
GLU Programmer's GuideVersion 0.9 { July 1994R. JagannathanChris DoddComputer Science LaboratorySRI International333 Ravenswood AvenueMenlo Park, California 94025, U.S.A.email: fjaggan,doddg@csl.sri.com

Contents1 Introduction 11.1 What is GLU? : 11.2 How GLU compares with PVM and Linda? : 11.3 How to Read this Guide? : 22 Tutorial Introduction 32.1 LUCID { Declarative Nucleus of GLU : 32.2 GLU { A Procedural Extension to LUCID : 43 LUCID 133.1 Types : 133.2 Constants : 133.3 Variables : 133.4 Operators : 143.4.1 Arithmetic, Relational and Logical Operators : : : : : : : : : : : : : : : : : : : 143.4.2 Operators first and next : 143.4.3 Operator fby : 153.4.4 @ and # Operators : 153.4.5 if-then-else Operator : 153.4.6 Operators asa, wvr, upon : 163.4.7 Operator iseod : 173.4.8 Operator iserror : 173.5 Extra Operators : 183.5.1 Operator `,' : 183.5.2 Operator `!' : 183.5.3 Operator `?' : 183.6 Expressions : 183.7 User-de�ned Functions : 193.8 Nested Computations : 203.9 Array Computations : 223.10 Dimensional Abstraction : 233.11 Operator Arity : 263.12 Default Dimension Rule : 264 From LUCID to GLU 274.1 C Data Types : 274.2 C Prototype Function Declarations : 284.3 C Function De�nition Conventions : 29i

ii 4.3.1 Parameter Passing : 294.3.2 Returning Dynamic Objects : 294.3.3 Globals : 304.3.4 Static Variables : 304.4 Preprocessor : 304.5 Comments : 304.6 Annotations : 304.6.1 Local versus Remote Function Execution : 304.6.2 Remote Execution Mapping : 315 Compilation and Execution 325.1 Source to Executables : 325.2 Running Program Executables : 33Bibliography 35A Syntax of GLU Programs 36A.1 Scope Rules : 36A.1.1 Program Variables : 36A.1.2 Dimensional Names : 36A.1.3 Precedence and Associativity Rules : 36A.1.4 Reserved Words : 37A.2 Extended BNF Syntax for GLU Programs : 37B Prede�ned Functions 39C Manual Pages for GLU Commands 40gc { GLU compiler : 41glu { GLU runtime system : 43

Chapter 1IntroductionThis report is a programmer's guide to GLU (Granular LUCID). It is written for those interested indeveloping high-performance application software on a variety of platforms. It assumes that readersare well-versed in procedural programming and have a basic understanding of parallel and distributedprogramming.1.1 What is GLU?GLU is a very-high-level system for constructing and executing high-performance applications fordiverse platforms ranging from heterogeneous workstation clusters to shared-memory multiprocessorsto massively parallel processors.In GLU, a high-performance application is a LUCID1 composition of sequential functions ex-pressed in the C language2 . GLU allows code fragments from existing sequential applications tobe reused and only a small amount of new code to be written. Applications expressed in GLU areimplicitly parallel and inherently adaptive. In addition, GLU applications are highly portable acrossmultiple platforms.1.2 How GLU compares with PVM and Linda?It is useful to briey compare and contrast GLU with other systems for constructing and executinghigh-performance applications such as PVM [1] and Linda [2].While both PVM and Linda o�er communication and synchronization support for interactingautonomous processes, the burden of coming up with a process architecture to implement the appli-cation in parallel is on the programmer. A process architecture is a set of interacting processes in aparticular arrangement that reects the manner in which the application has been partitioned andthe granularity of parallelism. With both PVM and Linda, process architecture for an applicationis developed in an ad hoc manner by the programmer. Whereas with GLU, both the partitioningstrategy and granularity of parallelism are integrated into the composition speci�cation from whichthe process architecture is automatically generated.With PVM, it is also necessary for the programmer to specify how the process architecture willbe mapped onto a target system and, when applicable, how load balancing will be conducted. This islikely to vary across di�erent target architectures. With Linda, both mapping and load balancing areaddressed by the system as the programmer assumes a simple shared-memory programming model.1LUCID is a multidimensional dataow language.2Whereas C is the procedural language we currently support, we plan to directly support other languages.1

2With GLU, the mapping and load balancing strategies are integrated into the composition speci�-cation itself. Thus, they are automatically incorporated into the application process architecture.One of the unique natural strengths of GLU is adaptivity . That is, GLU applications cantolerate failure of individual processors or links as well as adapt during execution to using additionalprocessors.The best way to contrast GLU with PVM and Linda is to think of it as a much higher levelprogramming system. In fact, it is possible, in principle, to implement GLU using PVM or Linda.1.3 How to Read this Guide?The readers are encouraged to read Chapter 2 �rst where a quick tour of GLU programming isgiven. Chapter 3 describes the language LUCID which is at the heart of GLU. Chapter 4 describesGLU as a hybrid of LUCID and C. Chapter 5 discusses the compilation and execution process forGLU programs. The rest of the guide consists of appendices. Appendix A gives a BNF descriptionof GLU, scope rules, and operator precedence. Appendix B describes standard (prede�ned) GLUfunctions that are useful in constructing GLU applications. Appendix C contains \man pages" forthe compiler and the runtime system.

Chapter 2Tutorial IntroductionThe purpose of this chapter is to show the essential elements of GLU by example, without gettingmired in the precise details of the language. Whereas reading only this chapter will not be su�cientto program e�ectively in GLU, it will help in understanding the GLU programming model and alsowill help in writing some simple yet useful programs. The chapters that follow give a more thoroughdescription of GLU.Programming in GLU is natural, but it requires a shift in the way one thinks of programming,which often is imperative. There are two ways to think of the GLU model of programming. The �rstway is as a hybrid of declarative (LUCID) programming in which one speci�es what to compute andimperative (C) programming in which one speci�es how to compute. The second way to think of GLUis as a procedurally-extended declarative programming language , i.e., LUCID with C extensions.Both views are valid { the �rst suits those who are familiar with procedural programming while thelatter suits those who are familiar with declarative programming . We appeal to both these views,as appropriate, in the rest of the chapter.2.1 LUCID { Declarative Nucleus of GLULet us briey consider the declarative part of GLU. It corresponds to the language LUCID (circa1994) which is both a functional and indexical1 language.We distinguish between functional and indexical programming by writing two LUCID programsfor computing the Fibonacci sequence , which is de�ned mathematically as follows:fibi = (i if i = 0 or i = 1fibi�1 + fibi�2 otherwiseHere is a purely functional program in LUCID to compute fib:fib(i) = if (i == 0 || i == 1) then ielse fib(i-1) + fib(i-2) fi;The important thing about this program is that fib is a recursively de�ned function { to computefib3, function fib(3) is invoked which requires the computation of fib(2) and fib(1) andthe computation of fib(2) would require the computation2 of fib(1) and fib(0).Here is a purely indexical program in LUCID to compute fib:1Briey, a language is indexical if meanings of expressions depend on a set of implicit contexts each of which varyover an index set . Interested readers should consult [3].2Multiple computations of fib(1) can be avoided if results of function calls are stored (function memoization).3

4 fib = 0 fby 1 fby fib + next fib;The important thing to note here is that fib is a nullary (argument-less) function (which we referto as a variable) which denotes a sequence of values over a time dimension . The de�nition of fibstates that the �rst element of the sequence is 0, the second element of the sequence is 1 and eachsubsequent element is computed by adding the preceding two elements. This, in fact, correspondsto the mathematical de�nition except that it is indexless; rather the index is implicit or hidden.To compute fib3, one needs to compute fib at time 3 (or fib(time=3)) which is the sum offib(time=2) and fib(time=1). We know that fib(time=1) is 1 and fib(time=2) is the sum offib(time=0) and fib(time=1) (which is already computed.)Since LUCID is functional, its programs are referentially transparent and can be given meaningmathematically. Since LUCID is also indexical, it o�ers a fundamentally distributed view of bothcomputation and data structures.2.2 GLU { A Procedural Extension to LUCIDGLU is a simple yet powerful extension of LUCID: user-de�ned functions in GLU can be de�nedprocedurally and values they consume and produce can be complex data structures.This extension makes two things possible: �rst, conventional parallel computers can be pro-grammed and second, existing sequential applications can be parallelized without having to rewritethem from scratch.Consider the problem of multiplying two matrices , say A and B, and obtaining a product matrixC. The standard solution is to obtain each element (i; j) of the product matrix C by multiplyingthe ith row of A with the jth column of B and summing the inner product. A procedural program(in the language C) for multiplying matrices is given below.#include <stdio.h>struct matrix {int nrows, ncols;float **v;};typedef struct matrix *MATRIX;MATRIX block(MATRIX M, int frow, int lrow, int fcol, int lcol){ MATRIX m;int i, j;m = (MATRIX) malloc(sizeof(struct matrix));m->nrows = lrow - frow + 1; m->ncols = lcol - fcol + 1;m->v = (float **) malloc(m->nrows * sizeof(float *));for(i=0; i<m->nrows; i++)m->v[i] = (float *) malloc(m->ncols * sizeof(float));for(i=0; i<m->nrows; i++)for(j=0; j<m->ncols; j++)m->v[i][j] = M->v[frow+i][fcol+j];return(m);

GLU Programmer's Guide (Version 0.9) 5}MATRIX mult(MATRIX a, MATRIX b){ MATRIX m;int i, j, k;float s;m = (MATRIX) malloc(sizeof(struct matrix));m->nrows = a->nrows; m->ncols = b->ncols;m->v = (float **) malloc(m->nrows * sizeof(float *));for(i=0; i<m->nrows; i++)m->v[i] = (float *) malloc(m->ncols * sizeof(float));for(i=0; i<m->nrows; i++)for(j=0; j<m->ncols; j++){ s = 0;for(k=0; k<a->ncols; k++)s = s + a->v[i][k]*b->v[k][j];m->v[i][j] = s;}return(m);}MATRIX matmult(MATRIX A, MATRIX B){int i, j, nr, nc;MATRIX C, r;nr = A->nrows;nc = B->ncols;C = (MATRIX) malloc(sizeof(struct matrix));C->nrows = nr; C->ncols = nc;C->v = (float **) malloc(nr*sizeof(float *));for(i=0; i<nr; i++)C->v[i] = (float *) malloc(nc*sizeof(float));for(i=0; i<nr; i++)for(j=0; j<nc; j++){ r = mult(block(A,i,i,0,nc-1), block(B,0,nr-1,j,j));C->v[i][j] = r->v[0][0];}return(C);}main(){ MATRIX A, B, C;MATRIX inA(), inB();

6 void out();A = inA();B = inB();C = matmult(A, B);out(C);}The only user-de�ned datatype in the above program is MATRIX, which is a pointer to the structurematrix that consists of the number of rows, number of columns, and a two-dimensional array offloats.In the above program, functions inA and inB are used to input matrices and out is used to outputthe product matrix; function �block is used to extract a submatrix from a matrix; function mult isused to multiply compatible submatrices; and function matmult uses the above-mentioned functionsto multiply two matrices.We can develop a variant of function matmult as given below:MATRIX lefthalf(MATRIX A){ return(block(A, 0, A->nrows-1, 0, A->ncols/2 - 1));}MATRIX righthalf(MATRIX A){ return(block(A, 0, A->nrows-1, A->ncols/2, A->ncols-1));}MATRIX tophalf(MATRIX A){ return(block(A, 0, A->nrows/2 - 1, 0, A->ncols-1));}MATRIX bottomhalf(MATRIX A){ return(block(A, A->nrows/2, A->nrows-1, 0, A->ncols-1));}MATRIX gather(MATRIX tl, MATRIX tr, MATRIX bl, MATRIX br){ MATRIX m;int i, j, hnr, hnc;m = (MATRIX) smalloc(sizeof(struct matrix));m->nrows = tl->nrows*2; m->ncols = tl->ncols*2;m->v = (float **) malloc(m->nrows*sizeof(float *));for(i=0; i<m->nrows; i++)m->v[i] = (float *) malloc(m->ncols * sizeof(float));hnr = m->nrows / 2;hnc = m->ncols / 2;for(i=0; i<m->nrows; i++)for(j=0; j<m->ncols; j++){

GLU Programmer's Guide (Version 0.9) 7if(i < hnr){ if(j < hnc)m->v[i][j] = tl->v[i][j];elsem->v[i][j] = tr->v[i][j-hnc];}else{ if(j < hnc)m->v[i][j] = bl->v[i-hnr][j];elsem->v[i][j] = br->v[i-hnr][j-hnc];}}return(m);}MATRIX matmult(MATRIX A, MATRIX B){MATRIX C, TL, TR, BL, BR;TL = mult(tophalf(A), lefthalf(B));TR = mult(tophalf(A), righthalf(B));BL = mult(bottomhalf(A), lefthalf(B));BR = mult(bottomhalf(A), righthalf(B));C = gather(TL, TR, BL, BR);return(C);}In this program, multiplying a matrix consists of simply gathering the submatrices obtained by mul-tiplying the appropriate half-matrices. The gathering function is performed using function gatherwhile selecting the appropriate half-matrices is performed using functions lefthalf, righthalf,tophalf, and bottomhalf each of which are de�ned in terms of block.We now describe how this program can be constructed in GLU.struct matrix {int nrows, ncols;float v[nrows][ncols];};typedef struct matrix *MATRIX;int out(MATRIX);MATRIX inA();MATRIX inB();MATRIX gather(MATRIX, MATRIX, MATRIX, MATRIX);MATRIX lefthalf(MATRIX);MATRIX righthalf(MATRIX);MATRIX tophalf(MATRIX);MATRIX bottomhalf(MATRIX);MATRIX mult(MATRIX, MATRIX);

8 out(C) fby eod whereA = inA();B = inB();C = matmult(A, B);matmult(A, B) = P whereP = gather(TL, TR, BL, BR);TL = mult(tophalf(A), lefthalf(B));TR = mult(tophalf(A), righthalf(B));BL = mult(bottomhalf(A), lefthalf(B));BR = mult(bottomhalf(A), righthalf(B));end;endThe GLU program consists of two parts { the �rst part consists of user-de�ned datatypes anduser-de�ned function-prototype declarations and the second part consists of the composition of theprogram using builtin and user-de�ned functions. The syntax of the �rst part is identical to ANSIC , hence needs no further explanation except for the type de�nition of struct matrix { two-dimensional array v parameterized using two integer variables, nrows and ncols. The compositionitself is simply an expression, in this case out(C) fby eod where the enclosing where clause de�nesthe variable C.The expression out(C) fby eod de�nes a temporal sequence whose �rst element is the result ofinvoking out(C), which has the side-e�ect of displaying matrix C, and whose subsequent elements areall eod, which is a special value denoting end of data. With most GLU interpreters, the operationale�ect of displaying an eod is termination of program execution.The de�nition of C is given in the enclosing where clause as matmult(A, B) where variablesA and B themselves are de�ned using user-de�ned function in. Unlike out and in (which are Cfunctions), matmult is a user-de�ned GLU function with two parameters. Function matmult isde�ned to be the variable P where P itself is the result of applying gather to TL, TR, BL, andBR. Variable TL is the result of multiplying (using mult) the left half of matrix A (obtained usinglefthalf(A)) and the top half of matrix B (obtained using tophalf(B)). Variables TR, BL, andBR are similarly de�ned.It is worth talking about how this composition is evaluated given that it is declarative and notprocedural. The �rst thing that happens is that expression out(C) fby eod is evaluated. It causesout(C) to be evaluated �rst and eod to be evaluated next. Since out is a procedural user-de�nedfunction , it is only invoked when variable C is de�ned and no sooner. To evaluate C, the right-hand-side of its de�nition, matmult(A, B), is evaluated. Since matmult is a composition function andnot a procedural function, it is evaluated even before its arguments A and B are available. In fact,all composition functions are evaluated using \call-by-need" semantics as opposed to \call-by-value"semantics used for C functions.The main di�erence between a GLU program and an equivalent procedural program is that theGLU program is inherently parallel unless otherwise constrained, whereas the procedural program isinherently sequential unless parallelism is explicitly identi�ed. In the example above, with the GLUprogram, the variables TL, TR, BL, and BR can be computed simultaneously resulting in four-foldparallelism whereas these variables have to be evaluated sequentially in the procedural program.Since GLU programs are declarative, they possess the important property of referential trans-parency which means that two occurrences of an expression refer to the same value. Thus, the orderof equations in GLU programs is simply a matter of style and do not a�ect their meanings. One cansubstitute the right-hand-side of an equation for each occurrence of the left-hand-side and vice versa

GLU Programmer's Guide (Version 0.9) 9just as in mathematics.GLU programs separate composition from computation . This is not only important in var-ious aspects of the program development process such as debugging and modi�cation but it alsoencourages reuse of existing computational code across applications.The GLU program described above simply multiplies two matrices then terminates. What if wewant to have the program multiply two streams of matrices pairwise? It turns out that doing so inGLU is not that much more work than multiplying just one pair. The GLU composition is shownbelow:struct matrix {int nrows, ncols;float **m;}typedef matrix *MATRIX;int out(MATRIX);MATRIX inA(int);MATRIX inB(int);MATRIX gather(MATRIX, MATRIX, MATRIX, MATRIX);MATRIX lefthalf(MATRIX);MATRIX righthalf(MATRIX);MATRIX tophalf(MATRIX);MATRIX bottomhalf(MATRIX);MATRIX mult(MATRIX, MATRIX);out(C) whereA = inA(#.time);B = inB(#.time);C = matmult(A, B);matmult(A, B) = P whereP = gather(TL, TR, BL, BR);TL = mult(tophalf(A), lefthalf(B));TR = mult(tophalf(A), righthalf(B));BL = mult(bottomhalf(A), lefthalf(B));BR = mult(bottomhalf(A), righthalf(B));end;endThis program di�ers from the previous one in only two respects: Functions inA and inB now havean argument, #.time , and the program expression is simply out(C) instead of out(C) fby eod.What this program reveals is the underlying context in which GLU programs are evaluated,namely time. That is, each expression (including variables) in the above GLU program actuallydenotes a temporal stream of values. The value of an expression depends not only on the constituentsubexpressions and their binding function but also on the implicit time context. Thus, one can thinkof the equation C = matmult(A, B) as meaning<C0,...,Ct,...> = <matmult(A,B)0,...,matmult(A,B)t,...>where matmult(A,B)t = matmult(At, Bt).Consider the evaluation of out(C)t: it causes Ct to be evaluated, which causes matmult(A,B)tto be evaluated, which, in turn, causes gather(TLt,TRt,BLt,BRt) to be evaluated. Evaluations ofTLt,TRt,BLt, and BRt eventually cause both At and Bt to be evaluated once. Evaluation of At invokesinA with #.time being the current time context, namely, t. (And similarly for Bt.) Once At and Bt

10are available, TLt,TRt,BLt, and BRt can be generated resulting in Ct to be generated and function outto display the matrix.Since evaluation of Ct is independent of Ct+1, it is entirely possible for both these computationsand any others to proceed simultaneously without interference.Suppose we wanted to multiply only the �rst 10 matrix pairs and then terminate { this requireschanging only the program expression from out(C) to if #.time < 10 then out(C) else eod fi.One of the limitations of matmult is that it results in only four-fold parallelism since functionmult is sequential. It is possible to have matmult express more parallelism by making matmultrecursive as shown below:matmult(A, B) =if smallenough(A,B)then mult(A,B)else P fi whereP = gather(TL, TR, BL, BR);TL = mult(tophalf(A), lefthalf(B));TR = mult(tophalf(A), righthalf(B));BL = mult(bottomhalf(A), lefthalf(B));BR = mult(bottomhalf(A), righthalf(B));end;In the above program, we have introduced a function smallenough that helps control the granularityof parallelism by deciding when multiplying two matrices cannot be further subdivided. Compositionfunction matmult itself is recursive { instead of having TL, TR, BL, and BR de�ned in terms of mult,these variables are de�ned using matmult. The parallelism expressed by matmult is no longer four-fold { it is actually O(4L), where L is the number of recursive steps.A drawback of the recursive matmult is the cost associated with repeated division of matricesusing lefthalf, righthalf, tophalf, and bottomhalf. This not only takes time but also causesunnecessary creation and destruction of intermediate matrices. We devise a nonrecursive version ofmatmult that expresses as much parallelism, without the cost of recursion. To do so, we use theGLU notion of user-de�ned multidimensionality.matmult(A, B) = p asa.t ((nrows(A) == nrows(p)) && (ncols(B) == ncols(p)))wheredimension i,j,t;a = rowstrip(A, #.i);b = colstrip(B, #.j);p = mult(a, b) fby.t((gather(p, next.j p, next.i p, next.i next.j p) @.j (2*#.j)) @.i (2*#.i)); end;Composition function matmult is de�ned using a multidimensional computation in dimensionsi, j, and t, which are declared using the dimension declaration within the where clause associatedwith matmult. This multidimensional computation occurs at each time-context in the enclosingtime dimension. It is de�ned to be the value of variable p at context i=0,j=0,t=T where T is thet-context at which the number of rows of the product matrix p is the same as the number of rowsof matrix A and the number of columns is the same as the number of columns of matrix B.Consider the de�nition of variable p:- it says that at any context where t-context 0, it is the valueof mult(a,b) at the same context. Variable a which only varies in dimension i is de�ned as functionrowstrip(A, #.i) where #.i refers to the i-context from the context of evaluation. (rowstrip

GLU Programmer's Guide (Version 0.9) 11basically extracts the ith strip of rows from matrix a.) Variable b which only varies in dimensionj is de�ned as function colstrip(B, #.j) where #.j refers to the j-context from the context ofevaluation. (It extracts the jth strip of columns from matrix b.)Variable p at context (i=I,j=J,t=T) where T>0, is the result of applying function gather to val-ues of variable p at contexts (i=2*I,j=2*J,t=T-1), (i=2*I,j=2*J+1,t=T-1), (i=2*I+1,j=2*J,t=T-1),and (i=2*I+1,j=2*J+1,t=T-1). This can be derived as follows:p(i=I,j=J,t=T) =(gather(p,next.j p,next.i p,next.i next.j)@.j(2*#.j))@.i(2*#.i)(i=I,j=J,t=T-1)= gather(p,next.j p,next.i p,next.i next.j)(i=2*I,j=2*J,t=T-1)= gather(p(i=2*I,j=2*J,t=T-1); p(i=2*I,j=2*J+1,t=T-1);p(i=2*I+1,j=2*J,t=T-1); p(i=2*I+1,j=2*J+1,t=T-1))The best way to visualize the evaluation of matmult is to think of each of its variable as rep-resenting a series of planes (i,j) ordered by time t. Variable a then is a series of identical planes(since the de�nition of a does not depend on time t) where each plane consists of identical columnsof row strips where each row strip is extracted from matrix a. Similarly, variable b is a series ofidentical planes where each plane consists of identical rows of column strips where each column stripis extracted from matrix b. (The row strip size and column strip size are prede�ned.) It is worthnoting that any reasonable implementation of GLU would store values of a for each i-context andvalues of b for each j-context, as they are constant in the remaining two dimensions.Variable p consists of a series of planes, where the initial plane consists of matrix products suchthat the (i; j)th matrix is obtained by multiplying the corresponding (actually ith) row strip of a andcorresponding (actually jth) column strip of b. Each successive plane consists of matrices that arefour times as large where the (i; j)th matrix is obtained by coalescing the four matrices using functiongather in the previous plane at positions (2i; 2j), (2i; 2j + 1), (2i+ 1; 2j) and (2i+ 1; 2j + 1).Assuming that the size of each element matrix in the initial plane is s and the size of the productmatrix is S, the (0; 0)th element of the log2(S=s) plane is the desired product matrix. One wayof determining without keeping track of size is to check if the (0; 0)th element matrix of a planehas the same number of rows as matrix a and the same number of columns as matrix b as inp asa.t ((nrows(A) == nrows(p)) && (ncols(B) == ncols(p))).Similar to the recursive version of matmult, the parallelism in simultaneous execution of mult is4L where L is the number of planes. (L is log2(S=s).)It turns out that this kind of computational structure is common to algorithms that solve quitedi�erent problems. Therefore, it would be desirable to specify the structure in such a way that it canbe not only general but also succinct. This is the idea behind what we call dimensionally-abstractcomposition functions | functions that abstract not only data but also abstract dimensions. Weillustrate one such function, planar tree, in matmult.planar_tree.x,y(f, a, size) = b asa.t s >= sizewheredimension t;b = a fby.t((f(b, next.y b, next.x b, next.y next.x b) @.x (2 * #.x)) @.y (2 * #.y));s = 1 fby.t 4*s;end;matmult(A, B) = planar_tree.i,j(gather, mult(a, b), n)wheredimension i,j;

12 a = rowstrip(A, ROWSTRIPSIZE, #.i);b = colstrip(B, COLSTRIPSIZE, #.j);n = (nrows(A) / ROWSTRIPSIZE) * (ncols(B) / COLSTRIPSIZE);end;In matmult, planar tree is invoked with dimensions x and y corresponding to i and j, f corre-sponding to data function gather, a corresponding to mult(a,b), and m corresponding to n.It turns out that planar tree is quite useful in expressing a wide range of computational struc-tures. Hence it has been prede�ned in a �le called std.g that can be included using the standard Cinclude facility in a GLU program. (See Appendix B.)This concludes the tutorial introduction to programming in GLU. The reader should now be ableto have a basic understanding of the GLU model of programming and how it di�ers from purelyimperative and purely functional models. The reader should also be able to write simple GLUprograms starting from existing C programs.

Chapter 3LUCIDAt the outset we stated that LUCID forms the nucleus of GLU. In this chapter, we describe theingredients of LUCID in detail. Although LUCID has been around since 1974, what we describe hereis the latest incarnation of LUCID (circa 1994), which is substantially di�erent from its predecessors.3.1 TypesValues in LUCID can be one of two scalar types: integer and oating point. LUCID also providestwo special values: eod (referred to as `end of data') which is of a special type that can be onlymanipulated by a speci�c operation (iseod) and error (referred to as `error object') which is alsoof a special type that can be only manipulated by a speci�c operation (iserror) . Although thereare no booleans, LUCID follows the C convention in that integer 0 is interpreted as false and anyother integer value is interpreted as true. LUCID does not directly provide for any aggregate typessuch as arrays, structures or linked lists.There is no explicit declaration for types of values. Value types are implicit and they are deter-mined at compile time using type analysis of the associated expression. For example,x = 3.0 fby 4.0;y = if x then 3 else 4 fi;Values of x are oats because x is de�ned in terms of two oats. Values of y are integer because thevalues that y can be assigned are both integers even though the predicate x is float.3.2 ConstantsLUCID provides for numeric constants (both integers and oats) and for the special constants eodand error. As mentioned earlier, a constant is not simply a scalar value. Rather, it is an in�nitesequence of values where each value is the same. For example, 3 denotes the constant sequence< 3; 3; : : : ; 3; : : : >, 4.0 denotes the constant sequence < 4:0; 4:0; : : : ; 4:0; : : : >, and eod denotes theconstant sequence < eod; eod; : : : ; eod; : : : >.3.3 VariablesA variable in LUCID is simply a named expression . A variable name can only be de�ned once withinits scope. Its name can be any alphanumeric identi�er starting with a letter and it can include thespecial character ` ' (underscore). 13

14 A variable is de�ned using an equation in which the variable is on the left-hand side of theequation and the de�ning expression is on the right-hand side. The following are valid variablede�nitions:two = 2;root = (-b - s) / (two*a);otherroot = (-b + s) / (two*a);s = sqrt(b*b - 4*a*c);In each of the examples, the variable on the left-hand side denotes a sequence of values associatedwith the expression on the right-hand side.3.4 OperatorsLUCID has several prede�ned operators that can be divided into two general categories: pointwiseoperators and nonpointwise operators . With pointwise operators, to compute a result value at acertain point in the sequence requires only values at the same point from the operand sequences. Alloperators for which this is not true are nonpointwise operators. We describe and de�ne these oper-ators assuming that sequences are one-dimensional. Later we extend them to multiple dimensions.3.4.1 Arithmetic, Relational and Logical OperatorsThe arithmetic, relational, logical, and bitwise logical operators in LUCID are the same as in Cand they are all pointwise. The arithmetic operators are + for addition, - for subtraction, * formultiplication, / for division, % for modulus, and unary - for negative. The relational operators are> for greater than, >= for not less than, < for less than, <= for not greater than, == for equal to, and!= for not equal to. The logical operators are && for conjunction, || for disjunction, and unary !"!@!!unary for negation. The bitwise logical operators are & for \and", | for \or", << for left shift,>> for right shift, ^ for exclusive-or and ~ for 1's complement.Here are some examples. (In these and other examples, we use the convention that the �rstelement of a sequence has a box around it.)A is 0 1 2 3 � � �B is 1 3 5 7 � � �A + B is 1 4 7 10 � � �A % 2 != 0 is 0 1 0 1 � � �B >> 1 is 0 1 2 3 � � �3.4.2 Operators first and nextThe first and next operators are the two simplest nonpointwise unary LUCID operators . Operatorfirst returns a sequence each of whose values is the �rst value of the operand sequence. Operatornext returns a sequence that consists of all but the �rst value of its operand sequence.A is 0 1 2 3 � � �first A is 0 0 0 0 � � �next A is 1 2 3 4 � � �next next A is 2 3 4 5 � � �first next next A is 2 2 2 2 � � �

GLU Programmer's Guide (Version 0.9) 153.4.3 Operator fbyThe operator fby (pronounced \followed by") is a binary non-pointwise operator that accepts twosequences and produces a result sequence whose �rst element is from the �rst operand sequence andwhose subsequent elements correspond to the second operand sequence.A is 0 1 2 3 � � �B is 11 21 31 41 � � �A fby B is 0 11 21 31 � � �B fby A is 11 0 1 2 � � �A fby B fby A+B is 0 11 11 22 33 � � �A fby next B is 0 21 31 41 � � �The following are mathematical de�nitions of some of the operators we have informally described.Note that the subscript refers to the implicit context or index.[0]k = 0[A+B]k = [A]k + [B]k[A!=B]k = [A]k 6= [B]k[!A]k = ! [A]k[firstA]k = [A]0[nextA]k = [A]k+1[A fbyB]k = if k � 0 then [A]k else [B]k�1 �3.4.4 @ and # OperatorsThe @ (at) operator is the most primitive LUCID operator using which most of the other LUCIDoperators can be de�ned. The @ operator takes two sequences, a base sequence and an index sequence,and creates a new sequence by using each value of the index stream as an index or a context intothe base sequence.The # operator (hash) operator makes explicit the underlying implicit index in a particulardimension. In particular, #.dim gives the current underlying dim-context where dim is the name ofa dimension such as time.A = 1 1 2 3 5 8 13 21 34 55 � � �B = 1 2 4 8 7 0 5 2 3 9 � � �A @ B = 1 2 5 34 21 1 8 2 3 55 � � �#.time = 0 1 2 3 4 5 6 7 8 � � �Denotationally, the @ and # operators can be de�ned as follows.[A @B]k = [A][B]k[#.time]k = k3.4.5 if-then-else OperatorThe if-then-else operator takes three sequences, a boolean sequence and two base sequences, andcreates a new sequence by using each value of the boolean sequence to select the corresponding valuefrom the �rst base sequence if true and the corresponding value from the second base sequence iffalse.

16 P = � � � 1 0 0 1 1 1 1 0 1 0 � � �A = � � � 10 1 2 3 5 8 13 21 34 55 � � �B = � � � 21 2 4 8 7 0 5 2 3 9 � � �if P then A else B fi = � � � 10 2 4 3 5 8 13 2 34 9 � � �Operators first, next, and fby can be de�ned in terms of @ and of-then-else as shown below.first A = A @ 0next A = A @ (#.time + 1)A fby B = if (#.time)==0 then A @ 0 else B @ (#.time - 1) fi3.4.6 Operators asa, wvr, uponThe LUCID operator asa (pronounced \as soon as") accepts two operand sequences and producesa result sequence. This operator can be thought of as producing an operand dependent constantsequence. The value of this constant is the kth value of the �rst operand sequence such that the kthvalue of the second operand sequence is true (non-zero) and all values prior to it are false (zero).P = 0 0 0 1 1 1 1 0 1 0 � � �A = 10 11 29 23 5 8 13 21 34 55 � � �A asa P = 23 23 23 23 23 23 23 23 23 23 � � �Operator asa can be de�ned in terms of first, next, and if-then-else:x asa p = y where y = first (if p then x else next y fi) endAs with the operator asa, the operator wvr (pronounced \whenever") has two operand sequencesand one result sequence. This operator selects those values from the �rst operand sequence whosecorresponding values in the second operand sequence are true. The result sequence, in a sense, is a�ltered version of the �rst operand sequence where the extent of �ltering is determined by the secondoperand sequence.P = 0 0 0 1 1 1 1 0 1 0 � � �A = 10 11 29 23 5 8 13 21 34 � � �A wvr P = 23 5 8 13 34 � � �The operator asa is frequently used in expressing conditional iteration as in the following programwhich computes N!:fac asa n == Nwheren = 1 fby n+1;fac = 1 fby fac*n;endVariable n is the sequence of natural numbers and variable fac is the sequence of factorials. Expres-sion fac asa n == N selects the value of fac when the value of variable n is N.Operator wvr can be de�ned in terms of @, fby, and if-then-else:x wvr p = x @ t2 wheret1 = if p then #.time else next t1 fi;t2 = t1 fby (t1 @ t2+1);end

GLU Programmer's Guide (Version 0.9) 17Like operator wvr, the operator upon is binary. This operator upon `stretches' the �rst operandsequence based on the second operand sequence. Speci�cally, the kth value of the result sequence isthe pth (p � k) value of the �rst operand sequence such that p of the �rst k values of the secondoperand sequence are true.P = 0 0 0 1 1 1 0 1 0 � � �A = 10 11 29 23 5 8 13 21 34 � � �A upon P = 10 10 10 11 29 23 23 5 5 � � �Operator upon can be de�ned in terms of @, fby, and if-then-else:x upon p = x @ t1 wheret1 = 0 fby if p then t1+1 else t1 fi;end;The upon operator is useful when you wish to merge two streams without losing any elements ofeither: sort(A, B) = if dA < dB then dA else dB fiwheredA = A upon dA > dB;dB = B upon dA <= dB;endHere is an example of sort(A, B):A = � � � 1 2 4 7 10 12 13 20 21 � � �B = � � � 3 5 6 8 9 11 14 15 16 � � �dA = � � � 1 2 4 4 7 7 7 10 10 � � �dB = � � � 3 3 3 5 5 6 8 8 9 � � �3.4.7 Operator iseodOperator iseod tests if its argument is the special value eod. It returns 1 if it is and returns 0otherwise. X = 1 4 eod 9 eod 16 � � �iseod X = 0 0 1 0 1 0 � � �3.4.8 Operator iserrorOperator iserror tests if its argument is the special value error. It returns 1 if it is an error object,otherwise it returns 0. X = 1 4 error 9 error 16 � � �iserror X = 0 0 1 0 1 0 � � �The error object, error, is produced by an operation under the following conditions:1. Operation execution results in an arithemtic exception (argument domain exception, argumentsingularity, overow range exception, underow range exception).2. Operation has mismatched argument types (such as oat as second argument of the @ operator).3. One or more of the operands are themselves error objects.

183.5 Extra OperatorsWe introduce three operators that are not part of standard LUCID. These operators are used toproduce the appropriate side-e�ects.3.5.1 Operator `,'The `,' (comma) operator corresponds to the value of the second argument produced after the �rstargument has been evaluated. X,Y is equivalent to if iseod X then Y else Y fi.X = 1 4 9 16 25 36 � � �Y = -1 -4 -9 -16 -25 -36 � � �X,Y = -1 -4 -9 -16 -25 -36 � � �3.5.2 Operator `!'The `!' (question mark) operator corresponds to the value of the second argument produced at thesame time as the value of the �rst argument is been produced which is discarded. The di�erencebetween the `,' and the `!' operator is that the former is sequential whereas the latter is not. Thus,`!' will produce a result as long as the second argument is de�ned regardless of whether the �rstargument is de�ned or unde�ned (?).X = 1 ? 9 ? 25 36 � � �Y = -1 -4 -9 -16 -25 -36 � � �X!Y = -1 -4 -9 -16 -25 -36 � � �3.5.3 Operator `?'The `?' (question mark) operator evaluates both its arguments and produces the argument thatevaluates �rst. It corresponds to a parallel or non-deterministic merge or choice operator which isnot sequential. The output depends only on the relative rates of the two inputs and not on theirvalues. For example, 1 ? 2 can be either 1 or 2 with equal probability.3.6 ExpressionsA LUCID expression can be as simple as a constant or a variable.pi = 3.14159267;another_pi = pi;Or it can be an operation symbol together with operands, which are expressions themselves.two_pi = 2 * pi;circumference = 2 * pi * radius;odds = 1 fby odds + 2;powers_of_two = 1 fby 2*powers_of_two;Or it can be a function symbol together with actual parameters, which are expressions.n = 1 fby add(n, 1);powers_of_two = pow(2, n);Or it can be a where-clause .

GLU Programmer's Guide (Version 0.9) 19running_average whererunning_average = X fby running_average + diffwherediff = (next X - running_average) / nwheren = 2 fby n+1;end;end;end;Here is an example of the computation of running average.X = 1 4 9 16 � � �running average = 1 2.5 4.67 7.5 � � �di� = 1.5 1.17 2.83 � � �n = 2 3 4 5 � � �3.7 User-de�ned FunctionsIt is possible to de�ne functions just like in other languages. What is unusual about LUCID functionsis that they are not necessarily pointwise. Thus, it is better to think of them as functions whoseparameters denote sequences rather than values. This is consistent with how one thinks of LUCIDoperators. Here is a simple example of a LUCID function, avg3, which given a sequence s returns aconstant sequence consisting of the average of the next three elements of s.avg3(s) = (s + next s + next next s) / 3;Here is a an example of an evaluation of avg3.s = 1 2 4 7 10 12 13 20 21 � � �next s = 2 4 7 10 12 13 20 21 � � �next next s = 4 7 10 12 13 20 21 � � �avg3(s) = 2.33 4.33 7 9.67 11.67 15 18 � � �The parameter s should be thought of as a sequence because even though avg3(s) is evaluatedat time t, the values of s that are needed is at time t, t + 1, and t + 2. For this reason, LUCIDfunctions are always evaluated lazily { their parameters are evaluated \call-by-need" (as opposed tocall-by-value parameter passing of C). Basically, call-by-need evaluation means that a parameter isevaluated only when it is needed in the function body in the context in which it is needed.Here is another example of a LUCID function that computes the running average of a sequenceof numbers x.ravg(x) = running_average whererunning_average = x fby running_average + diffwherediff = (next x - running_average) / nwheren = 2 fby n+1;end;end;Here is an example of a recursive function in LUCID to determine the factorial of a sequence ofnumbers denoted by n.

20 fac(n) = if n == 0 then 1 else n*fac(n-1) fi;If n denotes the sequence of natural numbers, here is what gets evaluated:n = 1 2 3 4 5 6 � � �fac(n) = 1 2 6 24 120 720 � � �LUCID functions can not only accept expressions as arguments but also function names. However,LUCID functions cannot return functions. Thus, they are not higher-order in the classical sense.Here is an example of a function arith that applies the binary arithmetic function f to the twoparameter sequences of arith:arith(f,a,b) = f(a,b);For example, arith(add,a,b) adds each value of a with the corresponding value of b. And arith(pow,a,b)computes the bth power of a.3.8 Nested ComputationsA common computational structure is a nested computation such as nested do or for loops . Weshow how nested computations can be expressed in LUCID.Suppose we wish to write a function pow which repeatedly takes pairs of non-negative integersand raises the �rst to the power of the second; e.g., 2 to the power of 3 is 8. Here is a LUCIDprogram that works for the �rst pair of values.pow(x, n) = p asa i == first nwhere i = 1 fby i + 1;p = 1 fby p * first x;endIn function pow, for each successive time context, p is multiplied by the �rst value of x. This continuesuntil a variable that we have chosen to act as the counter, namely i, equals the �rst value of n, afterwhich the value of p is the �rst value of x raised to the power of the �rst value of n. Function pow canonly raise the �rst value of x to the �rst value of n and not any of the subsequent pairs. The firstin first x and first n is needed because these values have to be invariant as successive values ofp are computed.For this function to work on successive pairs, what we really need is a way to \freeze" eachpair while the value of x is raised to the power of the corresponding value of n using repeatedmultiplications. This is possible in LUCID using dimensional where clauses .A dimensional where clause is a where clause that contains a declaration of one or more di-mensions that are local to the scope of the where clause. These dimensions are nested within anyenclosing dimensions and they are orthogonal to each other.Consider the following version of function pow:pow(x, n) = p asa.inner i == nwheredimension inner;i = 1 fby.inner i + 1;p = x fby.inner p * x;end

GLU Programmer's Guide (Version 0.9) 21First of all, observe the dimension declaration which declares inner to be a dimension local to thewhere clause The inner dimension is nested within the time dimension and this is what allows usto express nested iteration { for each point or context in the time dimension, a subcomputation canproceed along the inner dimension. Second, observe that operators asa and fby within the whereclause have been quali�ed by the name of the dimension as in asa.inner and fby.inner. What thismeans is that these operators work in the quali�ed dimension instead of the default time dimension.That is, i varies in the inner dimension as does p. However, the parameters to function pow, xand n, do not vary in the inner dimension because they are de�ned outside the scope of the whereclause; they only vary in dimension time.Let us now see how the function works. Assume both x and n vary in dimension time andassume that function pow is invoked for each successive pair of values. Each invocation of pow causesa subcomputation to be started. Variable p de�nes a sequence of successive powers of x in the innerdimension and variable i de�nes a counter sequence. The head of the where clause determines whenthe subcomputation terminates { it terminates when the value of i in the inner dimension is equalto the value of n which is invariant in the inner dimension. The function de�nes a sequence in theinner dimension where each value of the sequence is the value of p in the inner dimension wheni equals n. Since the use of pow is from outside the scope of the inner dimension, only the �rstvalue of the result sequence is visible outside the scope of the function de�nition. Thus, successiveinvocations of pow using successive pairs of values of x and n will return the appropriate results (xn).Here is another example of nested computation : compute the square root of a sequence of valuesa that vary in dimension time using Newton's iterative algorithm .sqroot(a) = next.inner approx asa.inner (abs(next.inner approx - approx) < 0.001)wheredimension inner;approx = 1 fby.inner (approx+a/approx)/2;endAs with function pow, function sqroot de�nes a nested dimension called inner. Variable approxcaptures the Newton's iterative algorithm starting with 1 as the initial approximation for the squareroot. The termination condition for the subcomputation speci�ed by the function is the value ofapprox in the inner dimension when the absolute di�erence between it and the previous value ofapprox in the inner dimension is less than 0:001. That is the value that is \returned" by functionsqroot.Now suppose one wanted to �nd the square root of a sequence of powers xn, we can combine thetwo functions in the obvious way:sqroot(pow(x, n))Note that the inner dimensions in pow and sqroot are distinct as per the scope rules.We now illustrate how dimensional where clauses can be used to express doubly nested iterationto implement the formula c = �ni=1�mj=1aibj.Assuming a and b are two sequences in the time dimension and n and m are constants, we canwrite the following de�nition for c:c = s asa.i i == nwheredimension i;s = 0 fby.i s + tt = v asa.j j == mwhere

22 dimension j;v = 0 fby v + (a @.time i) * (b @.time j);end;endThe de�nition of c is a doubly nested iteration in terms of dimensions i and j as per the formulagiven above. The de�nition says that the value of c is the value of s when the current context inthe i dimension is n. (Note the use of a dimension name, i, as a variable { it returns the currenti dimension context.) Variable s starts o� as 0 and at each successive i dimension context, itaccumulates the value of t that for each i dimension context is de�ned using a nested iteration indimension j. In particular, the value t at some i dimension context is the value of v when the jdimension context is m. And variable v is de�ned in the j dimension as the sum of the products ofith value of a and jth value of b. (Note that we have extracted the ith value of a using a quali�ed @operator { a @.time i or variable a at time dimension context given by i, and the jth value of busing the same { b @.time j.)3.9 Array ComputationsArray computations refer to nested computations that are used to manipulate multidimensionalarrays . In the previous section, we have shown how the dimensional where clause can be used toexpress nested computations. Here we show how they also can be used to express multidimensionalarray computations.Consider the problem of computing distribution of electric potential on a two-dimensional gridover time with �xed potential at the electrodes. The usual numerical solution to this problem issuccessive over-relaxation where the potential at each point in the grid is simply the average of thepotentials at the neighboring points at the previous time step. This is captured quite succinctly inthe following LUCID de�nition:grid wheredimension v, h;grid = if ELECTRODE then POTENTIAL else 0 fby avg(grid)whereavg(g) = (prev.v prev.h g + prev.v next.h g +next.v prev.h g + next.v next.h g) / 4;end;endThe de�nition of grid consists of a two-dimensional where clause, the dimensions being v and h. Ifthe v and h contexts denote an electrode then the value of grid at that point is always POTENTIAL.Otherwise, it starts o� as 0 and at each successive time dimension context, it is the average of thefour neighboring values of grid at the previous time dimension context. The operator prev is simplythe dual of next except that it is only de�ned for positive contexts: prev.v x = x @.v (v-1) andprev.h = x @.h (h-1).This is a classic example of an array computation in the sense that grid denotes a two-dimensionalsurface in dimensions v and h and operators prev and next are used to navigate this surface in allfour directions.Another example of an array computation is matrix transposition . Here is a LUCID functionto transpose a matrix in dimensions i and j. It uses the realign operator that is de�ned asrealign.a,b x = x @.a b meaning rotate the a-th dimension of x into the b-th dimension.

GLU Programmer's Guide (Version 0.9) 23transpose(a) = realign.z,j realign.j,i realign.i,z awheredimension z;endTo understand how function transpose works, consider what happens when transpose is evaluatedat context (i=I,j=J). transpose(a)(i=I,j=J,z=0) =realign.z,j realign.j,i realign.i,z a(i=I;j=J;z=0)= realign.j,i realign.i,z a(i=I;j=J;z=J)= realign.i,z a(i=I;j=I;z=J)= a(i=J;j=I;z=J)= a(i=J;j=I)We can also use realign in a succinct expression of matrix multiplication of two matrices, a andb, in dimensions i and j of order n.sum((realign.j,k a) * (realign.i,k b), n)wheredimension k;Sum(x, n) = s asa.k (#.k == n)wheres = 0 fby.k s + x;end;end3.10 Dimensional AbstractionA simple yet powerful feature of LUCID is dimensional abstraction { functions and variables can bede�ned using dimension parameters. Consider a simple example:sum.z(x, n) = s asa.z (#.z == n)wheres = 0 fby.z s + x;endWe can use sum to add all the elements (n2) elements of a matrix (a) by �rst adding each column(along dimension i) and then adding the resulting vector (along dimension j).sum.j(sum.i(a, n), n)Here we are passing to function sum the dimension along which it should operate { �rst i and then j.Since addition is commutative, we can switch the order i.e., add the rows �rst and then the resultingcolumn vector.sum.i(sum.j(a, n), n)We could also de�ne a function sum2d that accepts the two dimensions as dimensional parametersand adds the matrix:

24 sum2d.u,v(x, n) = s asa.u (#.u == n)wheres = 0 fby.u s + p;p = q asa.v (#.v == n)whereq = 0 fby.v x + q;end;endWe can use function sum2d as shown below to add the elements of a.sum2d.i,j(a, n)Not only are functions dimensionally abstract but so are variables (since they are nullary functions). Here is an example of a \generic" two-dimensional variable unit that has the value 1 along thediagonal and 0 elsewhere:unit.i,j = if #.i == #.j then 1 else 0 fi;Now suppose we wanted to de�ne a variable w that has the same value as unit along dimensions xand y and a variable v that has the same value along dimensions z and x, we can de�ne them asfollows:w = unit.x.y;v = unit.z.x;Let us consider the de�nition of function sum again. It is easy to see that it is inherently sequentialas elements of a vector are added one at a time even though they could be added in parallel (asaddition is associative). The idea of a parallel sum is to add elements of a vector pairwise and thenadd the resulting elements pairwise and so on until there is a single element that is the sum of thevector. This can be expressed as follows:psum.z(x, n) = s asa.t (m == n)whereindex t;s = x fby.t (s + next.z s) @.z (2*#.z);m = 1 << t;endLet us examine psum in detail. It is a dimensional function that accepts one dimension parameterz and two data parameters x and n. It introduces a local dimension t. It is de�ned as the valueof s when m equals n along dimension t. Variable s that is de�ned in dimensions z and t initiallycorresponds to all the elements of x along dimension z. At each subsequent t dimension context, sis the sum of pairs of elements (along dimension z) at the previous t dimension context. We canwrite this as follows:- s(z=Z,t=T) = (x(z=Z,t=0) if t = 0s(z=2Z,t=T-1)+ s(z=2Z,t=T-1) otherwiseWe can think of s as consisting of n elements (along dimension z) when t = 0 and half-as-manyelements at each successive t dimension context until there is only one element. And this is when t di-mension context is log2(n) or when 2t == n which is captured in s asa.t m == n where m = 1 << t.Function psum is equivalent to sum and can be used in its place in adding matrix a of order n.psum.i(psum.j(a, n), n)

GLU Programmer's Guide (Version 0.9) 25The computational structure of psum, that of an inverted binary tree, is widely applicable. Forexample, it can be used to �nd the maximum of a set of numbers or it can be used to sort elementsusing mergesort. Instead of instantiating psum for each di�erent use, we can specify the structure asa dimensionally abstract function where the speci�c use of it (captured in a function) is passed asan argument.linear_tree.X(f, data, size) = tot asa.t tsize <= 1whereindex t;tsize = size fby.t (tsize+1)/2;tot = data fby.tif X >= tsize/2then tot @.X (2 * #.X)else f(tot, next.X tot) @.X (2 * #.X);fi;endFunction linear tree not only works when the number of elements is a power of 2 but for anypositive number.The following de�nes psum in terms of linear tree:psum.z(x, n) = linear_tree.z(add, x, n)where add(a, b) = a + b; endThe following de�nes a function pmax2d that �nds the maximum of a two-dimensional matrix a indimensions i and j in terms of linear tree:pmax2d.i,j(x, n) = linear_tree.j(max, linear_tree.i(max, x, n), n)where max(a, b) = if a > b then a else b fi; endWe can also use linear tree in matrix multiplication as described on page 23.linear_tree.k(add, (realign.j,k a) * (realign.i,k b), n)wheredimension k;add(a, b) = a + b;endAnother useful computational structure, that we call planar tree, works just like linear treeexcept in two dimensions.planar_tree.X,Y(f, data, size) = tot asa.t tsize <= 1wheredimension t;tsize = size fby.t tsize/4;tot = data fby.t (f(tot, next.X tot, next.Y tot, next.X next.Y tot)@.X (2 * #.X)) @.Y (2 * #.Y);endWe can redine pmax2d as follows:pmax2d.i,j(a, n) = planar_tree.i,j(max4, x, n*n)where max4(a, b, c, d) = max(max(a,b), max(c,d));max(a, b) = if a > b then a else b fi;end

263.11 Operator ArityThere are two kinds of operator arity: roman arity , which refers to the number of operands andgreek arity , which refers to the number of qualifying dimensions.LUCID operators are either unary , binary , or ternary . For example, ! and first are unaryoperators whereas * and asa are binary operators and if-then-else is the (only) ternary operator.LUCID operators are one of nulladic , monadic , dyadic , or polyadic . For example, all arithmetic,relational and logical operators are nulladic as are iseod and iserror . Monadic operators include# , fby , asa , wvr , upon , and before . The only dyadic operator is realign . Operators first ,next , prev , and @ are polyadic.3.12 Default Dimension RuleThe default dimension rule applies only to monadic operators , i.e., operators which are quali�edwith a single dimension name. It is as follows.A monadic operator without a dimensional quali�er is equivalent to a monadic operator with thetime dimension quali�er unless it appears in a dimensional where-clause in which case the operator isequivalent to the operator quali�ed by the innermost (or last declared) dimension in the where-clause.The following de�nition of linear tree is equivalent to the one given earlier since asa refers toasa.t and fby refers to fby.t because of the default dimension rule.linear_tree.X(f, data, size) = tot asa tsize <= 1whereindex t;tsize = size fby (tsize+1)/2;tot = data fbyif X >= tsize/2then tot @.X (2 * #.X)else f(tot, next.X tot) @.X (2 * #.X);fi;end

Chapter 4From LUCID to GLULUCID is purely a dataow language in which a program is expressed as a structured set of mul-tidimensional data dependencies. Whereas the declarative nature of LUCID results in concise andnatural expressions of problem solutions, LUCID programs are incompatible with the conventionalimperative model of programming . In particular, LUCID programs do not execute e�ciently oncontrol-driven processors and it is di�cult to perform imperative activities such as I/O .GLU, which stands for Granular Lucid, is a hybrid of LUCID and the language C . The basicidea is quite simple { it is to use LUCID as a language for composing applications from C functions.A GLU program is a LUCID program in which user-de�ned functions can be C functions and valuescan be (almost) any valid C object such as chars , ints , oats , doubles , �xed-length arrays ,structures , and pointers to any of these. Basically, LUCID deals with C functions and C datatypesas uninterpreted entities. C functions are called by value as they are assumed to be pointwise andstrict. The only LUCID operators that can be meaningfully applied to C objects are iseod whichreturns 1 if the object is actually eod and 0 otherwise and iserror which returns 1 if the objectcorresponds to error and 0 otherwise.A GLU program consists of two parts:1. C data types and prototype functions declarations2. LUCID program4.1 C Data TypesAll of the ANSI C type declarations are allowed except for variable-length (incomplete) arrays andunions some of whose members are pointers .Examples of some C type declarations are given below.1. struct complex{ double re;double im;};typedef struct complex *COMPLEX;This de�nes complex to be a C type that consists of two oating point members, re and im.It also de�nes COMPLEX to be an C type that denotes a pointer to object of C type complex.2. struct list 27

28 { COMPLEX z;string id;struct list *next;}typedef struct list *LIST;This declares list as a C type with z being a member of type complex and next being apointer (holder of address) to another object of type list. Note that id is of a prede�ned typestring which is equivalent to char * of C. It also de�nes LIST to be a C type that is a pointerto structure of C type struct list.3. typedef char STR[128];STR denotes a C type that is a �xed-length array of 128 chars.4. Earlier we indicated that a C object in GLU cannot be of an incomplete array type, i.e., onewhose length is not known. GLU provides a way of specifying variable length arrays { the arrayis de�ned in a structure with its length being speci�ed by a variable that is also a member ofthe structure.struct matrix{ int x, y;COMPLEX m[x][y];}typedef struct matrix *MATRIX;This declares matrix as C structure type whose members are two integers denoted by x andy and a variable-sized matrix m of elements of type COMPLEX with the number of rows denotedby x and the number of columns denoted by y. It also de�nes MATRIX as a pointer to structureof type matrix.5. GLU also excludes C objects to be of a union type where one (or more) of its members is apointer. In GLU, any such union has to be discriminated in that an additional �eld t has tobe used to identify the current type of the value.union multi switch(int t) {case 0: int i;case 1: COMPLEX v;case 2: MATRIX m;}The C type multi has two members: a union of int i and pointers types COMPLEX v andMATRIX m; and t that indicates which of the three types in the union is currently applicable.4.2 C Prototype Function DeclarationsIn a GLU program, the prototype of each C function that is used is given { the function de�nitionitself is given elsewhere. A prototype function declaration speci�es the parameter types and theresult type of each function. It is of the form:C-TYPE C-function-name(C-TYPE, ..., C-TYPE);

GLU Programmer's Guide (Version 0.9) 29Here are some examples:COMPLEX add(COMPLEX, COMPLEX);struct matrix in();int display(STR);COMPLEX kth(LIST, int);MATRIX mult(MATRIX, MATRIX);Function add accepts pointers to two objects of type complex and returns a pointer to the resultthat is of type complex. Function in is nullary but returns an object of type struct complex.Function display accepts one argument, a �xed-size array of char and returns an integer. Functionkth returns a pointer to a complex object and accepts a pointer to a list object and an integer asits arguments. Finally, function mult accepts two pointers to matrices and returns a pointer to amatrix.4.3 C Function De�nition ConventionsA C function de�nition needs to be consistent with the prototype de�nition of that function in itsarity and types of parameters and result. For example, consider the function add whose prototypedeclaration was COMPLEX add(COMPLEX, COMPLEX). Its de�nition would be as follows:COMPLEX add(COMPLEX a, COMPLEX b){ COMPLEX c;c = (COMPLEX) malloc(1, sizeof(*COMPLEX));c->re = a->re + b->re;c->im = a->im + b->im;return(c);}The parameters and the result are of type COMPLEX and the C function creates the object (usingmalloc) that add returns.4.3.1 Parameter PassingWhen a C function is used in a GLU program, parameter passing is call-by-dereferenced-value | allvalues when applicable are dereferenced. Unlike in C, it is not possible for a C function to modifythe object pointed to by an actual parameter { only the copy of the object would be modi�ed.In the above example, setting a->re to 0:00 would not cause the re member of the actualparameter to be modi�ed.4.3.2 Returning Dynamic ObjectsWhen a C function needs to return a pointer to an object, it has to create the object (using malloc)and return the pointer to the object. This is shown in the example above with c. When a parameteror result is a pointer, the C function is not responsible for freeing the objects pointed by the parameteror result.

304.3.3 GlobalsIn general, C functions should avoid sharing any data using global variables since it undercuts thehigh-level view of the GLU model of programming. In addition, global variables have implementation-speci�c semantics making them a \use at your own risk" feature.Global variables can be used to share common data across functions provided the functionsexecute in the same address space. (This can be speci�ed using annotations { see Section 4.6.)Global variables can also be used to retain data across function invocations. Again, successiveinvocations of the function are expected to be in the same address space.When using global variables, the programmer is completely responsible for the management ofthe global variables. As far as GLU is concerned, global variables are part of the external world overwhich it has no control.4.3.4 Static VariablesLike global variables, static variables do not necessarily have the semantics as in sequential C pro-grams. Whenever such a variable is used in GLU programs, it is the programmer's responsibility toensure that the \right" static variable is being accessed as there are likely to be multiple copies, oneper each address space.4.4 PreprocessorGLU supports C's preprocessing capability including macro substitution, conditional compilation,and inclusion of named �les.4.5 CommentsAny line starting with // is treated as a comment.4.6 AnnotationsGLU allows two types of annotations { one for specifying whether functions are to be executed locallyor remotely and another for specifying a particular remote location for function execution.Both these annotations enable the programmer to exercise control over the mapping of computa-tions to processors. While this is counter to GLU, it is necessary because the current GLU compilerassumes that the underlying concrete architecture is an embodiment of a PRAM. Consequently, thecompiler does not attempt to intelligently distribute data and its processing as there is no bene�t todoing so. With annotations, it is possible for a programmer to explicitly manage the distribution ofdata and processing although such management is likely to be ad hoc.4.6.1 Local versus Remote Function ExecutionIn GLU, each function prototype function de�nition can optionally be pre�xed by the keywordslocal or remote. (The default is remote.)When a function prototype declaration is pre�xed as local, it is executed in the same addressspace where it was invoked.When a function prototype declaration is pre�xed as remote or not pre�xed, it is executedremotely on another address space.

GLU Programmer's Guide (Version 0.9) 31Here are some examples:local COMPLEX add(COMPLEX, COMPLEX);local struct matrix in();local int display(STR);COMPLEX kth(LIST, int);remote MATRIX mult(MATRIX, MATRIX);Functions add, in, and display are executed in the same address space from where they are invokedand functions kth and mult are executed in a remote address space.4.6.2 Remote Execution MappingEach function invocation when su�xed by a non-negative integer within square brackets speci�esthat the function should be executed in the virtual address space identi�ed by the integer. (Inactuality, multiple virtual address spaces would be mapped to a single physical address space.) Theinteger could be a constant or it could be any valid GLU expression.Here are some example expressions:mult[time](a,b)kth[f(i)](l, i)mult[1](a,b)In the �rst example, mult is executed in the virtual address space speci�ed by time. In the nextexample, kth is executed in the virtual address space derived by applying function f to i in thecurrent context. In the last example, mult is always executed in virtual address space 1.

Chapter 5Compilation and ExecutionThis chapter describes the process of compiling GLU programs to machine-speci�c executables. Italso describes how these executables can be run with various options.5.1 Source to ExecutablesGLU compilation occurs in two phases. In the �rst phase, the GLU program with the appropriateC functions are converted to a generator or master program and an executor or worker program.In the second phase, the master program and the worker program are compiled to machine-speci�cexecutables.Assume we are given a GLU program in a �le named foo.g and the accompanying C functionsin a separate �le named foo.c. To compile this program, we issue the following command:gc foo.g foo.cThis results in two executables to be generated { foo and foo-wrk corresponding to the generator(or master or server) and executors (or worker or client).If foo.o is already available, it is possible to avoid the compilation of foo.c and directly usefoo.o:gc foo.g foo.oDuring the compilation of foo.g, a header �le foo glu.h is automatically generated which shouldbe included in foo.c. This header �le consists of all data types that are de�ned in foo.g and usedin foo.c.It is possible to prevent generation of the header �le (in case you already have one that you wantto preserve) by using the -nohdr option.gc -nohdr foo.g foo.cIt is possible to indicate that only a sequential executable is to be generated using the -seq option.The default is to generate executables for parallel execution (which can be explicitly indicated witha -par) option.gc -seq foo.g foo.cIn this case, only foo is generated as the executable.When parallel executables are being generated, it is possible to indicate that the architecture ishomogeneous to enable faster communication. This is done with the -hom option. The default is toassume a heterogeneous architecture. 32

GLU Programmer's Guide (Version 0.9) 33gc -hom foo.g foo.cIt is also possible to specify directories to search for including header �les and linking withlibraries. Assume that in addition to the current directory, it is necessary to include header �les ina subdirectory called include. This can be indicated as follows:gc -I./include foo.g foo.cAssume that two standard libraries libX11.a and libm.a need to be used at link time alongwith library libfoo.a under ./lib. This can be indicated as follows:gc foo.g foo.c -L./lib -lX11 -lm -lfooAll the rules for linking from C compilation apply.It is also possible to compile the program so that it can be symbolically debugged:gc -g foo.g foo.cSome of the other options include -v for verbose compilation; -pre for preserving the source �lesgenerated in the �rst phase of the compilation: foo-gen.c, foo-com.c, and foo-wrk.c; and -O foroptimized code generation.5.2 Running Program ExecutablesWhen you execute a GLU program, by default you get an output stream in the time dimensionstarting with time=0. The program terminates when the output (at some time context) is eod afterall outputs at previous time contexts have been generated. What is displayed is the scalar versionof the object speci�ed at the head of the program's where clause.Suppose that we compile and execute the following program:fib wherefib = 1 fby 1 fby fib + next fib;endThe output would be:[0]: 1[1]: 1[2]: 2[3]: 3[4]: 5[5]: 8[6]: 13...If the head of the program above is fib @ 6 fby eod, the output would simply be:[6]: 13Let us �nd out how we run the executables generated by GLU programs. If the executable is theresult of a standard GLU compilation, you have to run the master program and one or more workerprograms. In the example below, the master is being run with one worker.foo &foo-wrk &

34 It is possible to have multiple workers, and it is up to the programmer to run them on di�erentprocessors (which we will assume are workstations):foo & % master on workstation wkstn0rsh wkstn1 <FULL_PATH_NAME>/foo-wrk wkstn0 & % worker on workstation wkstn1rsh wkstn2 <FULL_PATH_NAME>/foo-wrk wkstn0 & % worker on workstation wkstn2...rsh wkstnN <FULL_PATH_NAME>/foo-wrk wkstn0 & % worker on workstation wkstnNNote that <FULL PATH NAME> of foo-wrk is needed unless it is at the top level of the user direc-tory. Also note that workers can be added and deleted during execution without a�ecting programfunctionality.If the executable is the result of a sequential GLU compilation, running the program is exactlyas in C. You simply enter the name of the program:fooIf you want to generate traces of program execution, you would use the -debug option with themaster and with the worker:foo -debug &foo-wrk -debug &The option -debug gives minimal tracing { when functions become executable and when they returntheir results. It is possible to get a more detailed trace of the master by using -debug=2 and-debug=3.If you want to control garbage collection of a GLU program, you can do so using the -sweep and-age options.foo -sweep=2 -age=10The above command says that garbage collection sweeps should occur every 2 seconds of the pro-gram's virtual execution time (not elapsed time) and that a value can be discarded if it has beenaround for 10 sweeps without being used.If you want to override any of the local or remote annotations at runtime, you can do so:foo -local f1 -remote f2 -remote f3 -local f4The above command says that functions f1 and f4 will be treated as local and functions f2 andf3 will be treated as remote.The -w option is necessary when remote execution mapping annotation is used in the GLUprogram. You can prespecify the number of workers that the master will expect with the -w option:foo -w10This command says that precisely 10 workers are expected by the master.Another useful option is the logging option (-log) that causes a log�le containing execution tracesto be generated each time the program is executed that can be analyzed in post-mortem mode.foo -log=foo.logThis command says that logging information should be written to �le foo.log. The default islogfile. Note that logging information is complete and accurate only when the program terminatesnormally.

Bibliography[1] V. Sunderam. PVM: a framework for parallel distributed computing. Concurrency: Practiceand Experience, 2(4), December 1990.[2] N. Carriero and D. Gelernter. How to write parallel programs: A Guide to the perplexed. ACMComputing Surveys, 21(3):323{357, September 1989.[3] E.A. Ashcroft, A.A. Faustini, and R. Jagannathan. An Intensional Parallel Processing Languagefor Applications Programming. In B.K. Szymanski, editor, Parallel Functional ProgrammingLanguages and Environments, chapter 2. ACM Press, 1991.

35

Appendix ASyntax of GLU ProgramsA.1 Scope RulesA.1.1 Program VariablesThe scope of an occurrence of a variable used in a GLU where clause is either local or global. It islocal if it is de�ned in that clause. If it is not local, it must be global and de�ned as the closestlexically enclosing where clause in which the variable is de�ned. There are no free variables in GLU.A.1.2 Dimensional NamesThe scope of dimensional names is de�ned in the same way as the scope of program variables. Theexception to this rule is the implicit dimensional name time, which is prede�ned.A.1.3 Precedence and Associativity RulesWe list the hierarchy of precedences amongst LUCID syntactic units. Syntactic units with highestprecedences are at the top of the list, and ones with lowest precedences are at the bottom.36

GLU Programmer's Guide (Version 0.9) 37Precedence Syntactic Unit AssociativityHighest (), `.', `,' (delimiter) left to rightfirst, next, prev, iseod, iserror, unary !, verb+ +, +, - right to left@ right to left*, div, /, % left to right+, - left to right<<, >> left to right<, <=, > , >= left to right==, != left to right& left to right^ left to rightj left to right&& left to rightjj left to right`,', !, ? left to rightasa , upon , wvr left to rightLowest fby , before right to leftA.1.4 Reserved WordsThese identi�ers in addition to those of ANSI C are reserved words in GLU .ifthenelsefidimensionindexwhereendfirstnextprevfbybeforeasawvrupontimedivtruefalseeodiseodrealignA.2 Extended BNF Syntax for GLU Programs<program> ::= { <procedural definition> | <non-procedural definition> }*

38 <expression><procedural definition> ::= <type declaration> |<prototype declaration><type declaration> ::= SAME AS IN ANSI C<prototype declaration> ::= SAME AS IN ANSI C<non-procedural definition>::= <dimension definition> |<variable definition> |<function definition><dimension definition> ::= dimension <dimension list> ; |index <dimension list> ;<dimension list> ::= <dimension name> { , <dimension name> }<dimension name> ::= <identifier><variable definition> ::= <variable name> { . <dimension list> } = <expression> ;<variable name> ::= <identifier><function definition> ::= <function name> { . <dimension list> }(<formal parameters>) = <expression> ;<function name> ::= <identifier><formal parameters> ::= <identifier> {, <identifier> }<expression> ::= <constant> |<variable name> |<dimension index> |<fcall> |<uop> <expression> |<expression> <bop> <expression> |if <expression> then <expression> else <expression> fi |(<expression>) |<where expression><constant> ::= eod | error | true | false | <integer> | <real><dimension index> ::= # . <dimension name> | <dimension name><fcall> ::= <function name> { . <dimension list> }(<expression list>)<expression list> ::= <expression> { , <expression> }<uop> ::= <simple uop> | <complex uop> | iseod | iserror<simple uop> ::= ! | ~ | - |<complex uop> ::= <lucid uop> { . <dimension list> }<lucid uop> ::= first | next | prev | realign<bop> ::= <simple bop> | <complex bop><simple bop> ::= <arith bop> |<relational bop> |<logical bop> |<bitwise bop><arith bop> ::= + | - | * | / | div | %<relational bop> ::= < | > | <= | >= | == | !=<logical bop> ::= && | ||<bitwise bop> ::= << | >> | `|' | \& | \^<complex bop> ::= <lucid bop> { . <dimension list> }<lucid bop> ::= fby | before | asa | wvr | upon | `@' | `?' | `!' | `,'<identifier > ::= <letter> { < alpha_numeric> }<alpha_numeric > ::= <letter> | _ | <digit><where expression> ::= <expression> where{ <procedural definition> | <non-procedural definition> }*end

Appendix BPrede�ned FunctionsGLU provides a standard set of prede�ned dimensionally-abstract functions that can be used astemplates to construct GLU programs. The functions reside in a �le called std.g which can beincluded in any GLU program.The contents of std.g are as follows:lparent.X(f) = f @.X (2 * #.X);rparent.X(f) = f @.X (2 * #.X + 1);linear_tree.X(f, data, size) = first.X(tot asa.t tsize <= 1)whereindex t;tsize = size fby.t (tsize+1)/2;tot = data fby.tif X >= tsize/2then tot @.X (2 * #.X)else f(tot, next.X tot) @.X (2 * #.X)fi;end;planar_tree.X,Y(f, data, size) = first.X,Y(tot asa.t tsize == 1)whereindex t;tsize = size fby.t tsize/4;tot = data fby.t (f(tot, next.X tot, next.Y tot, next.X,Y tot)@.X (2 * #.X)) @.Y (2 * #.Y);end;cubic_tree.X,Y,Z(f, data, size) = first.X,Y,Z(tot asa.t tsize == 1)whereindex t;tsize = size fby.t tsize/8;tot = data fby.t ((f(tot, next.Z tot, next.Y tot, next.Y,Z tot,next.X tot, next.X,Z tot, next.X,Y tot,next.X,Y,Z tot)@.X (2 * #.X)) @.Y (2 * #.Y)) @.Z (2 * #.Z);end; 39

Appendix CManual Pages for GLU Commands

40

GLU Programmer's Guide (Version 0.9) 41NAMEgc { GLU compilerSYNOPSISgc [{com j {gen j {seq j {wrk] [{G] [{nohdr] [{pre] [{rec] [{hom] [{v] [gcc options] source�les . . .DESCRIPTIONgc is the GLU compiler front end. It invokes the GLU compiler to translate programs writtenin GLU into C programs and invokes gcc to compile and link them into an executable image.Most of the command line options are simply passed on to gcc or ld as appropriate. gc alsounderstands the various �lename su�xes understood by gcc and handles them appropriately.Files ending in .g are taken to be GLU source programs and will sent to the GLU compilerbefore being passed on to gcc.OPTIONS{com Generate code that is common to both the generator and worker. This option ismeaningful only when combined with {c or {G.{gen Generate code for the generator. When not combined with {c or {G, it will alsoproduce the common code { which is required to produce an executable generator.{seq Generate code for a sequential program. This is much like the {gen option, exceptit links with a special library that will treat all C functions as local functions andthat does not use any workers.{wrk Generate code for the worker. When not combined with {c or {G, this optionwill also produce the common code { which is required to produce an executableworker.{G Produce C code. Doesn't call gcc on the results of the GLU to C translator. TheC code will be left in �les with su�xes com.c, gen.c, and wrk.c.{nohdr Do not produce a header �le. The default is to produce a header �le with thesu�x glu.h, which will contain all the C declarations from the GLU source �le.{pre Preserve intermediate �les. Normally, intermediate �les (generated C code andobject �les) are placed in /tmp and are removed when compilation is complete.With this option, they will be placed in the current directory and will not beremoved.{rec This special ag is required to get the communications code to work correctly if youhave de�ned recursive structures (structures that contain pointers to themselves,directly or indirectly). It results in less e�cient code if its not needed. It has noe�ect on sequential programs.{hom This ag makes the communications code assume that the workers and generatorare running on compatible machines. It results in more e�cient code which willfail if run on di�erent machines. It has no e�ect on sequential programs.

42 {v Verbose. Show the commands constructed by the compilation driver before exe-cuting them.EXAMPLESThe following rules can be useful in Make�les% com.c % gen.c % wrk.c % glu.h: %.g gc -G -hdr $<prog: prog gen.o prog com.o $(OTHERS) gc -gen -o $@ $<prog-wrk: prog gen.o prog com.o $(OTHERS)gc -wrk -o $@ $<ENVIRONMENTCC C compiler to use. Defaults to gcc.CPP C preprocessor to use. Defaults to gcc -E -x c.GLUHOME Directory containing the various GLU compiler passes, include �les, and li-braries. Default value set on installation.TMPDIR Directory to use for intermediate �les. Defaults to /tmp.FILES�le.g GLU source �le�legen.c Compiled code for generator�lewrk.c Compiled code for worker�lecom.c Compiled code common to both worker and generator�leglu.h C declarations extracted from GLU source �le�le Executable generator or sequential program�le{wrk Executable worker programSEE ALSOglu(1), gcc(1).BUGS Please report bugs to glu-bugs@csl.sri.com

GLU Programmer's Guide (Version 0.9) 43NAMEGLU runtime system and general informationSYNOPSISname [{age=nn] [{bs=size] [{debug[=nn]] [{quiet] [{local function] [{log[=�le]] [{random[=seed]] [{remote function] [{sweep=nn] [{w=nn]name-wrk [{bs=size] [{debug] [hostname]DESCRIPTIONThe Glu compiler, when producing parallel code, produces two executables, a generator anda worker. To execute in parallel, you need to invoke one copy of the generator and one ormore copies of the worker.The generator runs the main LUCID program, executing all lucid code and all local Cfunctions. Remote C functions will be farmed o� to workers. The system can detect andsurvive the failure of any worker, and will redo any uncompleted job of the failed workerelsewhere.GENERATOR OPTIONS{age=nn Sets the number of value cache sweeps which must pass for an object to bethrown out of the value cache, since the object's last reference. Default is 4.{bs=size Set the bu�er size for all communications with workers. Large bu�ers are moree�cient if you pass around large amounts of data, but require more memory.You may specify a su�x of k orK to specify kilobytes instead of bytes. Defaultis 512.{debug[=nn] Set or increment the debugging level. This controls the amount and detail ofdebugging information that is printed. Each level outputs the information ofall lower levels.1 Information about C functions as they are invoked and complete2 Information about each demand and value that is cached.3 Information about each demand and value of a named object.4 Information about every demand and value.{local function Treat function as a local function (execute in the generator).{log[=�le] Log various useful statistics to �le. If �le is unspeci�ed, logs to log�le.{quiet Suppress then normal display of each top level value as it is produced. If thisoption is supplied and -debug is not, the only output produced will be fromlocal C functions.{random[=seed] Normally, remote C functions are assigned to workers on a FCFS basis.This option causes them to be assigned in a random fashion.

44 {remote function Treat function as a remote funtion (pass of to a worker for execution).{sweep=nn Set the time between value cache sweeps. Along with -age this controls howquickly old objects will be ushed from the cache.{w=nn Specify how many workers there will be for use with the worker-spec syntax inthe input �le. If you don't use worker-specs, this will have no e�ect.WORKER OPTIONS{bs=size Set the bu�er size for all communications with the generator.{debug Turn on worker debugging information. This is the same information as level 1on the generator, but on a per-worker basis.hostname Speci�es which machine the generator is running on. Defaults to localhost.SEE ALSOgc(1).BUGS Please report bugs to glu-bugs@csl.sri.com

Index!, 26!, 18=, 14#, 15, 26%, 14&, 14&&, 14*, 14, 26+, 14,, 18- binary, 14unary, 14/, 14//, 30<, 14<<, 14<=, 14==, 14>, 14>=, 14>>, 14?, 18@, 15, 26#.time, 9^, 14|, 14||, 14~, 14adaptivity, 2address space, 30physical, 31virtual, 31annotation, 30local, 30, 34mapping, 34remote, 30, 34remote execution mapping, 31architecture

heterogeneous, 33homogeneous, 33aritygreek, 26roman, 26array�xed length, 27variable length, 27asa, 16, 26before, 26C, 1, 3, 27ANSI, 8, 27reserved words, 37C functionglobal variables, 30parameter passing, 29returning result, 29static variables, 30call-by-dereferenced-value, 29call-by-need, 8, 19call-by-value, 8, 19, 27char, 27comments, 30compilation, 32composition, 8, 9composition function, 8dimensionally abstract, 11computation, 9array, 22doubly nested, 21multidimensional, 10nested, 20, 21constantin LUCID, 13context, 3, 9, 19conventionC function de�nition, 29cubic tree, 3945

46 dataowmultidimensional, 1debugging, 33, 34declarationdata type, 8, 27�xed length, 28function prototype, 8, 27, 28recursive structure, 28structure, 27union, 28variable length, 28default dimension rule, 26dimensionnested, 21dimension, 21dimensional abstraction, 23dimensions, 20double, 27eod, 13, 27, 33error, 13, 17, 27executable, 32parallel, 32sequential, 32executionparallel, 34sequential, 34expression, 13compound, 18constant, 18function, 18operator, 18variable, 18fby, 15, 26�bonacci sequence, 3first, 14, 26float, 27functiondimensionally abstract, 24, 39GLU, 8higher-order, 20LUCID, 19nonrecursive, 10nullary, 24prede�ned, 39procedural, 8recursive, 3, 10, 19

global variables, 30GLUcomparison, 1compiler command, 43EBNF syntax, 37execution command, 45extension of LUCID, 4manual pages, 40overview, 1reserved words, 37grabage collection, 34granularity, 1, 10header �legeneration, 32inclusion, 33I/O, 27if-then-else, 15, 26int, 27iseod, 13, 17, 26, 27iserror, 13, 17, 26, 27languagedataow, 27functional, 3indexical, 3procedural, 3lazy evaluation, 19librariesstandard, 33Linda, 1linear tree, 25, 26, 39load balancing, 1logging, 34LUCID, 1, 3, 27as a functional language, 3as an indexical language, 3circa 1994, 13nucleus of GLU, 3, 13mapping, 1master, 32matrix multiplication, 4, 23matrix transposition, 22model of programmingdeclarative, 3GLU, 3imperative, 27

GLU Programmer's Guide (Version 0.9) 47multidimensional array, 22Newton's square root algorithm, 21next, 14, 26operatorarithmetic, 14associativity rules, 36binary, 26bitwise logical, 14dyadic, 26logical, 14monadic, 26nonpointwise, 14nulladic, 26pointwise, 14polyadic, 26precedence rules, 36prede�ned, 14relational, 14ternary, 26unary, 26operator arity, 26parallel computers, 4partitioning, 1planar tree, 25, 39pointer, 27in union, 27preprocessor, 30prev, 26process architecture, 1programGLU, 8LUCID, 27master, 32, 34procedural, 4, 8worker, 32, 34program execution, 33programmingdeclarative, 3imperative, 3procedural, 3PVM, 1realign, 22, 23, 26referential transparency, 4, 8reserved words, 37

scopedimensional names, 36global, 36local, 36sequenceconstant, 13value, 4static variable, 30structure, 27successive over-relaxation, 22time dimension, 4, 21, 33, 36time context, 33trace generation, 34typesin GLU, 27in LUCID, 13union, 27upon, 17, 26variable, 4, 13where clause, 18, 36dimensional, 20where clause, 21where clausedimensional, 21, 22worker, 32workstation, 34wvr, 16, 26

