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Chapter 1

Introduction

This report is a programmer’s guide to GLU (Granular LUCID). It is written for those interested in
developing high-performance application software on a variety of platforms. It assumes that readers
are well-versed in procedural programming and have a basic understanding of parallel and distributed
programming.

1.1 What is GLU?

GLU is a very-high-level system for constructing and executing high-performance applications for
diverse platforms ranging from heterogeneous workstation clusters to shared-memory multiprocessors
to massively parallel processors.

In GLU, a high-performance application is a LUCID' composition of sequential functions ex-
pressed in the C language? . GLU allows code fragments from existing sequential applications to
be reused and only a small amount of new code to be written. Applications expressed in GLU are
implicitly parallel and inherently adaptive. In addition, GLU applications are highly portable across
multiple platforms.

1.2 How GLU compares with PVM and Linda?

It is useful to briefly compare and contrast GLU with other systems for constructing and executing
high-performance applications such as PVM [1] and Linda [2].

While both PVM and Linda offer communication and synchronization support for interacting
autonomous processes, the burden of coming up with a process architecture to implement the appli-
cation in parallel is on the programmer. A process architecture is a set of interacting processes in a
particular arrangement that reflects the manner in which the application has been partitioned and
the granularity of parallelism. With both PVM and Linda, process architecture for an application
is developed in an ad hoc manner by the programmer. Whereas with GLU, both the partitioning
strategy and granularity of parallelism are integrated into the composition specification from which
the process architecture is automatically generated.

With PVM, it is also necessary for the programmer to specify how the process architecture will
be mapped onto a target system and, when applicable, how load balancing will be conducted. This is
likely to vary across different target architectures. With Linda, both mapping and load balancing are
addressed by the system as the programmer assumes a simple shared-memory programming model.

'L UCID is a multidimensional dataflow language.
Whereas C is the procedural language we currently support, we plan to directly support other langnages.



With GLU, the mapping and load balancing strategies are integrated into the composition specifi-
cation itself. Thus, they are automatically incorporated into the application process architecture.
One of the unique natural strengths of GLU is adaptivity . That is, GLU applications can
tolerate failure of individual processors or links as well as adapt during execution to using additional
processors.
The best way to contrast GLU with PVM and Linda is to think of it as a much higher level
programming system. In fact, it is possible, in principle, to implement GLU using PVM or Linda.

1.3 How to Read this Guide?

The readers are encouraged to read Chapter 2 first where a quick tour of GLU programming is
given. Chapter 3 describes the language LUCID which is at the heart of GLU. Chapter 4 describes
GLU as a hybrid of LUCID and C. Chapter 5 discusses the compilation and execution process for
GLU programs. The rest of the guide consists of appendices. Appendix A gives a BNF description
of GLU, scope rules, and operator precedence. Appendix B describes standard (predefined) GLU
functions that are useful in constructing GLU applications. Appendix C contains “man pages” for
the compiler and the runtime system.



Chapter 2

Tutorial Introduction

The purpose of this chapter is to show the essential elements of GLU by example, without getting
mired in the precise details of the language. Whereas reading only this chapter will not be sufficient
to program effectively in GLU, it will help in understanding the GLU programming model and also
will help in writing some simple yet useful programs. The chapters that follow give a more thorough
description of GLU.

Programming in GLU is natural, but it requires a shift in the way one thinks of programming,
which often is imperative. There are two ways to think of the GLU model of programming. The first
way is as a hybrid of declarative (LUCID) programming in which one specifies what to compute and
imperative (C) programming in which one specifies how to compute. The second way to think of GLU
is as a procedurally-extended declarative programming language , i.e., LUCID with C extensions.
Both views are valid — the first suits those who are familiar with procedural programming while the
latter suits those who are familiar with declarative programming . We appeal to both these views,
as appropriate, in the rest of the chapter.

2.1 LUCID — Declarative Nucleus of GLU

Let us briefly consider the declarative part of GLU. It corresponds to the language LUCID (circa
1994) which is both a functional and indexical' language.

We distinguish between functional and indexical programming by writing two LUCID programs
for computing the Fibonacci sequence , which is defined mathematically as follows:

. ifi=0o0ri=1
fib, = } } .
fib,_; + fib;_5 otherwise

Here is a purely functional program in LUCID to compute £ib:

fib( i) =if (i ==0 ||l i ==1) then i
else fib( i-1 ) + fib( i-2 ) fi;

The important thing about this program is that £ib is a recursively defined function — to compute
fibs, function £ib( 3 ) is invoked which requires the computation of £ib( 2 ) and £ib( 1 ) and
the computation of £ib( 2 ) would require the computation® of £ib( 1 ) and £ib( 0 ).

Here is a purely indexical program in LUCID to compute fib:

! Briefly, a language is indesical if meanings of expressions depend on a set of implicit contexts each of which vary
over an index set . Interested readers should consult [3].
2Multiple computations of £ib(1) can be avoided if results of function calls are stored (function memoization).



fib = 0 fby 1 fby fib + next fib;

The important thing to note here is that £ib is a nullary (argument-less) function (which we refer
to as a variable) which denotes a sequence of values over a time dimension . The definition of £ib
states that the first element of the sequence is 0, the second element of the sequence is 1 and each
subsequent element is computed by adding the preceding two elements. This, in fact, corresponds
to the mathematical definition except that it is indexless; rather the index is implicit or hidden.
To compute fibsz, one needs to compute fib at time 3 (or fib(time=3)) which is the sum of
Tib(time=2) and Tib(time=1)" We know that Tib(time=1) is 1 and Tib(time=2) is the sum of
£ib(time=0) and £ib(yipe=1) (Which is already computed.)

Since LUCID is functional, its programs are referentially transparent and can be given meaning
mathematically. Since LUCID is also indexical, it offers a fundamentally distributed view of both
computation and data structures.

2.2 GLU — A Procedural Extension to LUCID

GLU is a simple yet powerful extension of LUCID: user-defined functions in GLU can be defined
procedurally and values they consume and produce can be complex data structures.

This extension makes two things possible: first, conventional parallel computers can be pro-
grammed and second, existing sequential applications can be parallelized without having to rewrite
them from scratch.

Consider the problem of multiplying two matrices , say A and B, and obtaining a product matrix
C'. The standard solution is to obtain each element (7, j) of the product matrix C' by multiplying
the 1" row of A with the j¥* column of B and summing the inner product. A procedural program
(in the language C) for multiplying matrices is given below.

#include <stdio.h>

struct matrix {
int nrows, ncols;
float **v;
};

typedef struct matrix *MATRIX;

MATRIX block( MATRIX M, int frow, int lrow, int fcol, int lcol )
{

MATRIX m;

int i, j;

m = (MATRIX) malloc( sizeof( struct matrix ) );
m->nrows = lrow — frow + 1; m->ncols = 1lcol - fcol + 1;
m—>v = (float **) malloc( m->nrows * sizeof( float * ) );
for( i=0; i<m->nrows; i++ )

m->v[i] = (float *) malloc( m->ncols * sizeof( float ) );

for( i=0; i<m->nrows; i++ )
for( j=0; j<m->ncols; j++ )

m->v[i] [j] = M->v[frow+i] [fcol+j];

return( m );
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}

MATRIX mult( MATRIX a, MATRIX b )
{

MATRIX m;

int i, j, k;

float s;

m = (MATRIX) malloc( sizeof( struct matrix ) );
m—->Nrows = a—->nrows; m->ncols = b->ncols;
m—>v = (float **) malloc( m->nrows * sizeof( float * ) );
for( i=0; i<m->nrows; i++ )
m->v[i] = (float *) malloc( m->ncols * sizeof( float ) );

for( i=0; i<m->nrows; i++ )
for( j=0; j<m->ncols; j++ )

{
s = 0;
for( k=0; k<a->ncols; k++ )

s = s + a->v[i] [k]1*b->v[k][j];

m->v[i][j] = s;

¥

return( m );

¥
MATRIX matmult( MATRIX A, MATRIX B )
{

int i, j, nr, nc;

MATRIX C, r;

nr = A->nrows;
nc = B->ncols;
C = (MATRIX) malloc( sizeof( struct matrix ) );
C->nrows = nr; C->ncols = nc;
C->v = (float **) malloc( nr*sizeof( float * ) );
for( i=0; i<nr; i++ )

C->v[i] = (float *) malloc( nc*sizeof( float ) );

for( i=0; i<nr; i++ )
for( j=0; j<nc; j++ )

{
r = mult( block(4,i,i,0,nc-1), block(B,0,nr-1,j,3j) );
¢->v[il[j]1 = r->v[0][0];
¥
return( C );
¥
main()
{

MATRIX A, B, C;
MATRIX inA(), inB();



void out();

A = inA();
B = inB();
C = matmult( 4, B );
out( C );

}

The only user-defined datatype in the above program is MATRIX, which is a pointer to the structure
matrix that consists of the number of rows, number of columns, and a two-dimensional array of
floats.

In the above program, functions inA and inB are used to input matrices and out is used to output
the product matrix; function block is used to extract a submatrix from a matrix; function mult is
used to multiply compatible submatrices; and function matmult uses the above-mentioned functions
to multiply two matrices.

We can develop a variant of function matmult as given below:

MATRIX lefthalf( MATRIX A )

{
return( block( 4, 0, A->nrows-1, 0, A->ncols/2 - 1 ) );
¥
MATRIX righthalf( MATRIX A )
{
return( block( A, 0, A->nrows-1, A->ncols/2, A->ncols-1 ) );
¥
MATRIX tophalf( MATRIX A )
{
return( block( 4, 0, A->nrows/2 - 1, 0, A->ncols-1 ) );
¥
MATRIX bottomhalf( MATRIX 4 )
{
return( block( A, A->nrows/2, A->nrows-1, 0, A->ncols-1 ) );
¥
MATRIX gather( MATRIX t1, MATRIX tr, MATRIX bl, MATRIX br )
{
MATRIX m;

int i, j, hnr, hnc;

m = (MATRIX ) smalloc( sizeof( struct matrix ) );
m->nrows = tl->nrows*2; m—->ncols = tl->ncols*2;
m->v = (float **) malloc(m->nrows*sizeof(float *));
for(i=0; i<m—>nrows; i++)

m->v[i] = (float *) malloc(m—>ncols * sizeof(float));

m->nrows / 2;
m->ncols / 2;

hnr
hnc

for(i=0; i<m—>nrows; i++)
for(j=0; j<m—>ncols; j++)

{
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if( i < hnr )
{ if( j < hnc )
m->v[il[j] = t1->v[il[j];
else
m->v[i] [j] = tr->v[i] [j-hnc];
}
else
{ if( j < hnc )
m->v[il[j] = bl->v[i-hnr][j];
else
m->v[i][j] = br->v[i-hnr][j-hncl;

}

return( m );

}

MATRIX matmult( MATRIX A, MATRIX B )
{
MATRIX C, TL, TR, BL, BR;

TL = mult( tophalf( A ), lefthalf( B ) );
TR = mult( tophalf( A ), righthalf( B ) );
BL = mult( bottomhalf( 4 ), lefthalf( B ) );
BR = mult( bottomhalf( 4 ), righthalf( B ) );

C = gather( TL, TR, BL, BR );

return( C );

}

In this program, multiplying a matrix consists of simply gathering the submatrices obtained by mul-
tiplying the appropriate half-matrices. The gathering function is performed using function gather
while selecting the appropriate half-matrices is performed using functions lefthalf, righthalf,
tophalf, and bottomhalf each of which are defined in terms of block.

We now describe how this program can be constructed in GLU.

struct matrix {
int nrows, ncols;
float v[nrows][ncols];
};

typedef struct matrix *MATRIX;

int out( MATRIX );

MATRIX inA( );

MATRIX inB( );

MATRIX gather( MATRIX, MATRIX, MATRIX, MATRIX );
MATRIX lefthalf( MATRIX );

MATRIX righthalf( MATRIX );

MATRIX tophalf( MATRIX );

MATRIX bottomhalf( MATRIX );

MATRIX mult( MATRIX, MATRIX );



out( C ) fby eod where

4 = inA( );
B = inB( );
C = matmult( 4, B );

matmult( 4, B ) = P where
P = gather( TL, TR, BL, BR );
TL = mult( tophalf( A ), lefthalf( B ) );
TR = mult( tophalf( A ), righthalf( B ) );
BL = mult( bottomhalf( & ), lefthalf( B ) );
BR = mult( bottomhalf( A ), righthalf( B ) );

end;

end

The GLU program consists of two parts — the first part consists of user-defined datatypes and
user-defined function-prototype declarations and the second part consists of the composition of the
program using builtin and user-defined functions. The syntax of the first part is identical to ANSI
C , hence needs no further explanation except for the type definition of struct matrix — two-
dimensional array v parameterized using two integer variables, nrows and ncols. The composition
itself is simply an expression, in this case out( C ) fby eod where the enclosing where clause defines
the variable C.

The expression out(C) fby eod defines a temporal sequence whose first element is the result of
invoking out (C), which has the side-effect of displaying matrix C, and whose subsequent elements are
all eod, which is a special value denoting end of data. With most GLU interpreters, the operational
effect of displaying an eod is termination of program execution.

The definition of C is given in the enclosing where clause as matmult( A, B ) where variables
A and B themselves are defined using user-defined function in. Unlike out and in (which are C
functions), matmult is a user-defined GLU function with two parameters. Function matmult is
defined to be the variable P where P itself is the result of applying gather to TL, TR, BL, and
BR. Variable TL is the result of multiplying (using mult) the left half of matrix A (obtained using
lefthalf( A )) and the top half of matrix B (obtained using tophalf( B )). Variables TR, BL, and
BR are similarly defined.

It is worth talking about how this composition is evaluated given that it is declarative and not
procedural. The first thing that happens is that expression out(C) fby eod is evaluated. It causes
out (C) to be evaluated first and eod to be evaluated next. Since out is a procedural user-defined
function , it is only invoked when variable C is defined and no sooner. To evaluate C, the right-hand-
side of its definition, matmult( A, B ), is evaluated. Since matmult is a composition function and
not a procedural function, it is evaluated even before its arguments A and B are available. In fact,
all composition functions are evaluated using “call-by-need” semantics as opposed to “call-by-value”
semantics used for C functions.

The main difference between a GLU program and an equivalent procedural program is that the
GLU program is inherently parallel unless otherwise constrained, whereas the procedural program is
inherently sequential unless parallelism is explicitly identified. In the example above, with the GLU
program, the variables TL, TR, BL, and BR can be computed simultaneously resulting in four-fold
parallelism whereas these variables have to be evaluated sequentially in the procedural program.

Since GLU programs are declarative, they possess the important property of referential trans-
parency which means that two occurrences of an expression refer to the same value. Thus, the order
of equations in GLU programs is simply a matter of style and do not affect their meanings. One can
substitute the right-hand-side of an equation for each occurrence of the left-hand-side and vice versa
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just as in mathematics.

GLU programs separate composition from computation . This is not only important in var-
ious aspects of the program development process such as debugging and modification but it also
encourages reuse of existing computational code across applications.

The GLU program described above simply multiplies two matrices then terminates. What if we
want to have the program multiply two streams of matrices pairwise? It turns out that doing so in
GLU is not that much more work than multiplying just one pair. The GLU composition is shown
below:

struct matrix {
int nrows, ncols;
float **m;
¥

typedef matrix *MATRIX;

int out( MATRIX );

MATRIX inA( int );

MATRIX inB( int );

MATRIX gather( MATRIX, MATRIX, MATRIX, MATRIX );
MATRIX lefthalf( MATRIX );

MATRIX righthalf( MATRIX );

MATRIX tophalf( MATRIX );

MATRIX bottomhalf( MATRIX );

MATRIX mult( MATRIX, MATRIX );

out( C ) where
A = inA( #.time );
B = inB( #.time );
C = matmult( 4, B );

matmult( 4, B ) = P where
P = gather( TL, TR, BL, BR );
TL = mult( tophalf( A ), lefthalf( B ) );
TR = mult( tophalf( A ), righthalf( B ) );
BL = mult( bottomhalf( & ), lefthalf( B ) );
BR = mult( bottomhalf( A ), righthalf( B ) );

end;

end

This program differs from the previous one in only two respects: Functions inA and inB now have
an argument, #.time , and the program expression is simply out(C) instead of out(C) fby eod.

What this program reveals is the underlying context in which GLU programs are evaluated,
namely time. That is, each expression (including variables) in the above GLU program actually
denotes a temporal stream of values. The value of an expression depends not only on the constituent
subexpressions and their binding function but also on the implicit time context. Thus, one can think
of the equation C = matmult( A, B ) as meaning
<Cg,...,C¢,...> = <matmult(A,B)g,...,matmult(A,B);,...>
where matmult(A,B); = matmult( A;, B; ).

Consider the evaluation of out(C): it causes C; to be evaluated, which causes matmult(A,B),;
to be evaluated, which, in turn, causes gather(TL;,TR;,BL;,BR;) to be evaluated. Fvaluations of
TL;,TR;,BL;, and BR; eventually cause both A; and B; to be evaluated once. Evaluation of A; invokes
inA with #.time being the current time context, namely, ¢. (And similarly for B;.) Once 4; and B,
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are available, TL;,TR;,BL;, and BR; can be generated resulting in C; to be generated and function out
to display the matrix.

Since evaluation of C; is independent of C;41, it is entirely possible for both these computations
and any others to proceed simultaneously without interference.

Suppose we wanted to multiply only the first 10 matrix pairs and then terminate — this requires
changing only the program expression from out(C) to if #.time < 10 then out(C) else eod fi.

One of the limitations of matmult is that it results in only four-fold parallelism since function
mult is sequential. It is possible to have matmult express more parallelism by making matmult
recursive as shown below:

matmult( 4, B ) =
if smallenough(4,B)
then mult(4,B)
else P fi where
P = gather( TL, TR, BL, BR );
TL = mult( tophalf( A ), lefthalf( B ) );
TR = mult( tophalf( A ), righthalf( B ) );
BL = mult( bottomhalf( & ), lefthalf( B ) );
BR = mult( bottomhalf( A ), righthalf( B ) );
end;

In the above program, we have introduced a function smallenough that helps control the granularity
of parallelism by deciding when multiplying two matrices cannot be further subdivided. Composition
function matmult itself is recursive — instead of having TL, TR, BL, and BR defined in terms of mult,
these variables are defined using matmult. The parallelism expressed by matmult is no longer four-
fold — it is actually O(4"), where L is the number of recursive steps.

A drawback of the recursive matmult is the cost associated with repeated division of matrices
using lefthalf, righthalf, tophalf, and bottomhalf. This not only takes time but also causes
unnecessary creation and destruction of intermediate matrices. We devise a nonrecursive version of
matmult that expresses as much parallelism, without the cost of recursion. To do so, we use the
GLU notion of user-defined multidimensionality.

matmult( A, B ) = p asa.t ( (nrows(A) == nrows(p)) && (ncols(B) == ncols(p)) )
where
dimension i,j,t;
a = rowstrip( A, #.i );

b = colstrip( B, #.j );
p = mult( a, b ) fby.t
( ( gather( p, next.j p, next.i p, next.i next.j p ) @.j (2*#.j) ) Q.1 (2*#.1
)
end;

Composition function matmult is defined using a multidimensional computation in dimensions
i, j, and t, which are declared using the dimension declaration within the where clause associated
with matmult. This multidimensional computation occurs at each time-context in the enclosing
time dimension. It is defined to be the value of variable p at context i=0,3j=0,t=T where T is the
t-context at which the number of rows of the product matrix p is the same as the number of rows
of matrix A and the number of columns is the same as the number of columns of matrix B.

Consider the definition of variable p:- it says that at any context where t-context 0, it is the value
of mult(a,b) at the same context. Variable a which only varies in dimension i is defined as function
rowstrip(A, #.1) where #.1i refers to the i-context from the context of evaluation. (rowstrip
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basically extracts the i'* strip of rows from matrix a.) Variable b which only varies in dimension
j is defined as function colstrip(B, #.j) where #.j refers to the j-context from the context of
evaluation. (It extracts the j** strip of columns from matrix b.)

Variable p at context (1=I,j=J,t=T) where T>0, is the result of applying function gather to val-
ues of variable p at contexts (1=2+I,§=2*%J,t=T-1), (1=2*1,j=2%J+1,t=T-1), (1=2*I+1,j=2*J,t=T
and (i=2%I+1,3j=2*J+1,t=T-1). This can be derived as follows:

P(i=I,j=J,t=T) —

(gather(p,next.j p,next.i p,next.i next.j)@.j(Q*#.j))@.i(Z*#.i)(i=I’j=J,t=T_1)
gather(p,next.j p,next.i p,next.i next.j)(i=2*1’j=2*3,t=T_1)

= gather(p(i=p+I,j=2#J,t=T-1) P(i=2*I, j=2#J+1,t=T-1),

P(i=2#I+1,j=2%J,t=T-1)s P(i=2%I+1, j=2%J+1,t=T-1))

The best way to visualize the evaluation of matmult is to think of each of its variable as rep-
resenting a series of planes (i,j) ordered by time t. Variable a then is a series of identical planes
(since the definition of a does not depend on time t) where each plane consists of identical columns
of row strips where each row strip is extracted from matrix a. Similarly, variable b is a series of
identical planes where each plane consists of identical rows of column strips where each column strip
is extracted from matrix b. (The row strip size and column strip size are predefined.) It is worth
noting that any reasonable implementation of GLU would store values of a for each i-context and
values of b for each j-context, as they are constant in the remaining two dimensions.

Variable p consists of a series of planes, where the initial plane consists of matrix products such
that the (i, )" matrix is obtained by multiplying the corresponding (actually i**) row strip of a and
corresponding (actually j*) column strip of b. Each successive plane consists of matrices that are
four times as large where the (4, j)%* matrix is obtained by coalescing the four matrices using function
gather in the previous plane at positions (2¢,25), (27,25 4+ 1), (2¢ + 1,2j) and (2i 4+ 1,25 + 1).

Assuming that the size of each element matrix in the initial plane is s and the size of the product
matrix is 5, the (0,0)" element of the log,(.5/s) plane is the desired product matrix. One way
of determining without keeping track of size is to check if the (0,0)th element matrix of a plane
has the same number of rows as matrix a and the same number of columns as matrix b as in
p asa.t ( (nrows(A) == nrows(p)) && (ncols(B) == ncols(p)) ).

Similar to the recursive version of matmult, the parallelism in simultaneous execution of mult is
4% where L is the number of planes. (L is log,(5/s).)

It turns out that this kind of computational structure is common to algorithms that solve quite
different problems. Therefore, it would be desirable to specify the structure in such a way that it can
be not only general but also succinct. This is the idea behind what we call dimensionally-abstract
composition functions — functions that abstract not only data but also abstract dimensions. We
illustrate one such function, planar_tree, in matmult.

planar_tree.x,y( £, a, size ) = b asa.t s >= size
where
dimension t;
b = a fby.t

1),

( ( £( b, next.y b, next.x b, next.y next.x b ) @.x (2 * #.x)) 0.y (2 * #.y));

s = 1 fby.t 4*s;
end;
matmult( A, B ) = planar_tree.i,j( gather, mult(a, b), n )
where
dimension 1i,j;
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a = rowstrip( A, ROWSTRIPSIZE, #.i );

b = colstrip( B, COLSTRIPSIZE, #.j );

n = ( nrows(A) / ROWSTRIPSIZE ) * ( ncols(B) / COLSTRIPSIZE );
end;

In matmult, planar_tree is invoked with dimensions x and y corresponding to i and j, £ corre-
sponding to data function gather, a corresponding to mult(a,b), and m corresponding to n.

It turns out that planar_tree is quite useful in expressing a wide range of computational struc-
tures. Hence it has been predefined in a file called std.g that can be included using the standard C
include facility in a GLU program. (See Appendix B.)

This concludes the tutorial introduction to programming in GLU. The reader should now be able
to have a basic understanding of the GLU model of programming and how it differs from purely
imperative and purely functional models. The reader should also be able to write simple GLU
programs starting from existing C programs.



Chapter 3

LUCID

At the outset we stated that LUCID forms the nucleus of GLU. In this chapter, we describe the
ingredients of LUCID in detail. Although LUCID has been around since 1974, what we describe here
is the latest incarnation of LUCID (circa 1994), which is substantially different from its predecessors.

3.1 Types

Values in LUCID can be one of two scalar types: integer and floating point. LUCID also provides
two special values: eod (referred to as ‘end of data’) which is of a special type that can be only
manipulated by a specific operation (iseod) and error (referred to as ‘error object’) which is also
of a special type that can be only manipulated by a specific operation (iserror) . Although there
are no booleans, LUCID follows the C convention in that integer 0 is interpreted as false and any
other integer value is interpreted as true. LUCID does not directly provide for any aggregate types
such as arrays, structures or linked lists.

There is no explicit declaration for types of values. Value types are implicit and they are deter-
mined at compile time using type analysis of the associated expression. For example,

X 3.0 fby 4.0;
y = if x then 3 else 4 £fi;

Values of x are floats because x is defined in terms of two floats. Values of y are integer because the
values that y can be assigned are both integers even though the predicate x is float.

3.2 Constants

LUCID provides for numeric constants (both integers and floats) and for the special constants eod
and error. As mentioned earlier, a constant is not simply a scalar value. Rather, it is an infinite
sequence of values where each value is the same. For example, 3 denotes the constant sequence
<3,3,...,3,...>, 4.0 denotes the constant sequence < 4.0,4.0,...,4.0,...>, and eod denotes the
constant sequence < eod, eod, ... eod,...>.

3.3 Variables

A variable in LUCID is simply a named expression . A variable name can only be defined once within
its scope. Its name can be any alphanumeric identifier starting with a letter and it can include the
special character ‘_ 7 (underscore).

13
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A variable is defined using an equation in which the variable is on the left-hand side of the
equation and the defining expression is on the right-hand side. The following are valid variable
definitions:

two = 2;

root = ( -b - s ) / (two*a);
otherroot = (-b + s ) / (two*a);
s = sqrt( b*b - 4*a*xc );

In each of the examples, the variable on the left-hand side denotes a sequence of values associated
with the expression on the right-hand side.

3.4 Operators

LUCID has several predefined operators that can be divided into two general categories: pointwise
operators and nonpointwise operators . With pointwise operators, to compute a result value at a
certain point in the sequence requires only values at the same point from the operand sequences. All
operators for which this is not true are nonpointwise operators. We describe and define these oper-
ators assuming that sequences are one-dimensional. Later we extend them to multiple dimensions.

3.4.1 Arithmetic, Relational and Logical Operators

The arithmetic, relational, logical, and bitwise logical operators in LUCID are the same as in C
and they are all pointwise. The arithmetic operators are + for addition, - for subtraction, * for
multiplication, / for division, ¥ for modulus, and unary - for negative. The relational operators are
> for greater than, >= for not less than, < for less than, <= for not greater than, == for equal to, and
1= for not equal to. The logical operators are && for conjunction, || for disjunction, and unary !
71@unary for negation. The bitwise logical operators are & for “and”, | for “or”, << for left shift,
>> for right shift, ~ for exclusive-or and ~ for 1’s complement.

Here are some examples. (In these and other examples, we use the convention that the first
element of a sequence has a box around it.)

A is o] 1 2 3
B is 1] 3 5 7
A+ B s 1] 4 7 10
A% 2t=0ids [0] 1 0 1
B >> 1 is 0] 1 2 3

3.4.2 Operators first and next

The first and next operators are the two simplest nonpointwise unary LUCID operators . Operator
first returns a sequence each of whose values is the first value of the operand sequence. Operator
next returns a sequence that consists of all but the first value of its operand sequence.

A s

first A is
next A is
next next A is

N WO =
N =~ W O N
N O A O W

first next next A is

[e]re]=]=]=]
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3.4.3 Operator fby

The operator £by (pronounced “followed by”) is a binary non-pointwise operator that accepts two
sequences and produces a result sequence whose first element is from the first operand sequence and
whose subsequent elements correspond to the second operand sequence.

A is o] 1 2 3

B is 21 31 41

A fby B is o] 11 21 31

B fby A is 0o 1 2 .-
A fby B fby A+B is [0] 11 11 22 33 ...
A £by next B is 0] 21 31 41

The following are mathematical definitions of some of the operators we have informally described.
Note that the subscript refers to the implicit context or index.

[0, = 0
[A+B], = [A], + [B];
[At=B], = [A], #[B];
[tA], = t[4]
[firstA], = [A4],
nextA], = [A],
]

[A fby B], = if k <0 then [A], else [B],_, fi

3.4.4 @ and # Operators

The @ (at) operator is the most primitive LUCID operator using which most of the other LUCID
operators can be defined. The @ operator takes two sequences, a base sequence and an index sequence,
and creates a new sequence by using each value of the index stream as an index or a context into
the base sequence.

The # operator (hash) operator makes explicit the underlying implicit index in a particular
dimension. In particular, #.dim gives the current underlying dim-context where dim is the name of
a dimension such as time.

A =
B =
AeB =
#.time = @

Denotationally, the @ and # operators can be defined as follows.

nos), = [
[#.time], = &

3 5 8 13 21 34 55
g8 7 0 5 2 3 9
34 21 1 8 2 3 55
3 4 5 6 7 8

_ N DN =
N O =N

k

3.4.5 if-then-else Operator

The if-then-else operator takes three sequences, a boolean sequence and two base sequences, and
creates a new sequence by using each value of the boolean sequence to select the corresponding value
from the first base sequence if true and the corresponding value from the second base sequence if
false.
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P - 001 11 1 0 1 0
A = .- 1 2 3 5 8 13 21 34 55
B = ... 2 4 8 70 5 2 3 9
if P then A else Bfi = --- 2 4 3 5 8 13 2 34 9

Operators first, next, and £by can be defined in terms of @ and of-then-else as shown below.

first A = A @O0
next A = A @ (#.time + 1)
A fby B = if (#.time)==0 then A @ O else B @ (#.time - 1) fi

3.4.6 Operators asa, wvr, upon

The LUCID operator asa (pronounced “as soon as”) accepts two operand sequences and produces
a result sequence. This operator can be thought of as producing an operand dependent constant
sequence. The value of this constant is the k¥ value of the first operand sequence such that the k%"
value of the second operand sequence is true (non-zero) and all values prior to it are false (zero).

P = [o] o o 1 1 1 1 0 1 o0
A = 1129 23 5 8 13 21 34 55
Aasa P = 23 23 23 23 23 23 23 23 23

Operator asa can be defined in terms of first, next, and if-then-else:

x asa p = y where y = first ( if p then x else next y fi ) end

As with the operator asa, the operator wvr (pronounced “whenever”) has two operand sequences
and one result sequence. This operator selects those values from the first operand sequence whose
corresponding values in the second operand sequence are true. The result sequence, in a sense, is a
filtered version of the first operand sequence where the extent of filtering is determined by the second
operand sequence.

P = o] o 0o 1 1 1 1 0 1 0
A = [10] 11 29 23 5 8 13 21 34

Awr P = [23] 5 8 13 34

The operator asa is frequently used in expressing conditional iteration as in the following program
which computes N!:

fac asan == N
where
n = 1 fby n+1;
fac = 1 fby fac*n;
end

Variable n is the sequence of natural numbers and variable fac is the sequence of factorials. FExpres-
sion fac asa n == N selects the value of fac when the value of variable n is N.
Operator wvr can be defined in terms of @, fby, and if-then-else:

X WVr p = X @ t2 where
t1 = if p then #.time else next t1 £fi;
t2 = t1 fby (t1 @ t2+1);

end
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Like operator wvr, the operator upon is binary. This operator upon ‘stretches’ the first operand
sequence based on the second operand sequence. Specifically, the k" value of the result sequence is
the p'" (p < k) value of the first operand sequence such that p of the first & values of the second
operand sequence are true.

P = o] o 0o 1 1 1 0 1 0
A = 11 29 23 5 8 13 21 34
A upon P = 10 10 11 29 23 23 5 5

Operator upon can be defined in terms of @, fby, and if-then-else:

X upon p = x @ t1 where
t1 = 0 fby if p then t1+1 else t1 £fi;
end;

The upon operator is useful when you wish to merge two streams without losing any elements of
either:

sort(A, B) = if dA < dB then dA else dB fi

where
dA = A upon dA > dB;
dB = B upon dA <= dB;
end

Here is an example of sort(A, B):

A - [1] 2 4 7 10 12 13 20 21
B = -~ [3] 56 8 9 11 14 15 16
dA = .. [1] 2 4 4 7 7 7 10 10
dB -~ 3] 335 5 6 8 8 9

3.4.7 Operator iseod

Operator iseod tests if its argument is the special value eod. It returns 1 if it is and returns 0
otherwise.

X :4e0d9e0d16
iscod X = [0] 0 1 0 1 0

3.4.8 Operator iserror

Operator iserror tests if its argument is the special value error. It returns 1 if it is an error object,
otherwise it returns 0.

X = 4 error 9 error 16
iserror X = @ 0 1 0 1 0

The error object, error, is produced by an operation under the following conditions:

1. Operation execution results in an arithemtic exception (argument domain exception, argument
singularity, overflow range exception, underflow range exception).

2. Operation has mismatched argument types (such as float as second argument of the @ operator).

3. One or more of the operands are themselves error objects.
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3.5 Extra Operators

We introduce three operators that are not part of standard LUCID. These operators are used to
produce the appropriate side-effects.

3.5.1 Operator ¢,’

The ¢, (comma) operator corresponds to the value of the second argument produced after the first
argument has been evaluated. X,Y is equivalent to if iseod X then Y else Y fi.

X = 4 9 16 25 36
Yy = 4 -9 16 -25 -36
X,Y 4 9 -16 -25 -36

3.5.2 Operator ‘!’

The ‘1 (question mark) operator corresponds to the value of the second argument produced at the
same time as the value of the first argument is been produced which is discarded. The difference
between the ¢,’ and the ‘!’ operator is that the former is sequential whereas the latter is not. Thus,
‘17 will produce a result as long as the second argument is defined regardless of whether the first
argument is defined or undefined ().

X L 9 L 25 36
Y 4 -9 -16 25 -36
XlY = 4 9 -16 -25 -36

3.5.3 Operator ‘7’

The *?” (question mark) operator evaluates both its arguments and produces the argument that
evaluates first. It corresponds to a parallel or non-deterministic merge or choice operator which is
not sequential. The output depends only on the relative rates of the two inputs and not on their
values. For example, 1 7 2 can be either 1 or 2 with equal probability.

3.6 Expressions

A LUCID expression can be as simple as a constant or a variable.

pi = 3.14159267;
another_pi = pi;

Or it can be an operation symbol together with operands, which are expressions themselves.

two_pi = 2 * pi;

circumference = 2 * pi * radius;

odds = 1 fby odds + 2;

powers_of_two = 1 fby 2*powers_of_two;

Or it can be a function symbol together with actual parameters, which are expressions.

n =1 fby add( n, 1 );
powers_of_two = pow( 2, n );

Or it can be a where-clause .
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running_average where
running_average = X fby running_average + diff

where
diff = (next X - running_average ) / n
where
n = 2 fby n+1;
end;
end;

end;

Here is an example of the computation of running average.

X = [1] 4 9 16

running_average = 2.5 467 7.5
diff = [15] 117 283

n = 2] 3 4 5

3.7 User-defined Functions

It is possible to define functions just like in other languages. What is unusual about LUCID functions
is that they are not necessarily pointwise. Thus, it is better to think of them as functions whose
parameters denote sequences rather than values. This is consistent with how one thinks of LUCID
operators. Here is a simple example of a LUCID function, avg3, which given a sequence s returns a
constant sequence consisting of the average of the next three elements of s.

avg3( s ) = ( s + next s + next next s ) / 3;

Here is a an example of an evaluation of avg3.

s = 2 4 7 10 12 13 20 21
next s = 4 7 10 12 13 20 21 -
next next s = 710 12 13 20 21
avgd(s) = [233] 433 7 9.67 11.67 15 18

The parameter s should be thought of as a sequence because even though avg3( s ) is evaluated
at time ¢, the values of s that are needed is at time ¢, t + 1, and ¢ + 2. For this reason, LUCID
functions are always evaluated lazily — their parameters are evaluated “call-by-need” (as opposed to
call-by-value parameter passing of C). Basically, call-by-need evaluation means that a parameter is
evaluated only when it is needed in the function body in the context in which it is needed.

Here is another example of a LUCID function that computes the running average of a sequence
of numbers x.

ravg(x) = running_average where
running_average = x fby running_average + diff

where
diff = (next x - running average ) / n
where
n = 2 fby n+1;
end;
end;

Here is an example of a recursive function in LUCID to determine the factorial of a sequence of
numbers denoted by n.
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fac(n) = if n == 0 then 1 else n*fac(n-1) fi;

If n denotes the sequence of natural numbers, here is what gets evaluated:

n = [1] 2 3 4 5 6

fac(n) = 2 6 24 120 720

LUCID functions can not only accept expressions as arguments but also function names. However,
LUCID functions cannot return functions. Thus, they are not higher-order in the classical sense.
Here is an example of a function arith that applies the binary arithmetic function £ to the two
parameter sequences of arith:

arith(f,a,b) = f(a,b);

For example, arith(add,a,b) adds each value of a with the corresponding value of b. And arith(pow,a,b)
computes the b power of a.

3.8 Nested Computations

A common computational structure is a nested computation such as nested do or for loops . We
show how nested computations can be expressed in LUCID.

Suppose we wish to write a function pow which repeatedly takes pairs of non-negative integers
and raises the first to the power of the second; e.g., 2 to the power of 3 is 8. Here is a LUCID
program that works for the first pair of values.

pow( x, n ) = p asa i == first n
where
i=1+1Fby i+ 1;
p =1 fby p * first x;

end

In function pow, for each successive time context, p is multiplied by the first value of x. This continues
until a variable that we have chosen to act as the counter, namely i, equals the first value of n, after
which the value of p is the first value of x raised to the power of the first value of n. Function pow can
only raise the first value of x to the first value of n and not any of the subsequent pairs. The first
in first x and first n is needed because these values have to be invariant as successive values of
p are computed.

For this function to work on successive pairs, what we really need is a way to “freeze” each
pair while the value of x is raised to the power of the corresponding value of n using repeated
multiplications. This is possible in LUCID using dimensional where clauses .

A dimensional where clause is a where clause that contains a declaration of one or more di-
mensions that are local to the scope of the where clause. These dimensions are nested within any
enclosing dimensions and they are orthogonal to each other.

Consider the following version of function pow:

pow( x, n ) = p asa.inner i == n
where
dimension inner;
i =1 fby.inner i + 1;
p = x fby.inner p * x;
end
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First of all, observe the dimension declaration which declares inner to be a dimension local to the
where clause The inner dimension is nested within the time dimension and this is what allows us
to express nested iteration — for each point or context in the time dimension, a subcomputation can
proceed along the inner dimension. Second, observe that operators asa and fby within the where
clause have been qualified by the name of the dimension as in asa.inner and fby.inner. What this
means is that these operators work in the qualified dimension instead of the default time dimension.
That is, i varies in the inner dimension as does p. However, the parameters to function pow, x
and n, do not vary in the inner dimension because they are defined outside the scope of the where
clause; they only vary in dimension time.

Let us now see how the function works. Assume both x and n vary in dimension time and
assume that function pow is invoked for each successive pair of values. Each invocation of pow causes
a subcomputation to be started. Variable p defines a sequence of successive powers of x in the inner
dimension and variable i defines a counter sequence. The head of the where clause determines when
the subcomputation terminates — it terminates when the value of i in the inner dimension is equal
to the value of n which is invariant in the inner dimension. The function defines a sequence in the
inner dimension where each value of the sequence is the value of p in the inner dimension when
i equals n. Since the use of pow is from outside the scope of the inner dimension, only the first
value of the result sequence is visible outside the scope of the function definition. Thus, successive
invocations of pow using successive pairs of values of x and n will return the appropriate results (z").

Here is another example of nested computation : compute the square root of a sequence of values
a that vary in dimension time using Newton’s iterative algorithm .

sqroot( a ) = next.inner approx asa.inner ( abs( next.inner approx - approx ) < 0.001 )
where
dimension inner;
approx = 1 fby.inner (approx+a/approx)/2;
end

As with function pow, function sqroot defines a nested dimension called inner. Variable approx
captures the Newton’s iterative algorithm starting with 1 as the initial approximation for the square
root. The termination condition for the subcomputation specified by the function is the value of
approx in the inner dimension when the absolute difference between it and the previous value of
approx in the inner dimension is less than 0.001. That is the value that is “returned” by function
sqroot.

Now suppose one wanted to find the square root of a sequence of powers ", we can combine the
two functions in the obvious way:

sqroot( pow( x, n ) )

Note that the inner dimensions in pow and sqroot are distinct as per the scope rules.

We now illustrate how dimensional where clauses can be used to express doubly nested iteration
to implement the formula ¢ = X7, ¥ a;b;.

Assuming a and b are two sequences in the time dimension and n and m are constants, we can
write the following definition for c:

¢C=s asa.i i ==n
where
dimension 1i;
s =0 fby.i s + ¢
t =vasa.j j==nm
where
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dimension j;
v =0 fby v + (a @.time i) * (b Q.time j);
end;
end

The definition of c is a doubly nested iteration in terms of dimensions i and j as per the formula
given above. The definition says that the value of c is the value of s when the current context in
the i dimension is n. (Note the use of a dimension name, i, as a variable — it returns the current
i dimension context.) Variable s starts off as 0 and at each successive i dimension context, it
accumulates the value of t that for each i dimension context is defined using a nested iteration in
dimension j. In particular, the value t at some i dimension context is the value of v when the j
dimension context is m. And variable v is defined in the j dimension as the sum of the products of
it" value of a and j'* value of b. (Note that we have extracted the i*" value of a using a qualified @
operator — a @.time i or variable a at time dimension context given by i, and the j** value of b
using the same — b @.time j.)

3.9 Array Computations

Array computations refer to nested computations that are used to manipulate multidimensional
arrays . In the previous section, we have shown how the dimensional where clause can be used to
express nested computations. Here we show how they also can be used to express multidimensional
array computations.

Consider the problem of computing distribution of electric potential on a two-dimensional grid
over time with fixed potential at the electrodes. The usual numerical solution to this problem is
successive over-relaxation where the potential at each point in the grid is simply the average of the
potentials at the neighboring points at the previous time step. This is captured quite succinctly in
the following LUCID definition:

grid where
dimension v, h;
grid = if ELECTRODE then POTENTIAL else O fby avg( grid )
where
avg( g ) = ( prev.v prev.h g + prev.v next.h g +
next.v prev.h g + next.v next.h g ) / 4;
end;
end

The definition of grid consists of a two-dimensional where clause, the dimensions being v and h. If
the v and h contexts denote an electrode then the value of grid at that point is always POTENTIAL.
Otherwise, it starts off as 0 and at each successive time dimension context, it is the average of the
four neighboring values of grid at the previous time dimension context. The operator prev is simply
the dual of next except that it is only defined for positive contexts: prev.v x = x @.v (v-1) and
prev.h = x @.h (h-1).

This is a classic example of an array computation in the sense that grid denotes a two-dimensional
surface in dimensions v and h and operators prev and next are used to navigate this surface in all
four directions.

Another example of an array computation is matrix transposition . Here is a LUCID function
to transpose a matrix in dimensions i and j. It uses the realign operator that is defined as
realign.a,b x = x @.a b meaning rotate the a-th dimension of x into the b-th dimension.
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transpose( a ) = realign.z,j realign.j,i realign.i,z a
where
dimension z;
end

To understand how function transpose works, consider what happens when transpose is evaluated
at context (i=L,j=J).

transpose(a)(i=T,j=J,z=0) —

realign.z,j realign.j,i realign.i,z 3(1=1,j=J,2=0)
realign.j,i realign.i,z A(i=1,5=J,2=J)
realign.i,z ai=1,5=1,2=J)

Ai=d,j=1,2=J)

= q=J4=I)

We can also use realign in a succinct expression of matrix multiplication of two matrices, a and
b, in dimensions i and j of order n.

sum( ( realign.j,k a ) * ( realign.i,k b ), n )
where
dimension k;
Sum( x, n ) = s asa.k ( #.k == n )
where
s = 0 fby.k s + x;
end;
end

3.10 Dimensional Abstraction

A simple yet powerful feature of LUCID is dimensional abstraction — functions and variables can be
defined using dimension parameters. Consider a simple example:

sum.z( x, n ) = s asa.z ( #.2 == n )
where
s =0 fby.z s + x;
end

We can use sum to add all the elements (n?) elements of a matrix (a) by first adding each column
(along dimension i) and then adding the resulting vector (along dimension j).

sum.j( sum.i( a, n ), n )

Here we are passing to function sum the dimension along which it should operate — first i and then j.
Since addition is commutative, we can switch the order i.e., add the rows first and then the resulting

column vector.
sum.i( sum.j( a, n ), n )

We could also define a function sum2d that accepts the two dimensions as dimensional parameters

and adds the matrix:
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sum2d.u,v( x, n ) = s asa.u ( #.u == n )
where
s = 0 fby.u s + p;
p=9qasa.v (#.v == n )
where
qg =0 fby.v x + q;
end;
end

We can use function sum2d as shown below to add the elements of a.
sum2d.i,j( a, n )

Not only are functions dimensionally abstract but so are variables (since they are nullary functions
). Here is an example of a “generic” two-dimensional variable unit that has the value 1 along the
diagonal and 0 elsewhere:

unit.i,j = if #.1i == #.j then 1 else 0 fi;

Now suppose we wanted to define a variable w that has the same value as unit along dimensions x
and y and a variable v that has the same value along dimensions z and x, we can define them as
follows:

W = unit.x.y;

v = unit.z.x;

Let us consider the definition of function sum again. It is easy to see that it is inherently sequential
as elements of a vector are added one at a time even though they could be added in parallel (as
addition is associative). The idea of a parallel sum is to add elements of a vector pairwise and then
add the resulting elements pairwise and so on until there is a single element that is the sum of the
vector. This can be expressed as follows:

psum.z( x, n ) = s asa.t ( m ==n )
where
index t;
s = x fby.t ( s + next.z s ) Q.z (2*#.z);
m=1<< t;
end

Let us examine psum in detail. It is a dimensional function that accepts one dimension parameter
z and two data parameters x and n. It introduces a local dimension t. It is defined as the value
of s when m equals n along dimension t. Variable s that is defined in dimensions z and t initially
corresponds to all the elements of x along dimension z. At each subsequent t dimension context, s
is the sum of pairs of elements (along dimension z) at the previous t dimension context. We can
write this as follows:-

S ) = X(z=2,t=0) if t =0
=7,t=T) = ,
‘ S(z=22,t=T-1) T S(z=22,t=T-1) otherwise

We can think of s as consisting of n elements (along dimension z) when t = 0 and half-as-many
elements at each successive t dimension context until there is only one element. And this is when t di-
mension context is logy(n) or when 2Y == n which is captured in s asa.t m == nwherem = 1 << t.
Function psum is equivalent to sum and can be used in its place in adding matrix a of order n.

psum.i( psum.jC a, n ), n )
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The computational structure of psum, that of an inverted binary tree, is widely applicable. For
example, it can be used to find the maximum of a set of numbers or it can be used to sort elements
using mergesort. Instead of instantiating psum for each different use, we can specify the structure as
a dimensionally abstract function where the specific use of it (captured in a function) is passed as

an argument.

linear_tree.X(f, data, size) = tot asa.t tsize <=1
where
index t;
tsize = size fby.t (tsize+1)/2;
tot = data fby.t
if X >= tsize/2
then tot ©.X (2 * #.X)
else f(tot, next.X tot) @.X (2 * #.X);
fi;
end

Function linear_tree not only works when the number of elements is a power of 2 but for any

positive number.
The following defines psum in terms of 1inear tree:

psum.z( x, n ) = linear_tree.z( add, x, n )
where add( a, b ) = a + b; end

The following defines a function pmax2d that finds the maximum of a two-dimensional matrix a in

dimensions i and j in terms of linear tree:

pmax2d.i,j( x, n ) = linear_tree.j( max, linear_tree.i( max, x, n ), n )
where max( a, b ) = if a > b then a else b fi; end

We can also use linear tree in matrix multiplication as described on page 23.

linear_tree.k(add, (realign.j,k a) * ( realign.i,k b ), n)
where
dimension k;
add( a, b ) = a + b;
end

Another useful computational structure, that we call planar_tree, works just like 1inear tree

except in two dimensions.

planar_tree.X,Y(f, data, size) = tot asa.t tsize <= 1
where
dimension t;
tsize = size fby.t tsize/4;
tot = data fby.t ( £( tot, next.X tot, next.Y tot, next.X next.Y tot )
0.X (2 % #.X) ) .Y (2 * #.Y);
end

We can redine pmax2d as follows:

pmax2d.i,j( a, n ) = planar_tree.i,j( max4, x, n*n )
where
max4( a, b, ¢, d ) = max( max(a,b), max(c,d) );
max( a, b ) = if a > b then a else b fi;
end
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3.11 Operator Arity

There are two kinds of operator arity: roman arity , which refers to the number of operands and
greek arity , which refers to the number of qualifying dimensions.

LUCID operators are either unary , binary , or ternary . For example, ! and first are unary
operators whereas * and asa are binary operators and if-then-else is the (only) ternary operator.

LUCID operators are one of nulladic , monadic , dyadic , or polyadic . For example, all arithmetic,
relational and logical operators are nulladic as are iseod and iserror . Monadic operators include
# , fby , asa , wvr , upon , and before . The only dyadic operator is realign . Operators first ,
next , prev , and @ are polyadic.

3.12 Default Dimension Rule

The default dimension rule applies only to monadic operators , i.e., operators which are qualified
with a single dimension name. It is as follows.

A monadic operator without a dimensional qualifier is equivalent to a monadic operator with the
time dimension qualifier unless it appears in a dimensional where-clause in which case the operator is
equivalent to the operator qualified by the innermost (or last declared) dimension in the where-clause.

The following definition of 1inear tree is equivalent to the one given earlier since asa refers to
asa.t and fby refers to £by.t because of the default dimension rule.

linear_tree.X(f, data, size) = tot asa tsize <= 1
where
index t;
tsize = size fby (tsize+1)/2;
tot = data fby
if X >= tsize/2
then tot ©.X (2 * #.X)
else f(tot, next.X tot) @.X (2 * #.X);
fi;
end



Chapter 4

From LUCID to GLU

LUCID is purely a dataflow language in which a program is expressed as a structured set of mul-
tidimensional data dependencies. Whereas the declarative nature of LUCID results in concise and
natural expressions of problem solutions, LUCID programs are incompatible with the conventional
imperative model of programming . In particular, LUCID programs do not execute efficiently on
control-driven processors and it is difficult to perform imperative activities such as 1/0 .

GLU, which stands for Granular Lucid, is a hybrid of LUCID and the language C . The basic
idea is quite simple — it is to use LUCID as a language for composing applications from C functions.
A GLU program is a LUCID program in which user-defined functions can be C functions and values
can be (almost) any valid C object such as chars , ints , floats , doubles , fixed-length arrays ,
structures , and pointers to any of these. Basically, LUCID deals with C functions and C datatypes
as uninterpreted entities. C functions are called by value as they are assumed to be pointwise and
strict. The only LUCID operators that can be meaningfully applied to C objects are iseod which
returns 1 if the object is actually eod and 0 otherwise and iserror which returns 1 if the object
corresponds to error and 0 otherwise.

A GLU program consists of two parts:

1. C data types and prototype functions declarations

2. LUCID program

4.1 C Data Types

All of the ANSI C type declarations are allowed except for variable-length (incomplete) arrays and
unions some of whose members are pointers .
Examples of some C type declarations are given below.

1. struct complex

{
double re;
double im;
3
typedef struct complex *COMPLEX;
This defines complex to be a C type that consists of two floating point members, re and im.
It also defines COMPLEX to be an C type that denotes a pointer to object of C type complex.

2. struct list

27
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{
COMPLEX z;
string id;
struct list *next;

b
typedef struct list *LIST;

This declares list as a C type with z being a member of type complex and next being a
pointer (holder of address) to another object of type 1ist. Note that id is of a predefined type
string which is equivalent to char * of C. It also defines LIST to be a C type that is a pointer
to structure of C type struct list.

typedef char STR[128];

STR denotes a C type that is a fixed-length array of 128 chars.

. Earlier we indicated that a C object in GLU cannot be of an incomplete array type, i.e., one

whose length is not known. GLU provides a way of specifying variable length arrays — the array
is defined in a structure with its length being specified by a variable that is also a member of
the structure.

struct matrix

{

int x, y;
COMPLEX m[x][y];

b
typedef struct matrix *MATRIX;

This declares matrix as C structure type whose members are two integers denoted by x and
y and a variable-sized matrix m of elements of type COMPLEX with the number of rows denoted
by x and the number of columns denoted by y. It also defines MATRIX as a pointer to structure
of type matrix.

. GLU also excludes C objects to be of a union type where one (or more) of its members is a

pointer. In GLU, any such union has to be discriminated in that an additional field t has to
be used to identify the current type of the value.

union multi switch( int t ) {
case 0: int 1i;
case 1: COMPLEX v;
case 2: MATRIX m;

¥

The C type multi has two members: a union of int i and pointers types COMPLEX v and
MATRIX m; and t that indicates which of the three types in the union is currently applicable.

4.2 C Prototype Function Declarations

In a GLU program, the prototype of each C function that is used is given — the function definition
itself is given elsewhere. A prototype function declaration specifies the parameter types and the
result type of each function. It is of the form:

C-TYPE C-function-name( C-TYPE, ..., C-TYPE );
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Here are some examples:

COMPLEX add( COMPLEX, COMPLEX );
struct matrix in();

int display( STR );

COMPLEX kth( LIST, int );
MATRIX mult( MATRIX, MATRIX );

Function add accepts pointers to two objects of type complex and returns a pointer to the result
that is of type complex. Function in is nullary but returns an object of type struct complex.
Function display accepts one argument, a fixed-size array of char and returns an integer. Function
kth returns a pointer to a complex object and accepts a pointer to a 1ist object and an integer as
its arguments. Finally, function mult accepts two pointers to matrices and returns a pointer to a
matrix.

4.3 C Function Definition Conventions

A C function definition needs to be consistent with the prototype definition of that function in its
arity and types of parameters and result. For example, consider the function add whose prototype
declaration was COMPLEX add( COMPLEX, COMPLEX ). Its definition would be as follows:

COMPLEX add( COMPLEX a, COMPLEX b )
{
COMPLEX c;
¢ = (COMPLEX) malloc( 1, sizeof(*COMPLEX) );

c—>re = a->re + b->re;

c—>im = a->im + b->im;

return( c );

The parameters and the result are of type COMPLEX and the C function creates the object (using
malloc) that add returns.

4.3.1 Parameter Passing

When a C function is used in a GLU program, parameter passing is call-by-dereferenced-value — all
values when applicable are dereferenced. Unlike in C, it is not possible for a C function to modify
the object pointed to by an actual parameter — only the copy of the object would be modified.

In the above example, setting a->re to 0.00 would not cause the re member of the actual
parameter to be modified.

4.3.2 Returning Dynamic Objects

When a C function needs to return a pointer to an object, it has to create the object (using malloc)
and return the pointer to the object. This is shown in the example above with c. When a parameter
or result is a pointer, the C function is not responsible for freeing the objects pointed by the parameter
or result.
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4.3.3 Globals

In general, C functions should avoid sharing any data using global variables since it undercuts the
high-level view of the GLU model of programming. In addition, global variables have implementation-
specific semantics making them a “use at your own risk” feature.

Global variables can be used to share common data across functions provided the functions
execute in the same address space. (This can be specified using annotations — see Section 4.6.)

Global variables can also be used to retain data across function invocations. Again, successive
invocations of the function are expected to be in the same address space.

When using global variables, the programmer is completely responsible for the management of
the global variables. As far as GLU is concerned, global variables are part of the external world over
which it has no control.

4.3.4 Static Variables

Like global variables, static variables do not necessarily have the semantics as in sequential C pro-
grams. Whenever such a variable is used in GLU programs, it is the programmer’s responsibility to
ensure that the “right” static variable is being accessed as there are likely to be multiple copies, one
per each address space.

4.4 Preprocessor

GLU supports C’s preprocessing capability including macro substitution, conditional compilation,
and inclusion of named files.

4.5 Comments

Any line starting with // is treated as a comment.

4.6 Annotations

GLU allows two types of annotations — one for specifying whether functions are to be executed locally
or remotely and another for specifying a particular remote location for function execution.

Both these annotations enable the programmer to exercise control over the mapping of computa-
tions to processors. While this is counter to GLU, it is necessary because the current GLU compiler
assumes that the underlying concrete architecture is an embodiment of a PRAM. Consequently, the
compiler does not attempt to intelligently distribute data and its processing as there is no benefit to
doing so. With annotations, it is possible for a programmer to explicitly manage the distribution of
data and processing although such management is likely to be ad hoc.

4.6.1 Local versus Remote Function Execution

In GLU, each function prototype function definition can optionally be prefixed by the keywords
local or remote. (The default is remote.)

When a function prototype declaration is prefixed as local, it is executed in the same address
space where it was invoked.

When a function prototype declaration is prefixed as remote or not prefixed, it is executed
remotely on another address space.
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Here are some examples:

local COMPLEX add( COMPLEX, COMPLEX );
local struct matrix in();
local int display( STR );
COMPLEX kth( LIST, int );
remote MATRIX mult( MATRIX, MATRIX );

Functions add, in, and display are executed in the same address space from where they are invoked
and functions kth and mult are executed in a remote address space.

4.6.2 Remote Execution Mapping

Each function invocation when suffixed by a non-negative integer within square brackets specifies
that the function should be executed in the virtual address space identified by the integer. (In
actuality, multiple virtual address spaces would be mapped to a single physical address space.) The
integer could be a constant or it could be any valid GLU expression.

Here are some example expressions:

mult[time] (a,b)
kth[£(i)]1( 1, 1)
mult[1](a,b)

In the first example, mult is executed in the virtual address space specified by time. In the next
example, kth is executed in the virtual address space derived by applying function £ to i in the
current context. In the last example, mult is always executed in virtual address space 1.



Chapter 5

Compilation and Execution

This chapter describes the process of compiling GLU programs to machine-specific executables. It
also describes how these executables can be run with various options.

5.1 Source to Executables

GLU compilation occurs in two phases. In the first phase, the GLU program with the appropriate
C functions are converted to a generator or master program and an executor or worker program.
In the second phase, the master program and the worker program are compiled to machine-specific
executables.

Assume we are given a GLU program in a file named foo.g and the accompanying C functions
in a separate file named foo.c. To compile this program, we issue the following command:

gc foo.g foo.c

This results in two executables to be generated — foo and foo-wrk corresponding to the generator
(or master or server) and executors (or worker or client).

If foo.o0 is already available, it is possible to avoid the compilation of foo.c and directly use
foo.o:

gc foo.g foo.o

During the compilation of foo.g, a header file foo_glu.his automatically generated which should
be included in foo.c. This header file consists of all data types that are defined in foo.g and used
in foo.c.

It is possible to prevent generation of the header file (in case you already have one that you want
to preserve) by using the -nohdr option.

gc —nohdr foo.g foo.c

It is possible to indicate that only a sequential executable is to be generated using the -seq option.
The default is to generate executables for parallel execution (which can be explicitly indicated with
a -par) option.

gc —seq foo.g foo.c

In this case, only foo is generated as the executable.

When parallel executables are being generated, it is possible to indicate that the architecture is
homogeneous to enable faster communication. This is done with the -hom option. The default is to
assume a heterogeneous architecture.

32
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gc —hom foo.g foo.c

It is also possible to specify directories to search for including header files and linking with
libraries. Assume that in addition to the current directory, it is necessary to include header files in
a subdirectory called include. This can be indicated as follows:

gc -I./include foo.g foo.c

Assume that two standard libraries 1ibX11.a and libm.a need to be used at link time along
with library 1libfoo.a under ./1ib. This can be indicated as follows:

gc foo.g foo.c -L./lib -1X11 -1m -1foo

All the rules for linking from C compilation apply.
It is also possible to compile the program so that it can be symbolically debugged:

gc —g foo.g foo.c

Some of the other options include -v for verbose compilation; -pre for preserving the source files
generated in the first phase of the compilation: foo-gen.c, foo-com.c, and foo-wrk.c; and -0 for
optimized code generation.

5.2 Running Program Executables

When you execute a GLU program, by default you get an output stream in the time dimension
starting with time=0. The program terminates when the output (at some time context) is eod after
all outputs at previous time contexts have been generated. What is displayed is the scalar version
of the object specified at the head of the program’s where clause.

Suppose that we compile and execute the following program:

fib where
fib = 1 fby 1 fby fib + next fib;
end

The output would be:

[o]:
[1]:
[2]:
[3]:
[4]:
[5]:
[6]: 13

0 U1 W N~ =

If the head of the program above is £ib @ 6 fby eod, the output would simply be:
[6]: 13

Let us find out how we run the executables generated by GLU programs. If the executable is the
result of a standard GLU compilation, you have to run the master program and one or more worker
programs. In the example below, the master is being run with one worker.

foo &
foo-wrk &
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It is possible to have multiple workers, and it is up to the programmer to run them on different
processors (which we will assume are workstations):

foo & % master on workstation wkstnO
rsh wkstnl <FULL_PATH_NAME>/foo-wrk wkstn0 & Y% worker on workstation wkstnl
rsh wkstn2 <FULL_PATH_NAME>/foo-wrk wkstn0 & % worker on workstation wkstn2

rsh wkstnN <FULL_PATH_NAME>/foo-wrk wkstnO & ¥ worker on workstation wkstnN

Note that <FULL_PATH NAME> of foo-wrk is needed unless it is at the top level of the user direc-
tory. Also note that workers can be added and deleted during execution without affecting program
functionality.

If the executable is the result of a sequential GLU compilation, running the program is exactly
as in C. You simply enter the name of the program:

foo

If you want to generate traces of program execution, you would use the -debug option with the
master and with the worker:

foo —-debug &
foo-wrk -debug &

The option -debug gives minimal tracing — when functions become executable and when they return
their results. It is possible to get a more detailed trace of the master by using -debug=2 and
-debug=3.

If you want to control garbage collection of a GLU program, you can do so using the -sweep and
-age options.

foo —sweep=2 -age=10

The above command says that garbage collection sweeps should occur every 2 seconds of the pro-
gram’s virtual execution time (not elapsed time) and that a value can be discarded if it has been
around for 10 sweeps without being used.

If you want to override any of the local or remote annotations at runtime, you can do so:

foo -local f1 -remote f2 -remote £3 -local f4

The above command says that functions £1 and £4 will be treated as local and functions £2 and
£3 will be treated as remote.

The -w option is necessary when remote execution mapping annotation is used in the GLU
program. You can prespecify the number of workers that the master will expect with the -w option:

foo —wi0

This command says that precisely 10 workers are expected by the master.
Another useful option is the logging option (-log) that causes a logfile containing execution traces
to be generated each time the program is executed that can be analyzed in post-mortem mode.

foo -log=foo.log

This command says that logging information should be written to file foo.log. The default is
logfile. Note that logging information is complete and accurate only when the program terminates
normally.
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Appendix A

Syntax of GLU Programs

A.1 Scope Rules

A.1.1 Program Variables

The scope of an occurrence of a variable used in a GLU where clause is either local or global. 1t is
local if it is defined in that clause. If it is not local, it must be global and defined as the closest
lexically enclosing where clause in which the variable is defined. There are no free variables in GLU.

A.1.2 Dimensional Names

The scope of dimensional names is defined in the same way as the scope of program variables. The
exception to this rule is the implicit dimensional name time, which is predefined.

A.1.3 Precedence and Associativity Rules

We list the hierarchy of precedences amongst LUCID syntactic units. Syntactic units with highest
precedences are at the top of the list, and ones with lowest precedences are at the bottom.
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Precedence Syntactic Unit Associativity
Highest O, .2, ¢, (delimiter) left to right

first, next, prev, iseod, iserror, unary !, verb+ +, +, - right to left
Q right to left
*, div, /, % left to right
+, - left to right
<<, >> left to right
<, <=, >, >= left to right
==, I= left to right
& left to right
- left to right

| left to right
&& left to right
Il left to right
L, 0,7 left to right
asa , upon , Wvr left to right
Lowest fby , before right to left

A.1.4 Reserved Words

These identifiers in addition to those of ANSI C are reserved words in GLU .

if
then
else
fi

dimension

index
where
end
first
next
prev
fby
before
asa
WVY
upon
time
div
true
false
eod
iseod

realign

A.2 Extended BNF Syntax for GLU Programs

<program> ::= { <procedural definition> | <non-procedural definition> }#*



<expression>

<procedural definition> ::= <type declaration> |
<prototype declaration>

<type declaration> 1= SAME AS IN ANSI C

<prototype declaration> ::= SAME AS IN ANSI C

<non-procedural definition>
::= <dimension definition>
<variable definition> |
<function definition>

<dimension definition> ::= dimension <dimension list> ; |

index <dimension list> ;
<dimension list> 1= <dimension name> { , <dimension name> }
<dimension name> 1= <identifier>
<variable definition> ::= <variable name> { . <dimension list> 1} = <expression> ;
<variable name> 1= <identifier>
<function definition> 1= <function name> { . <dimension list> }

( <formal parameters> ) = <expression> ;
<function name> 1= <identifier>
<formal parameters> ::=  <identifier> {, <identifier> }
<expression> 1= <constant> |

<variable name> |

<dimension index> |

<fcall> |

<uop> <expression> |

<expression> <bop> <expression> |

if <expression> then <expression> else <expression> fi |
( <expression> ) |

<where expression>

<constant> ::=  eod | error | true | false | <integer> | <real>
<dimension index> ::= # . <dimension name> | <dimension name>
<fcall> ::=  <function name> { . <dimension list> }
( <expression list> )
<expression list> ::= <expression> { , <expression> }
<uop> ::= <simple uop> | <complex uop> | iseod | iserror
<simple uop> e N
<complex uop> ::=  <lucid uop> { . <dimension list> }
<lucid uop> ::=  first | next | prev | realign
<bop> ::= <simple bop> | <complex bop>
<simple bop> ::=  <arith bop> |

<relational bop> |
<logical bop> |
<bitwise bop>

<arith bop> =+ | -1 x|/l div | %

<relational bop> = < | > <= >=]==] 1=

<logical bop> ii= k& ||

<bitwise bop> tr= o << >> | TN |\

<complex bop> ::=  <lucid bop> { . <dimension list> }

<lucid bop> ::= fby | before | asa | wvr | upon | ‘@ | ‘7’ “r £,
<identifier > ::= <letter> { < alpha_numeric> }

<alpha_numeric > ] <letter> | _ | <digit>

<where expression> 1:=  <expression> where

{ <procedural definition> | <non-procedural definition> }#
end



Appendix B

Predefined Functions

GLU provides a standard set of predefined dimensionally-abstract functions that can be used as
templates to construct GLU programs. The functions reside in a file called std.g which can be
included in any GLU program.

The contents of std.g are as follows:

lparent.X(f) = £ @.X (2 * #.X);
rparent.X(f) = £ @.X (2 * #.X + 1);

linear_tree.X(f, data, size) = first.X(tot asa.t tsize <= 1)
where
index t;
tsize = size fby.t (tsize+1)/2;
tot = data fby.t
if X >= tsize/2
then tot ©.X (2 * #.X)
else f(tot, next.X tot) @.X (2 * #.X)

fi;
end;
planar_tree.X,Y(f, data, size) = first.X,Y(tot asa.t tsize == 1)
where
index t;
tsize = size fby.t tsize/4;
tot = data fby.t (£(tot, next.X tot, next.Y tot, next.X,Y tot)
0.X (2 * #.X)) .Y (2 * #.Y);
end;
cubic_tree.X,Y,Z(f, data, size) = first.X,Y,Z(tot asa.t tsize == 1)
where
index t;
tsize = size fby.t tsize/8;
tot = data fby.t ((f(tot, next.Z tot, next.Y tot, next.Y,Z tot,
next.X tot, next.X,Z tot, next.X,Y tot,
next.X,Y,Z tot)
0.X (2 * #.X)) .Y (2 * #.Y)) @.Z (2 * #.Z);
end;
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Manual Pages for GLU Commands
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NAME

gc — GLU compiler

SYNOPSIS

gce [ —com | —gen | —seq | —-wrk | [ -G | [ -nohdr | [ —-pre | [ -rec | [-hom | [ —v ] |
gee options | sourcefiles . ..

DESCRIPTION

gcis the GLU compiler front end. It invokes the GLU compiler to translate programs written

in GLU into C programs and invokes gce to compile and link them into an executable image.
Most of the command line options are simply passed on to gec or ld as appropriate. ge also
understands the various filename suffixes understood by gcc and handles them appropriately.

Files ending in .g are taken to be GLU source programs and will sent to the GLU compiler

before being passed on to gee.

OPTIONS

—Ccom

—gen

—seq

—wrk

—nohdr

—pre

—rec

—hom

Generate code that is common to both the generator and worker. This option is
meaningful only when combined with —c or —G.

Generate code for the generator. When not combined with —e or —G, it will also
produce the common code — which is required to produce an executable generator.

Generate code for a sequential program. This is much like the —gen option, except
it links with a special library that will treat all C functions as local functions and
that does not use any workers.

Generate code for the worker. When not combined with —e or —G, this option
will also produce the common code — which is required to produce an executable
worker.

Produce C code. Doesn’t call gce on the results of the GLU to C translator. The
C code will be left in files with suffixes com.c, gen.c, and wrk.c.

Do not produce a header file. The default is to produce a header file with the
suffix glu.h, which will contain all the C declarations from the GLU source file.

Preserve intermediate files. Normally, intermediate files (generated C code and
object files) are placed in /tmp and are removed when compilation is complete.
With this option, they will be placed in the current directory and will not be
removed.

This special flag is required to get the communications code to work correctly if you
have defined recursive structures (structures that contain pointers to themselves,
directly or indirectly). It results in less efficient code if its not needed. It has no
effect on sequential programs.

This flag makes the communications code assume that the workers and generator
are running on compatible machines. It results in more efficient code which will
fail if run on different machines. It has no effect on sequential programs.



42

-V Verbose. Show the commands constructed by the compilation driver before exe-
cuting them.

EXAMPLES

The following rules can be useful in Makefiles

%_com.c %_gen.c %_wrk.c %_glu.h: %.g
gc -G -hdr $<

prog: prog_gen.o prog_com.o $(OTHERS)
gc -gen -0 $@ $<

prog-wrk: prog_gen.o prog_com.o $(OTHERS)
ge -wrk -0 $@ $<

ENVIRONMENT

CC C compiler to use. Defaults to gee.
CPP  C preprocessor to use. Defaults to gee -E -x c.

GLUHOME Directory containing the various GLU compiler passes, include files, and li-
braries. Default value set on installation.

TMPDIR Directory to use for intermediate files. Defaults to /tmp.

FILES
file.g GLU source file

filegen.c Compiled code for generator

filewrk.c Compiled code for worker

filecom.c Compiled code common to both worker and generator
fileglu.h C declarations extracted from GLU source file

file Executable generator or sequential program

file=wrk Fxecutable worker program

SEE ALSO
glu(1), gee(1).

BUGS

Please report bugs to glu-bugs@esl.sri.com
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NAME

GLU runtime system and general information

SYNOPSIS
name [—age=nn][—bs=size| [ —debug[=nn] ] [ —quiet | [ -local function ]| —-log[=/file]
] [ -random[=seed] | [ —-remote function | [ —sweep=nn| [ —w=nn |
name-wrk [ —bs=size | [ —debug ] [ hostname |
DESCRIPTION

The Glu compiler, when producing parallel code, produces two executables, a generator and
a worker. To execute in parallel, you need to invoke one copy of the generator and one or
more copies of the worker.

The generator runs the main LUCID program, executing all lucid code and all local C
functions. Remote C functions will be farmed off to workers. The system can detect and
survive the failure of any worker, and will redo any uncompleted job of the failed worker
elsewhere.

GENERATOR OPTIONS

—age=nn Sets the number of value cache sweeps which must pass for an object to be
thrown out of the value cache, since the object’s last reference. Default is 4.

—bs=size Set the buffer size for all communications with workers. Large buffers are more
efficient if you pass around large amounts of data, but require more memory.
You may specify a suffix of k or K to specify kilobytes instead of bytes. Default
is 512.

—debug[=nn| Set or increment the debugging level. This controls the amount and detail of
debugging information that is printed. Each level outputs the information of
all lower levels.

1 Information about C functions as they are invoked and complete
2 Information about each demand and value that is cached.

3 Information about each demand and value of a named object.

4 Information about every demand and value.

—local function Treat function as a local function (execute in the generator).
—log[=file]  Log various useful statistics to file. If file is unspecified, logs to logfile.

—quiet Suppress then normal display of each top level value as it is produced. If this
option is supplied and -debug is not, the only output produced will be from
local C functions.

—random|[=seed] Normally, remote C functions are assigned to workers on a FCFS basis.
This option causes them to be assigned in a random fashion.
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—remote function Treat function as a remote funtion (pass of to a worker for execution).

—sweep=nn Set the time between value cache sweeps. Along with -age this controls how
quickly old objects will be flushed from the cache.

—-w=nn Specify how many workers there will be for use with the worker-spec syntax in

the input file. If you don’t use worker-specs, this will have no effect.

WORKER OPTIONS

—bs=size Set the buffer size for all communications with the generator.

—debug Turn on worker debugging information. This is the same information as level 1
on the generator, but on a per-worker basis.

hostname Specifies which machine the generator is running on. Defaults to localhost.
SEE ALSO
ge(1).

BUGS

Please report bugs to glu-bugs@esl.sri.com
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