity of specificationis_node_outport(p):boolean =EXISTS n: p = outport(n)is_outportar(par):boolean =FORALL (i|i<size(par)): is_node_outport(port_array(par)(i))is_cnode_outport(p):boolean =EXISTS (cn:cnode): p = outport(cn)is_cnoutportar(par):boolean =FORALL (i|i<size(par)): is_cnode_outport(port_array(par)(i))% definition of an assignment nodeasignment(cn:cnode):node =cn WITH [inports := inports(cn) WITH [size := 1]]WITH [dataf := LAMBDA (p:parray): outport(cn) =port_array(inports(cn))(0)]% definition of floor function for real-integer% refinement transformationfloor(x): int =epsilon (LAMBDA y: y <= x AND y > (x-1))
82

A.2 Axioms
cn: VAR cnodecnode_ax: AXIOMFORALL cn: cond(cn)(condport(cn)) IMPLIESdatarel(cn)(inports(cn),outport(cn))silimpar_ax: AXIOMFORALL par1,(par2|same_size(par1,par2):(FORALL (i| i< size(par1)):EXISTS j: silimp(port_array(par1)(i),port_array(par2)(j))) IFFsilimpar(par1,par2)% Reflexivitysilimp_refl_ax: AXIOM silimp(p1,p1)% Transitivitysilimp_trans_ax: AXIOMFORALL p0,p1,p2:silimp(p0,p1) AND silimp(p1,p2) IMPLIES silimp(p0,p2)silimpar_trans_ax: AXIOMsilimpar(par1,par2) AND silimpar(par2,par3)IMPLIESsilimpar(par1,par3) 83

% sub kind nodes implement each othersub_kind_implement_ax: AXIOMFORALL (n0:node),(n1:node|same_size(n0,n1)):sub_kind(n0,n1) AND silimpar(inports(n0),inports(n1))IMPLIESsilimp(outport(n0),outport(n1))self_seq_edge_not_ax: AXIOM FORALL (p:port) NOT sqe(p,p)% partial order relation on weightspartial_order(<:pred[[weight,weight]])dfe_port_ax1: AXIOMdfe(p1,p2) IMPLIES is_outport(p1)dfe_port_ax2: AXIOMdfe(p1,p2) IMPLIES (is_inport(p2) OR is_condport(p2))% We need these general axioms on dfes and partial order on w'sdfe_w_ax: AXIOM(dfe(p0,p2) AND dfe(p1,p2))IFF(w(p0,p2) < w(p1,p2) ORw(p1,p2) < w(p0,p2))% if the conditional port val is false, then the w involving its% output port is the least!: this is the property of the bottom% we want!!cond_bottom_ax: AXIOMNOT cond(cn)(condport(cn)) IMPLIESFORALL p:dfe(outport(cn),p)IMPLIESFORALL (n:node): dfe(outport(n),p) IMPLIESw(outport(cn),p) < w(outport(n),p)% Generalized join axiomjoin_ax: AXIOM(dfe(p1,p2) AND(FORALL p: dfe(p,p2) IMPLIES w(p,p2) < w(p1,p2)))IMPLIESsilimp(p1,p2) 84

% Partial order preservation: Advanced axiom (we can't prove it% unless we introduce extra delay axioms for nodes/silimp)p00,p11,p22,p33,p44: VAR portpo_preserve_ax: AXIOM(w(p0,p2) < w(p1,p2) ANDsilimp(p0,p00) ANDsilimp(p2,p22) ANDdfe(p00,p22) AND dfe(p11,p22))IMPLIESw(p00,p22) < w(p11,p22)% Generalized join axiom for arraysjoinar_ax: AXIOMFORALL par1,(par2|same_size(par2,par1)):(dfear(par1,par2) AND(FORALL (par|same_size(par,par1)):dfear(par,par2) IMPLIES war(par,par2) < war(par1,par2)))IMPLIESsilimpar(par1,par2)

85

86

A.3 Theorems
% property of an non-conditional nodenode_data_rel_th: THEOREMFORALL (n:node): datarel(n)(inports(n),outport(n))silimpar_refl_th: THEOREMsilimpar(par,par)% sileq_ar_reflsileqar_refl_th: THEOREMsileqar(par1,par1)% sileq_ar_symsileqar_sym_th: THEOREMFORALL par1,(par2:{par|same_size(par,par1)}):sileqar(par1,par2)= sileqar(par2,par1)% sileq_ar_transsileqar_trans_th: THEOREMFORALL par1,(par2:{par|same_size(par,par1)}),(par3:{par|same_size(par,par1)}):(sileqar(par1,par2) AND sileqar(par2,par3))IMPLIESsileqar(par1,par3)% same kind non-conditional nodes propagate similar outputsin_eqar_imp_outeq: THEOREMFORALL (n0:node),(n1:node|sks(n0,n1)):sileqar(inports(n0),inports(n1))IMPLIESsileq(outport(n0),outport(n1)) 87

% Make sure of no joins in this theorem:% Holds only if the dfe connects an outport of a% non-conditional node: partly taken care of by typing% (n1 is an ordinary node type)xdfe_sileq_th: THEOREMxdfe(outport(n1),p2) IMPLIES sileq(outport(n1),p2)% partial order preservation extension theorempo_preserve_xdfe_th: THEOREM(w(p0,p2) < w(p1,p2) ANDsileq(p2,outport(n3)) ANDxdfe(outport(n3),p4) ANDdfe(p00,p44) AND dfe(p11,p44) AND silimp(p0,p00) ANDsilimp(p1,p11) AND silimp(p4,p44))IMPLIESw(p00,p44) < w(p11,p44)% Join of 2 dfesdfe2_join_th: THEOREM(dfe(p1,p3) AND dfe(p2,p3) AND(FORALL p0:((p0 /= p1) OR (p0 /= p2))IMPLIES NOT dfe(p0,p3)))IMPLIESIF w(p1,p3) < w(p2,p3) THENsileq(p2,p3)ELSE sileq(p1,p3)ENDIF
88

% array version theoremsinports_sileqar_th: THEOREMFORALL (nd:node):FORALL (n0:node|same_size(n0,nd)),(n1:node|same_size(n1,nd)):((FORALL (i|i<size(inports(nd))),n:xdfe(outport(n),inport(n0,i)) IFF(EXISTS (nn:node): sileq(outport(n),outport(nn)) ANDxdfe(outport(nn),inport(n1,i)))) AND(FORALL (i|i<size(inports(nd))):EXISTS n: xdfe(outport(n),inport(n0,i)))IMPLIESsileqar(inports(n0),inports(n1)))inports_eqar_th: THEOREMFORALL (n0:node),(n1:node|same_size(n0,n1)):((FORALL (i|i<size(inports(n0))),n:xdfe(outport(n),inport(n0,i)) IFFxdfe(outport(n), inport(n1,i))) AND(FORALL (i|i<size(inports(n0))):EXISTS n: xdfe(outport(n),inport(n0,i)))IMPLIESsileqar(inports(n0),inports(n1)))xdfear_sileqar_th: THEOREMFORALL (par0|is_outportar(par0)),(par1|same_size(par1,par0)):xdfear(par0,par1) IMPLIES sileqar(par0,par1)
89

% Inports connected by exclusive data flow edge arrays% to identical ports are sileqarinportsar_eqar_th: THEOREMFORALL (n0:node),(n1:node|same_size(n0,n1)):(((FORALL (par|is_outportar(par) AND same_size(par,inports(n0))):xdfear(par, inports(n0)) IFF xdfear(par,inports(n1))) AND(EXISTS (par|is_outportar(par) AND same_size(par,inports(n0))):xdfear(par, inports(n0)))) IMPLIESsileqar(inports(n0),inports(n1)))% Inports connected by exclusive data flow edge arrays% to sileq port arrays sileqarinportsar_sileqar_th: THEOREMFORALL (n0:node),(n1:node|same_size(n0,n1)):(((FORALL (par|is_outportar(par) AND same_size(par,inports(n0))):xdfear(par,inports(n0)) IFF(EXISTS (parr|is_outportar(par) ANDsame_size(parr,inports(n0))):(sileqar(par,parr) ANDxdfear(parr,inports(n1))))) ANDEXISTS (par|is_outportar(par) AND same_size(par,inports(n0))):xdfear(par,inports(n0)))IMPLIES sileqar(inports(n0),inports(n1)))
90

dfear2_join_th: THEOREMFORALL par1,(par2|same_size(par2,par1)),(par3|same_size(par3,par1)):(dfear(par1,par3) AND dfear(par2,par3)) AND(FORALL (par|same_size(par,par1)):(par /= par1 OR par /= par2)IMPLIESNOT dfear(par,par3))IMPLIESIF war(par1,par3) <= war(par2,par3)THEN sileqar(par2,par3)ELSE sileqar(par1,par3)ENDIF% Common Subexpression Elimination Transformationp0,p1,p2,p3: VAR portpar,parr: VAR parraydot0,dot1,dot01: VAR node% The preconditions can be weakend at par, such as -% to exists par1: silimp(par1,par)preconds(dot0,(dot1:{dot1|same_kind(dot0,dot1)})):boolean =(FORALL (par|is_outportar(par) AND same_size(par,inports(dot0))):xdfear(par,inports(dot0)) IFF xdfear(par,inports(dot1))) AND(EXISTS (par|is_outportar(par) AND same_size(par,inports(dot0))):xdfear(par,inports(dot0)))CsubE: THEOREMFORALL dot0,(dot1|same_kind(dot1,dot0)),(dot01|same_kind(dot01,dot0)):((preconds(dot0,dot1) AND(FORALL (par|is_outportar(par) AND same_size(par,inports(dot0))):xdfear(par,inports(dot0)) IFF(EXISTS (parr|is_outportar(parr) ANDsame_size(parr,inports(dot0))):(sileqar(par,parr) AND xdfear(parr,inports(dot01)))))) IMPLIES(FORALL p1,p2:((xdfe(outport(dot0),p1) OR xdfe(outport(dot1),p1)) ANDxdfe(outport(dot01),p2)) IMPLIES sileq(p1,p2))) 91

% Cross Jumping Tail Merging Theoremp0,p00,p1,p11,p2,p22,p3,p33,pp,pp0,pp00: VAR portn,dot,dot0,dot1,dot01: VAR nodecn2,cn3,cn22,cn33: VAR cnodepar,par0,par1,par00,par11,par2,par3: VAR parray% preconditionspreconds(dot0,(dot1:{dot|sks(dot,dot0)}),(dot01:{dot|sks(dot,dot0)}),(par0:{par|is_outportar(par)&same_size(par,inports(dot0))}),(par1:{par|is_outportar(par)&same_size(par,inports(dot0))}),(par00:{par|is_outportar(par)&same_size(par,inports(dot0))}),(par11:{par|is_outportar(par)&same_size(par,inports(dot0))}),pp0,pp00) =xdfear(par0,inports(dot0)) AND xdfear(par1,inports(dot1))AND(w(outport(dot0),pp0) < w(outport(dot1),pp0)IFFwar(par00,inports(dot01)) < war(par11,inports(dot01)))ANDdfe(outport(dot0),pp0) AND dfe(outport(dot1),pp0)AND(FORALL pp: ((pp /= outport(dot0)) OR (pp /= outport(dot1)))IMPLIESNOT dfe(pp,pp0))ANDdfear(par00,inports(dot01)) AND dfear(par11,inports(dot01))AND(FORALL (par|size(par)=size(par00)):(par /= par00 OR par /= par11)IMPLIESNOT dfear(par,inports(dot01)))ANDxdfe(outport(dot01),pp00) ANDsileqar(par0,par00) ANDsileqar(par1,par11)
92

% Cross jumping tail merging transformations is correct when% the preconditions are satisfiedCjtM: THEOREMFORALL dot0:LET sk = LAMBDA n:sks(n,dot0),ios = LAMBDA par:is_outportar(par) &same_size(par,inports(dot0))INFORALL (dot1|sk(dot1)),(dot01|sk(dot01)),(par0|ios(par0)),(par1|ios(par1)),(par00|ios(par00)),(par11|ios(par11)):preconds(dot0,dot1,dot01,par0,par1,par00,par11,pp0,pp00)IMPLIESsileq(pp0,pp00)

93

94

Appendix BProof TranscriptsB.1 Common Subexpression EliminationTerse proof for CSubE.CSubE:f1g 8 dot0; (dot1 j same kind(dot1; dot0));(dot01 j same kind(dot01; dot0)) :((preconds(dot0; dot1)^(8 (par j is outportar(par) ^ size(par) = size(inports(dot0))) :xdfear(par; inports(dot0)),(9 (parrj is outportar(parr) ^ size(parr) = size(inports(dot0))) :(sileqar(par; parr) ^ xdfear(parr; inports(dot01))))))�(8 p1;p2 :((xdfe(outport(dot0); p1) _ xdfe(outport(dot1); p1))^ xdfe(outport(dot01); p2))� sileq(p1; p2)))Expanding the de�nition of preconds,For the top quanti�er in 1, we introduce Skolem constants: (dot0!1 dot1!1 dot01!1),Applying disjunctive simpli�cation to
atten sequent,Applying inportsar eqar th where n0 gets dot0!1, n1 gets dot1!1,Replacing using formula -2,Replacing using formula -3, 95

Invoking decision procedures,Applying inportsar sileqar th where n0 gets dot0!1, n1 gets dot01!1,Replacing using formula -5,Replacing using formula -4,Invoking decision procedures,Deleting some formulas,For the top quanti�er in 1, we introduce Skolem constants: (p01 p02),Applying sileqar trans inv th where par1 gets inports(dot0!1), par2 gets inports(dot1!1),par3 gets inports(dot01!1),Invoking decision procedures,Applying in eqar imp outeq where n0 gets dot0!1, n1 gets dot01!1,Applying in eqar imp outeq where n0 gets dot1!1, n1 gets dot01!1,Applying xdfe sileq th whereInstantiating quanti�ed variables,Instantiating quanti�ed variables,Instantiating quanti�ed variables,Invoking decision procedures,Deleting some formulas,Applying sileq trans inv th whereInstantiating the top quanti�er in -1 with the terms: outport(dot0!1), p01,outport(dot01!1),Instantiating the top quanti�er in -1 with the terms: outport(dot1!1), p01,outport(dot01!1),Applying sileq trans ax whereInstantiating the top quanti�er in -1 with the terms: p01, outport(dot01!1), p02,Applying bddsimp, which is trivially true. This completes the proof of CSubE.Q.E.D. 96

B.2 Cross Jumping Tail MergingTerse proof for CjtM.CjtM:f1g (8 (pp0; pp00 : port) :8 (dot0 : node) :let sk : [node ! bool] =� (n : node) : same size(n; dot0) ^ same kind(n; dot0);ios : [parray ! bool] =� (par : parray) : is outportar(par)^ size(par) = size(inports(dot0))in 8 (dot1 : node j sk(dot1)); (dot01 : node j sk(dot01));(par0 : parray j ios(par0)); (par1 : parray j ios(par1));(par00 : parray j ios(par00));(par11 : parray j ios(par11)) :preconds(dot0; dot1; dot01; par0; par1; par00; par11; pp0; pp00)� sileq(pp0; pp00))Expanding the de�nition of preconds,For the top quanti�er in 1, we introduce Skolem constants: (pp0!1 pp00!1),For the top quanti�er in 1, we introduce Skolem constants: (dot0!1),For the top quanti�er in 1, we introduce Skolem constants: (dot1!1 dot01!1 par0!1par1!1 par00!1 par11!1),Applying disjunctive simpli�cation to
atten sequent,Applying xdfear sileqar th whereInstantiating quanti�ed variables,Instantiating quanti�ed variables,Applying dfe2 join th whereInstantiating the top quanti�er in -1 with the terms: outport(dot0!1), outport(dot1!1),pp0!1,Replacing using formula -8,Replacing using formula -9,Replacing using formula -10,Applying dfear2 join th whereInstantiating the top quanti�er in -1 with the terms: par00!1, par11!1, inports(dot01!1),Replacing using formula -12,Replacing using formula -13, 97

Replacing using formula -14,Letting war01 name war(par0!1; inports(dot0!1)) � war(par1!1; inports(dot1!1)),Letting war001 name war(par00!1; inports(dot01!1)) � war(par11!1; inports(dot01!1)),Letting w01 name w(outport(dot0!1); pp0!1) � w(outport(dot1!1); pp0!1),Replacing using formula -1,Hiding formulas: -1,Replacing using formula -1,Hiding formulas: -1,Replacing using formula -1,Hiding formulas: -1,Invoking decision procedures,Deleting some formulas,Deleting some formulas,Replacing using formula -6,Replacing using formula -5,Hiding formulas: -5, -6,Applying sileqar trans inv th whereInstantiating the top quanti�er in -1 with the terms: par0!1, inports(dot0!1), par00!1,Instantiating the top quanti�er in -1 with the terms: par1!1, inports(dot1!1), par11!1,Applying in eqar imp outeq whereInstantiating the top quanti�er in -1 with the terms: dot0!1, dot01!1,Instantiating the top quanti�er in -1 with the terms: dot1!1, dot01!1,Applying xdfe sileq th whereInstantiating quanti�ed variables,Invoking decision procedures,Deleting some formulas,Applying sileqar trans th whereInstantiating the top quanti�er in -1 with the terms: inports(dot1!1), par11!1,inports(dot01!1),Instantiating the top quanti�er in -1 with the terms: inports(dot0!1), par00!1,inports(dot01!1),Invoking decision procedures,Deleting some formulas,Applying sileq trans inv th where 98

Instantiating the top quanti�er in -1 with the terms: outport(dot0!1), pp0!1,outport(dot01!1),Instantiating the top quanti�er in -1 with the terms: outport(dot1!1), pp0!1,outport(dot01!1),Applying sileq trans ax whereInstantiating the top quanti�er in -1 with the terms: pp0!1, outport(dot01!1), pp00!1,Applying bddsimp,which is trivially true.This completes the proof of CjtM.Q.E.D.

99

