
Design and Veri�cation of Secure SystemsReprint of a paper presented at the 8th ACM Symposium on Operating SystemPrinciples, Paci�c Grove, California, 14{16 December 1981. (ACM OperatingSystems Review Vol. 15 No. 5 pp. 12-21)John Rushby�Computer Science LaboratorySRI InternationalMenlo Park CA 94025 USAAbstractThis paper reviews some of the di�culties that arise in the veri�cation ofkernelized secure systems and suggests new techniques for their resolution.It is proposed that secure systems should be conceived as distributed systemsin which security is achieved partly through the physical separation of theirindividual components and partly through the mediation of trusted functionsperformed within some of those components. The purpose of a security kernelis simply to allow such a `distributed' system to actually run within a singleprocessor; policy enforcement is not the concern of a security kernel.This approach decouples veri�cation of components which perform trustedfunctions from veri�cation of the security kernel. This latter task may beaccomplished by a new veri�cation technique called `proof of separability' whichexplicitly addresses the security relevant aspects of interrupt handling and otherissues ignored by present methods.

�This work was performed while the author was with the Computing Laboratory, University ofNewcastle upon Tyne, England, and was sponsored by (what was then) the Royal Signals RadarEstablishment. 1

IntroductionA formally veri�ed security kernel is widely considered to o�er the most promisingbasis for the construction of truly secure computer systems, at least in the shortterm. A number of kernelized systems have been constructed [12,19,25] and variousmodels of security have been formulated to serve as the basis for their veri�cation [6,9, 28].Despite the enthusiasm for this approach, there remain certain di�culties andproblems in its application (see, for example [1]). I shall expand on these later, butbriey they include the di�culty of verifying the `trusted processes' that seem nec-essary in most applications, concern about the extent to which current techniquesverify the implementation of the kernel (as opposed to its speci�cation), and doubtsabout whether present security models really capture the essential characteristics ofa security kernel with su�cient accuracy to provide a sound technical basis for theirveri�cation. Also, current approaches to kernel design and veri�cation developedout of concern for the problem of providing multilevel secure operation on general-purpose multi-user systems|whereas many of the present-day applications whichrequire some form of guaranteed security are special-purpose, single-function sys-tems [5, 11, 13, 24, 33] whose security requirements are somewhat di�erent to thoseenshrined in the multilevel models. Attempts to support these applications on aconventional kernel have led to systems of considerable complexity whose veri�ca-tion presents di�culties that are quite at variance with the evident simplicity of thetask which the system is intended to perform [2].The purpose of this paper is to present a new approach (or, rather, a re-workingof some old approaches [3,26,27]) to the design and veri�cation of secure systems andto argue that the problems of conventional kernelized systems are thereby avoidedor overcome.The presentation is divided into four sections. In the �rst, I shall argue that theproblems with conventional systems have their roots in the use of a security kernelwhich attempts to impose a single security policy over the whole system. The secondsection will propose that distributed systems avoid many of these di�culties andprovide a more appropriate conceptual base for the design of secure systems. In sucha system, the subjects of the security policy are assigned to private and physicallyisolated single-user machines and are able to communicate with each other andto access shared resources only through the mediation of specialised (and veri�ed)`trusted components' that reside in similarly isolated and dedicated machines. Theoverall security of such a distributed system rests partly on the physical separationof its components and partly on the critical functions performed by the trustedcomponents. The concrete nature of the services provided by these components,and the limited interaction between them, enables their security properties to bespeci�ed and veri�ed comparatively easily, and by existing techniques.2

Next, in section 3, I shall argue that a conceptually distributed system can besupported on a single processor, while retaining its security properties, if a type ofsecurity kernel which I call a `separation kernel' is used to simulate the distributedenvironment. There is absolutely no interaction between the properties required ofa kernel of this type and the security properties required of the system componentswhich it supports.Finally, in Section 4, I shall outline a precise speci�cation of the role of a sep-aration kernel and sketch an appropriate method of veri�cation which I call `Proofof Separability' and which is developed formally in a companion paper to this [31].The mathematical model which underlies this method of veri�cation explicitly ad-dresses the interpretive character of a security kernel and provides a sound formalbasis for verifying the security relevant aspects of interrupt handling and other issuesconcerning the ow of control which are ignored by present methods.1 The Problem of Trusted ProcessesThe primary motivation for the use of a security kernel is the desire to isolate andlocalise all `security critical' software in one place|the kernel. Then, if the kernelcan be proven `secure' in some appropriate sense, all non-kernel software becomesirrelevant to the security of the system. Security kernels di�er in the extent towhich they are cognizant of the overall security policy of the system. Some kernels(for example, that of UCLA Secure UNIX [25]) have the character of a sophisticatedprotection mechanism and guarantee that no object supported by the kernel may beaccessed in any way unless its recorded `protection data' explicitly permits that typeof access. The task of setting up the protection data so that it enforces some overallsecurity policy is delegated to a `policy manager' outside the kernel. The limitationof this approach is that it is concerned only to protect the physical representationsof information, rather than information itself. Thus it does not control the `leakage'of information through covert signalling paths [15, 17], nor is the notion of such`information ow' expressible in the model [28, 32] which underlies the veri�cationof these kernels.In military applications, all unauthorized ow of information, whether due todirect access or indirect leakage, is unacceptable and, in consequence, security ker-nels intended for these applications must not only enforce the security policy ofthe system on all non-kernel software, but must also adhere to it themselves, inorder that their own internal variables may not become a channel for insecure in-formation ow [17,20]. This implies that the kernel must enforce and obey a single,system-wide security policy. But once this approach is adopted, it is soon discov-ered that certain system functions cannot be accommodated within its discipline.A line-printer spooler provides a simple example of such a function: if the spoolerand its spool �les are at the highest security classi�cation, then users of more lowly3

classi�cation cannot inspect their own spool �les|even for the innocent purpose ofdiscovering the progress of their jobs. For this reason, it is usual for spool �les tobe classi�ed at the level of their owners while the spooler continues to run at thehighest level so that it may read spool �les of all classi�cations. But then the spoolercannot delete spool �les after their contents have been printed|for such action con-icts with the (kernel enforced) *-property [6] of multilevel security. In order toprovide an acceptable user interface, while avoiding the proliferation of used spool�les, it seems necessary that the spooler should become a `trusted process' and beallowed to violate the *-property.In real systems there are many functions which require the privileges of trustedprocesses in order to evade or override the security controls normally enforced bythe kernel. In KSOS, for example, the trusted processes contain\support software to aid the day-to-day operation of the system (e.g.,secure spoolers for line printer output, dump/restore programs, portionsof the interface to a packet switched communications network etc.)." [7,page 365]Once trusted processes are admitted to the system, however, the kernel is nolonger the sole arbiter of security; it is necessary to be sure that the special privilegesgranted to trusted processes are not abused by those processes and may not beusurped by other, untrusted, processes. In order to guarantee security, therefore,we must verify the whole of the `trusted computing base'|that is, the combinationof kernel and trusted processes. The di�culty is that existing formal models do notprovide a basis for the veri�cation of this combination: we do not know what it isthat we have to prove! Landwehr, for example, observes:\: : : in the �nal version of their model, Bell and LaPadula did includetrusted processes. What is not included in their exposition is a techniquefor establishing when a process may be trusted." [16, page 46]In the absence of any precise formulation of the role of trusted processes within amodel of secure system behaviour, and in the absence of any formal understanding ofhow properties proved of trusted processes combine with those proved of a securitykernel in order to establish the security of the complete system, there is no realjusti�cation for speaking of the `veri�cation' of the security of such systems at all.The existence of trusted processes within kernelized systems and the attendantdi�culties of verifying the security of those systems should not be attributed tode�ciencies in the design of individual kernels, however. Rather:\to a large extent they [trusted processes] represent a mismatch betweenthe idealizations of the multilevel security policy and the practical needsof a real user environment." [7, page 365]4

The true roots of the di�culties caused by trusted processes are not to be foundin those processes themselves, nor in the functions which they perform, but in theconception that a security kernel should act as a centralized agent for the enforce-ment of a uniform system-wide security policy. Even within a system which isintended to enforce a single security policy at its external interface, the rules andrestrictions that govern the behaviour of its own components cannot simply be thatoverall policy in microcosm, but must be particular to the function of each compo-nent and to its individual role within the larger system. The properties requiredof a secure line-printer spooler, for example, depend as much on the fact that it isa line-printer spooler as on the security policy that is to be enforced. We shouldseek a system structure that allows each component to make its own contributionto the security of the overall system and that treats all contributions equally|asbe�ts the `weakest link' nature of security. We should not elevate the security re-quirements particular to one class of components to a special status and imposethem system-wide at whatever inconvenience to components with di�erent require-ments. The truth of this proposition becomes self-evident when we consider some ofthe specialised applications of secure systems. The ACCAT Guard provides a goodexample [33].The Guard is basically a facility for the exchange of messages between a highlyclassi�ed system and a more lowly one. Messages from the LOW system to theHIGH one are allowed through the Guard without hindrance, but messages fromHIGH to LOW must be displayed to a human `Security Watch O�cer' who hasto decide whether they may be declassi�ed to the level of the LOW system andthen allowed through. Notice that the Guard supports information ow betweenthe LOW and HIGH systems in both directions and has to enforce di�erent securityrequirements on each. It is plainly inappropriate, therefore, to base its constructionon a security kernel that enforces the requirements for just one direction of transfer|yet this is exactly what has been done. The Guard is based on the KSOS kernel|which enforces a multilevel security policy that permits information ow in only theLOW to HIGH direction. Consequently, the HIGH to LOW transfers have to beaccomplished by trusted processes whose purpose is to get round the fundamentalsecurity principle of the KSOS kernel. It is not clear how the use of this kernel hascontributed to the overall security or veri�ability of the Guard and it is certainly nosurprise to learn that:\Veri�cation of the trusted processes to be used in the Guard has con-sumed far more resources than originally planned." [16, page 46]
5

2 Security and Distributed SystemsThe combination of a security kernel and trusted processes is hard to understandand even harder to verify because it does not represent a separation of concerns buta confusion of the same: neither member of the combination is independent of theproperties of the other. If we are to gain a clearer understanding of the nature ofsecure systems, and a more compelling basis for their veri�cation, then we shouldattempt to separate the properties required of a security kernel from the issues thatgive rise to trusted processes.A very simple and natural|in fact obvious|model for a computer system wheresecurity does not rely upon a central mechanism (such as a security kernel) is a func-tionally distributed system: one whose various functions are provided by specialisedindividual subsystems which are physically separated from each other and providedwith only limited channels for communication with one another. Once such a systemstructure is adopted, a lot of security problems just vanish and others are consider-ably simpli�ed.Consider, for example, the problem of providing a multilevel secure service to anumber of users in which �les are to be the only medium of information ow betweenusers of di�erent security classi�cations. We can imagine an idealized system inwhich each user is given his own private, physically isolated, single-user machineand a dedicated communication line to a common, shared �le-server. The onlycomponent of this system that needs to be trusted is the �le-server. Provided thatsingle component adheres to and enforces the multilevel security policy, the securityof the rest of the system follows from the physical separation of its components andthe absence of direct communications paths between users of di�erent classi�cations.Now consider the �le-server in more detail. It is a system dedicated to a singlepurpose: it supports no user programming and needs no operating system since itruns just one program|the �le-server program. In order to guarantee the securityof the whole system, all we need to do is to verify that single program with respect toan appropriate speci�cation of its security requirements. It turns out that the role ofa multilevel secure �le-server matches the security model developed at SRI [9] (whichis more than can be said of a security kernel|a point I shall return to later) andthis model therefore provides both a speci�cation for the security requirements ofthe �le-server and the justi�cation for its veri�cation by the method of `informationow analysis' [8, 20, 21].We can add further shared resources to the system in just the same way asthe �le-server. A central printing facility, for example, can be provided by a self-contained printer-server connected to each single-user machine (and probably the�le-server also) by additional, dedicated communication lines. The printer-servermust obviously satisfy some security requirements. It must, for example, print thecorrect security classi�cation of each job on its header page and must not print6

parts of one job within another, nor feed inputs from one user back to another,and so on. Furthermore, the printer-server may need to co-operate with the �le-server and may require services from the �le-server that are di�erent from thoseprovided to ordinary users (for example, the ability to delete spool �les of all securityclassi�cations). Whatever the full set of requirements for a secure printer-server are,they must be, at least in part, speci�c to its particular function; we cannot expectthe security requirements of so specialised a task to be completely expressed by, oreven to be totally consistent with, some general set of properties such as the ss-and *-properties of multilevel security [6]|even though enforcement of multilevelsecurity is the overall goal.We are, however, in a much better position to tackle the important problem ofdeciding just what are the requirements for a secure printing service when all re-sponsibility for this service is completely isolated and exposed within a self-containedcomponent, than when it is divided, uneasily and obscurely, between a trusted pro-cess and a security kernel.A real system will contain more security-critical functions than just �le andprinter-servers. There must, for example, be some additional mechanism to authen-ticate the identities of users as they log in to the single-user machines and to informthe �le and printer-servers of the security classi�cations associated with each user.I contend that the security properties required of these and other critical servicescan best be studied if they, too, are isolated as separate, specialised componentswithin a distributed system. The task of the system designer is then to identifyand formulate the security properties that must be required of each componentindividually so that, in combination, they enforce the security policy required of thesystem overall.Of course, sceptics will point out that this is a formidable task: the componentsof the system interact and cannot be studied independently of each other. Theprinter-server, for example, requires special services of the �le-server and both ofthese components depend upon information provided by the authentication mech-anism. But the di�culties that appear formidable here are no less so in a con-ventional, kernelized system: the same functions and the same interactions mustbe present there also|and will be no less signi�cant, merely less visible. Further-more, the interactions in a distributed system are between its critical components.These components have concrete tasks to perform and their interactions can alsobe speci�ed concretely: we can state precisely what the special services are thatthe printer-server requires of the �le-server and we can satisfy ourselves that therami�cations of these special services are fully understood. This is quite di�erent togranting the line printer spooler of a kernelized system a dispensation to out the*-property.Although I have been using a general-purpose multi-user system as a familiar ex-ample to introduce the idea, political and economic considerations generally dictate7

that secure general-purpose systems should emulate some existing system|and thishampers the adoption of a radically di�erent implementation technique. Special-purpose, single-function systems are not so constrained|and are more able andmore likely, therefore, to take advantage of a `distributed' approach to security. Adesign for a type of `secure network front end' (SNFE) will serve as an illustration.A SNFE is a device that is interposed between host machines and a network inorder to provide end-to-end encryption around the network. Some of the generaldesign issues for such a device are discussed by Auerbach [4] and a particular de-sign is described by Barnes [5]. Basically, the issues are as follows. As well as acryptographic device (a `crypto') the SNFE must certainly contain components forhandling the protocols, message bu�ering and so on required at its interfaces withthe communications lines to the host on one side and the network on the other.We can call the component on the host side the `red' component and that on thenetwork side the `black' component. (This terminology stems from cryptologicalusages.) Packets of cleartext data from the host are received by the red compo-nent and passed to the crypto from where they travel, in encrypted form, to theblack component for transmission over the network. In order to allow for red-blackco-operation (essentially, the exchange of packet headers), a second, unencryptedchannel (the `cleartext bypass') must also connect the red and black components.The security requirement of the system is that user data from the host mustnot reach the network in cleartext form. It is therefore necessary to be sure thatthe red component does not use the cleartext bypass to send user data directly tothe black component. The software in the red component is considered too largeand complex to allow its veri�cation and so a `censor' is inserted into the bypass toperform rigid procedural checks on the tra�c passing through|to check that it hasthe appearance of legitimate protocol exchanges, rather than raw cleartext. A fairlysimple censor can reduce the bandwidth available for illicit communication over thebypass to an acceptable level.Observe that the crucial issue here is not whether red and black can commu-nicate, but what channels are available for that communication: the channels viathe censor and the crypto are allowed, but there must be no others. It is not clearhow this requirement could be expressed in terms of the models that underly cur-rent conceptions of a security kernel but it is easily formulated and understood inthe context of a distributed system design: the four components of the system arehoused in separate, isolated boxes and connected by just the communications linesshown in the diagram. The only software which performs a security critical task inthis design is that of the censor (the crypto is a trusted physical device); security isotherwise achieved by the physical distribution of the components and the physicallylimited communications provided between them.
8

-- 6-
?-

Crypto
BlackRed

Bypass

3 Re-introducing the Security KernelSo far I have argued that distributed systems o�er a natural basis for the design ofcomputer systems that must satisfy certain security requirements. Recent hardwaredevelopments make it feasible, for certain applications, to implement such designsdirectly|that is, as physically distributed systems composed of independent pro-cessors connected by external communications lines.More commonly, however, and especially when the number of components in thedistributed design is large relative to the overall scale of the system, it will be morecost-e�ective to implement the entire system on a single processor. In this case,the security characteristics of the distributed system must be provided by logicalrather than physical mechanisms and this can be accomplished by re-introducingthe concept of a security kernel, but in a di�erent guise to that seen previously.The overall security of a distributed system rests partly on the physical sepa-ration of its components and partly on the critical functions performed by some ofthose components. The role which I propose for a security kernel is simply that itshould re-create, within a single shared machine, an environment which supportsthe various components of the system, and provides the communications channelsbetween them, in such a way that individual components of the system cannot dis-tinguish this shared environment from a physically distributed one. If this can beachieved, then surely the shared implementation retains all the security propertiesof a truly distributed system. Observe that such a kernel knows nothing of the se-curity policy enforced by the system|that responsibility remains embedded in the9

critical components. And notice, too, that those critical components require no spe-cial privileges of the kernel; we have completely decoupled the properties requiredof the security kernel from those concerned with the larger questions of the system'soverall purpose and policy.In an ideal, physically distributed implementation, each component of the sys-tem runs on its own private and physically isolated machine. The task of a securitykernel, therefore, is to provide an isolated `Virtual Machine' (VM) for each com-ponent and to handle communications between these virtual machines. A kernelof this form is obviously very similar to a `Virtual Machine Monitor' (VMM): thatis, a system which provides each of its users with a separate, simulated copy of itshardware base (VM/370 is, perhaps, the best known example of such a system). It iswidely recognised that VMMs provide a suitable basis for the construction of securesystems and at least two systems have been constructed along these lines [12, 26].However, the type of kernel which I am proposing di�ers from a VMM in that thereis no requirement for it to provide VMs which are exact copies of the base hardware(or even for all the VMs to be alike)|but there is a requirement for it to providecommunications channels between some of its VMs. In order to avoid confusion withestablished terminology, I shall call this new type of security kernel a `separationkernel' and I shall speak of the VMs which it supports as `regimes.'The next step is to deduce a precise statement of the security properties requiredof a separation kernel and to develop a technique for verifying these properties.Before doing so, however, it seems best to assist the reader's intuition and to providesome motivation by outlining the design of a particular separation kernel.An ExampleThe separation kernel concerned is an operational one known as the `Secure UserEnvironment' (SUE). It runs on a PDP-11/34 and was designed and constructed byT4 Division of the Royal Signals and Radar Establishment at Malvern, England, inorder to support applications similar to the SNFE described earlier. One of the chiefdesign aims of the SUE was that it should be minimally small and very simple [5].(The SDC Communications Kernel [11] is a similar system, though rather morecomplex.)Because the SUE is only required to provide a �xed (and small) number ofregimes, each of which executes a �xed (and small) program, there is no need forit to support paging or virtual memory management as found in the kernels ofgeneral-purpose systems such as KVM/370 [12]. Instead, a much simpler memory-resident system is possible in which each regime is permanently allocated to a �xedpartition of real memory while the SUE itself occupies another �xed partition. TheSUE manipulates the memory management features of the PDP-11/34 in order toarrange for its own protection and the mutual isolation of its regimes.10

In order to further reduce its size and simplify its design, the SUE performs noscheduling functions. Regimes are given control on a round-robin basis and executeuntil they suspend voluntarily (via a SWAP call to the SUE). Because the wholesystem is dedicated to a single function, `denial of service' is not a security problem(although it is clearly a reliability issue).Input/output via Direct Memory Access (DMA) poses a security threat on mostmachines (including PDP-11s) since it uses absolute addresses and thereby evadesthe protection of the memory management hardware. For this reason, conventionalkernels must handle or mediate all I/O operations and this is a source of signi�cantcomplexity in their design. The SUE adopts a far more ruthless approach: DMA ispermanently excluded from the system. (The e�ciency problems this might seemto cause are overcome by the use of special-purpose hardware [18].) With DMAexcluded from the system, almost all responsibility for I/O can be removed fromthe SUE since the memory management of a PDP-11 allows device registers to beprotected just like ordinary memory locations. Each device supported by the systemis permanently and exclusively allocated to a �xed regime and its device registers arelocated in the address space of that regime. Responsibility for each device then restswith the regime which controls its device registers. The only responsibility of theSUE with respect to I/O activity is to �eld interrupts (since the hardware vectorsthese through kernel address space) and pass them on to the appropriate regime forhandling. Return from interrupts similarly requires minor assistance from the SUE.Apart from the provision of the communications channels that are required be-tween certain regimes, this description has summaried just about the whole of theSUE. Readers will appreciate that, in comparison with a conventional security ker-nel, the SUE is indeed small and simple. (It occupies about 5K words, including allstack and data space.) What we seek now is a veri�cation technique that exploitsthis simplicity in order to provide perspicuous and compelling evidence of the SUE'ssecurity.4 Veri�cationThe task of a separation kernel is to create an environment which is indistinguish-able from that provided by a physically distributed system: it must appear as if eachregime is a separate, isolated machine and that information can only ow from onemachine to another along known external communications lines. One of the proper-ties we must prove of a separation kernel, therefore, is that there are no channels forinformation ow between regimes other than those explicitly provided. In the case ofthe SNFE described earlier, for example, there must be no direct channels betweenthe red and black regimes|although the channels via the crypto and the censor arequite legitimate. By allowing certain channels and demanding the absence of allothers, we create a rather di�cult veri�cation problem. It would be much easier to11

demand the absence of all channels|that would correspond to a policy of isolationand seems a more reasonable candidate for veri�cation. Analogy with a physicallydistributed system suggests how the original problem can be simpli�ed in this way:if we cut the communication channels that are allowed, then, provided there are noillicit channels present, the components of the system will become completely isolatedfrom one another. It now remains to discover how to `cut' communication lines thatare not physical wires but properties of the kernel software.The solution to this problem is easily seen once we consider how communicationis actually accomplished in software|by the use of shared objects. If regimes A andB have a communication channel between them, then there must, at bottom, besome shared object, say X, which the sender can write and the receiver can read. Ifwe now replace all of A's references to X by references to a new object, X1, and all ofB's references to X by references to another new object, X2, then this is equivalentto `cutting' the communication channel represented by X, with X1 and X2 takingthe parts of the two `ends' produced by the cut. If, following this `cutting' of the`X channel,' we are able to demonstrate that the A and B regimes have becomeisolated, then it follows that this was the only channel between them.This is an indirect argument and may appear specious to some: we prove a prop-erty (isolation) of one system (that with its `wires cut') and infer another property(absence of illicit channels) of a di�erent system. However, if the di�erences be-tween the two systems are of the very limited, controlled form that I have described(involving only the `aliasing' of certain names), so that the consequences of the dif-ferences between them may be understood completely , then, surely, the techniqueis sound. (For more extended discussion, and an example of the application of thetechnique, see [30].)We now need a method for proving that a separation kernel (with its `wires cut')enforces isolation on its regimes: we must prove the total absence of any informationow from one regime to another. The technique which has been used to verifysecure information ow in kernels constructed by the Mitre Corporation [20] andin KSOS [7, 10], and which seems to be widely accepted, is known as `informationow analysis' (IFA) [21]|sometimes also called `security ow analysis.' It might bethought that this will also provide a satisfactory technique for verifying a separationkernel. But this is not so.One reason for this is that IFA cannot verify some of the machine-level ma-nipulations that must be performed by a separation kernel|the SWAP operationprovides a simple example.Consider a separation kernel supporting just two regimes, identi�ed as REDand BLACK. When the RED regime is executing, it may relinquish the CPUby performing a SWAP operation. The e�ects of this operation must include thesaving of the current contents of the general registers in a RED save area, and theirreloading with values from a BLACK save area. Veri�cation by IFA requires that12

operations invoked by RED may only access RED values|but it is evident thatthe SWAP operation must access both RED and BLACK values. It follows thatIFA cannot verify the security of a SWAP operation, even though it is manifestlysecure (see [30] for more extended discussion and some worked examples). Thecause of this failure is that IFA is a syntactic technique: it is concerned only withthe security classi�cations (`colours') of variables, not their values. This de�ciencycan be overcome by applying IFA to a high-level speci�cation of the kernel (in which,for example, each regime is provided with its own set of general registers) ratherthan to the kernel implementation itself. The security of the implementation canthen be established by showing it to be a correct implementation of the secure high-level speci�cations [23]. In conventional practice, however, this second stage is notperformed. For KSOS, for example, only `illustrative' proofs of the implementationwere provided [7].Because the KSOS kernel contains, among other things, a mechanism to supporta multilevel secure �le system, veri�cation of the security of its high-level speci�ca-tions is a signi�cant task. It would be vastly more di�cult and hugely expensiveto verify the correctness of its implementation as well. Using a separation kernel,however, issues such as the veri�cation of a multilevel �le-server are factored out andhandled separately from the veri�cation of the kernel. Almost the entire activity ofa separation kernel is concerned with the detailed management of features of thebase hardware. In order to apply IFA, we must abstract away from these details andprovide a high-level speci�cation|whose veri�cation would amount to little morethan exhibiting a tautology. Almost the whole burden of verifying the security ofthe real kernel would then fall to the `correctness' stage. While this procedure maybe sound, it is very indirect and fails to provide one of the principal bene�ts weshould desire of a kernel veri�cation technique: a sharpened understanding of theissues that determine a kernel's `security.'A more conclusive argument against IFA as a veri�cation technique for sepa-ration kernels is that it is incomplete: it does not address matters concerning theow of control|in particular, the handling of interrupts. Recall that the SUE ker-nel does very little except �eld interrupts and allow one regime to SWAP controlto another|and IFA provides no basis for the veri�cation of these important andtricky matters. Questions relating to control ow cannot even be formulated withinthe mathematical model [9] that justi�es IFA as a veri�cation technique. In fact, itis doubtful whether that model really provides a sound basis for the veri�cation ofany sort of security kernel|but then it was not formulated for that purpose.Feiertag's model was intended to provide a basis for verifying the `Secure ObjectManager' (SOM) of PSOS [22]|for which purpose it is eminently suitable. Themodel formulates a speci�cation of multilevel security for a system which consumesinputs that are tagged with their security classi�cations and produces similarlytagged outputs. `Ordinary' programs, such as the SOM or a �le-server, are sound13

interpretations of this model. But a kernel is di�erent. A kernel is essentially anabstract interpreter|it behaves like a hardware extension and executes instructionson behalf of its regimes. The identity of the regime on whose behalf it is operatingat any time is not indicated by a tag a�xed to the instruction by some externalagent, but is determined by the kernel's own state.To provide a sound basis for the veri�cation of a kernel, we really need a modelthat captures its essential characteristics more completely and realistically. Robin-son, one of those responsible for the veri�cation of KSOS, has observed:\Despite current successes in proving that a given piece of kernel softwareprovides security, it cannot be proven with existing techniques that thereis no way to circumvent that piece of software. The answer may be toadd some explicit notion of interpretation to the state machine model.This extended model would make it possible to address such concerns asparallelism, language semantics, and interrupt handling." [29]A model with some of these characteristics is described in a companion paperto this [31] and is used to justify a new method for verifying kernels which enforcethe policy of isolation. An informal explanation of this method is given in the nextsection.Proof of SeparabilityThe purpose of a separation kernel is to simulate a distributed environment. To thesoftware in each regime, the environment provided by a separation kernel shouldbe indistinguishable from that of an isolated machine dedicated to its private use.We can call this imaginary, private machine the `abstract' machine for that regime,while the single, shared system that is actually available is called the `concrete'machine. What we desire, for security, is that each regime's view of the concretemachine should exactly coincide with its own abstract machine. A similar require-ment expresses the `correctness' criterion for implementations of abstract data types.This latter criterion may be formulated precisely in terms of an `abstraction func-tion' [14]: that is, a function which maps from concrete to abstract states. Theinteresting feature of a separation kernel is that it is required to support severaldi�erent abstractions simultaneously (a separate one for each regime) and it seemsnatural, therefore, to formulate the properties required of it in terms of multipleabstraction functions.Take the simple case of a system supporting just two regimes|RED andBLACK. The abstraction function REDABS will map the states of the concretemachine into those of RED's abstract machine, while BLACKABS does likewise forBLACK. Now suppose the concrete machine performs some operation, COP, onbehalf of the RED regime. We must require that the e�ects of this operation, as14

perceived by the RED regime, are just as if some operation REDOP had been per-formed by the RED abstract machine. Thus, if execution of COP takes the concretemachine from an initial state X to a �nal state Y, we demand that REDABS(Y)is exactly the same state of the RED abstract machine as that which results fromapplying the abstract operation REDOP to the abstract state REDABS(X). Inother words, we require the following diagram to commute:6 -
-
6REDABSREDABS

REDOP
COPThis condition ensures that the regime which is currently `active' on the concretemachine cannot distinguish its actual environment from that of its abstract machine.But it is also crucial that the execution of a concrete operation on behalf of the activeregime should not a�ect the state of the machine perceived by currently `inactive'regimes. For isolation between RED and BLACK, therefore, we require that theconcrete state transition from X to Y caused by executing COP on behalf of REDshould cause no corresponding change in the states of inactive regimes. That is, werequire that BLACKABS(X) = BLACKABS(Y), or in diagrammatic form:

-COP
BLACKABS BLACKABS�I

Because I/O devices can directly observe and change aspects of the concrete ma-chine's internal state (by reading and writing its device registers, for example), andcan also inuence its instruction sequencing mechanism (by raising interrupts), the15

activity of these devices is relevant to security. Consequently, we must impose con-ditions on their behaviour. Expressed informally (and only from the RED regime'spoint of view), these conditions are:a) If REDABS(X) = REDABS(Y) and activity by a RED I/O device changesthe state of the concrete machine from X to X 0, and the same activity willalso change it from Y to Y 0, then REDABS(X 0) = REDABS(Y 0) (i.e., statechanges in the RED regime caused by RED I/O activity must depend only onthe activity itself and the previous state of the RED regime).b) If activity by a non-RED I/O device changes the state of the concrete machinefrom X to Y , then REDABS(X) = REDABS(Y) (i.e., non-RED I/O devicescannot change the state of the RED regime).c) If REDABS(X) = REDABS(Y), then any outputs produced by RED I/Odevices must be the same in both cases.d) If REDABS(X) = REDABS(Y), then the next operation executed on behalfof the RED regime must also be the same in both cases.Conditions a) and b) above are the analogues, for I/O devices, of the conditionsimposed on CPU operations by the commutative diagrams given earlier. All sixconditions (the four above and the two expressed in the commutative diagrams)constitute the basis for a kernel veri�cation technique which I call `Proof of Sep-arability.' A more precise statement of the six conditions may be found in theAppendix to this paper. A formal derivation of the six conditions, which attemptsto demonstrate that they are exactly the right conditions, is given in [31], while therelationship between this method and veri�cation by IFA is examined in [30], whichalso contains a small example of the application of the method. Description of amore realistic series of example applications is currently in preparation.`Proof of Separability' seems to be technically superior to other methods forsecurity kernel veri�cation since it is based on a more realistic model and can addressall the important issues, including those relating to interrupts, quite naturally. Also,it corresponds to a straightforward intuition about what security `is' and encouragesthe kernel designer to examine his system from the viewpoint of each individualregime in order to ensure that the results of every action invoked by a regime arecapable of complete description in terms of the objects known to that regime (andare invisible to all other regimes).ConclusionI have proposed an approach to the design and veri�cation of secure systems which Isuggest is particularly appropriate to small special-purpose applications. I advocate16

that secure systems should be conceived as distributed systems in which security isachieved partly by the physical separation of the individual components and partlyby the trusted functions performed by some of those components. The task ofspecifying and verifying the properties required of the trusted components in orderto achieve overall security should be tackled at this level of abstraction and on theassumption that components are physically isolated from one another. The purposeof a security kernel is simply to allow such a `distributed' system to actually runwithin a single processor: its role is to provide each component of the system withan environment which is indistinguishable from that which would be provided by atruly and physically distributed system. Policy enforcement is not the concern of asecurity kernel. There is some similarity between these proposals and Popek's notionof `levels of kernels' [26,27] while the idea that the management of shared resourcescan be handled by separate virtual machines can be traced back to Anderson [3].This approach achieves a separation of concerns by completely decoupling theveri�cation of the components which perform trusted functions from the veri�cationof the security kernel. This latter task may be accomplished by a new veri�cationtechnique which I call `proof of separability.'Application of these techniques should assist the development of systems whosesecurity is based on simpler mechanisms and whose veri�cation is correspondinglysimpler, more complete and more compelling than is the case at present.A AppendixThis appendix gives a more precise statement of the six conditions for `Proof ofSeparability.' The statement is expressed in terms of a particular formal model forcomputer systems. Space permits only a terse description of the model here; a morecomplete description, together with arguments for its suitability and justi�cationfor the particular choice of conditions de�ning Proof of Separability may be foundin [31].The model comprises a �nite set S of states and a set OPS � S ! S of operationson those states. The system interacts with its environment by consuming elementsof a set I of inputs and producing elements of a set O of outputs. At each time step,the system emits an output and changes state. The output emitted depends uponthe system's state and this action is modelled by the function OUTPUT : S ! O.State changes occur in two stages: the �rst is caused by the receipt of an input,and the second by the selection and execution of an operation. The e�ect of receivingan input is modelled by the function INPUT : S � I ! S, while the operationselection mechanism is modelled by the function NEXTOP : S ! OPS. Thus, ifthe current state of the system is s and the current value of the input available fromthe environment is i, the system will emit the output OUTPUT(s) and move to the17

state NEXTOP(s�)(s�), where s�=INPUT(s; i) is the intermediate state resulting fromconsumption of the input i.A shared system supports a number of `users' who are identi�ed with a set Cof `colours.' Exactly one user is `active' at any time: he is the user upon whosebehalf instructions are currently being executed. The identity of the active userdepends upon the state of the system at the instant when an operation is selectedfor execution. It is determined by the function COLOUR : S ! C.The inputs and outputs of a shared system are composed of individual com-ponents which are `private' to each user. The projection function EXTRACT isused to pick out components of a particular colour. Thus, when c 2 C, i 2 I, ando 2 O, EXTRACT(c; i) and EXTRACT(c; o) denote the c-coloured components ofthe input i and the output o respectively.For a shared system to be secure, the input/output behaviour perceived by eachuser must be completely consistent with that which could be provided by a non-shared system dedicated to his exclusive use. This is achieved if each user c 2 Ccan produce a set Sc of c-coloured `abstract states' and a set OPSc � Sc ! Sc ofc-coloured `abstract operations,' together with `abstraction functions'�c : S ! Scand ABOPc : OPS! OPScwhich satisfy, 8c 2 C;8s; s0 2 S;8op 2 OPS;8i; i0 2 I:1) COLOUR(s) = c � �c(op(s)) = ABOPc(op)(�c(s)),2) COLOUR(s) 6= c � �c(op(s)) = �c(s),3) �c(s) = �c(s0) � �c(INPUT(s; i)) = �c(INPUT(s0; i)),4) EXTRACT(c; i) = EXTRACT(c; i0) � �c(INPUT(s; i)) = �c(INPUT(s; i0)),5) �c(s) = �c(s0)� EXTRACT(c;OUTPUT(s)) = EXTRACT(c;OUTPUT(s0)),6) COLOUR(s) = COLOUR(s0) = c ^ �c(s) = �c(s0)� NEXTOP(s) = NEXTOP(s0).These are the formal statements of the six conditions for Proof of Separability.Conditions 1) and 2) correspond to the two commutative diagrams in the text, whileconditions 3) to 6) correspond to those labelled a) to d) in the text.
18

References[1] S. R. Ames Jr. Security kernels: A solution or a problem? In Proceedings ofthe Symposium on Security and Privacy, pages 141{150, Oakland, CA, April1981. IEEE Computer Society.[2] S. R. Ames Jr. and J. G. Keeton-Williams. Demonstrating security for trustedapplications on a security kernel base. In Proceedings of the Symposium on Se-curity and Privacy, pages 145{156, Oakland, CA, April 1980. IEEE ComputerSociety.[3] J. P. Anderson. Systems architecture for security and protection. In C. R.Renninger, editor, Approaches to Privacy and Security in Computer Systems,pages 49{50. NBS Special Publication 404, GPO SD Catalog No. C13.10:404,Washington, D.C., 1974.[4] K. Auerbach. Secure personal computing (technical correspondence). Commu-nications of the ACM, 23(1):36{37, January 1980.[5] D. H. Barnes. Computer security in the RSRE PPSN. In Networks '80, pages605{620. Online Conferences, June 1980.[6] D. E. Bell and L. J. La Padula. Secure computer system: Uni�ed exposition andMultics interpretation. Technical Report ESD-TR-75-306, Mitre Corporation,Bedford, MA, March 1976.[7] T. A. Berson and G. L. Barksdale Jr. KSOS|development methodology for asecure operating system. In National Computer Conference, volume 48, pages365{371. AFIPS Conference Proceedings, 1979.[8] D. E. Denning and P. J. Denning. Certi�cation of programs for secure infor-mation ow. Communications of the ACM, 20(7):504{513, July 1977.[9] R. J. Feiertag, K. N. Levitt, and L. Robinson. Proving multilevel security ofa system design. In Sixth ACM Symposium on Operating System Principles,pages 57{65, November 1977.[10] Ford. KSOS veri�cation plan. Technical Report WDL-TR-7809, FordAerospace and Communications Corporation, Palo Alto, CA, March 1978.[11] D. L. Golber. The SDC communications kernel, August 1981. Presented atDoD Computer Security Industry Seminar.[12] B. D. Gold et al. A security retro�t of VM/370. In National Computer Con-ference, volume 48, pages 335{344. AFIPS Conference Proceedings, 1979.19

[13] A. Hathaway. LSI guard system speci�cation (type A). Technical Report Draft,MITRE Corporation, Bedford, MA, July 1980.[14] C. A. R. Hoare. Proof of correctness of data representations. Acta Informatica,1:271{281, 1972.[15] B. W. Lampson. A note on the con�nement problem. Communications of theACM, 16(10):613{615, October 1973.[16] C. E. Landwehr. Assertions for veri�cation of multilevel secure military messagesystems. ACM Software Engineering Notes, 5(3):46{47, July 1980.[17] S. B. Lipner. A comment on the con�nement problem. In Fifth ACM Sympo-sium on Operating System Principles, pages 192{196. ACM, 1975.[18] A. F. Martin and J. K. Parks. Intelligent X25 level 2 line units for packet-switching. In Networks '80, pages 371{384. Online Conferences, 1980.[19] E. J. McCauley and P. J. Drongowski. KSOS|the design of a secure operatingsystem. In National Computer Conference, volume 48, pages 345{353. AFIPSConference Proceedings, 1979.[20] J. K. Millen. Security kernel validation in practice. Communications of theACM, 19(5):243{250, May 1976.[21] J. K. Millen. Operating system security veri�cation. Technical Report M79-223,MITRE Corporation, Bedford, MA, September 1979.[22] P. G. Neumann, R. S. Boyer, R. J. Feiertag, K. N. Levitt, and L. Robinson.A provably secure operating system: The system, its applications, and proofs.Technical report, SRI International, May 1980. Second Edition, Report CSL-116.[23] P. G. Neumann et al. Software development and proofs of multi-level security.In Proc. 2nd International Conference on Software Engineering, pages 421{428,San Francisco, CA, 1976.[24] M. A. Padlipsky, K. J. Biba, and R. B. Neely. KSOS|computer networkapplications. In National Computer Conference, volume 48, pages 373{381.AFIPS Conference Proceedings, 1979.[25] G. J. Popek et al. UCLA secure UNIX. In National Computer Conference,volume 48, pages 355{364. AFIPS Conference Proceedings, 1979.[26] G. J. Popek and C. S. Kline. A veri�able protection system. In Proc. In-ternational Conference on Reliable Software, pages 294{304, Los Angeles, CA,1975. 20

[27] G. J. Popek and C. S. Kline. Issues in kernel design. In National ComputerConference, volume 47, pages 1079{1086. AFIPS Conference Proceedings, 1978.[28] Gerald J. Popek and David R. Farber. A model for veri�cation of data securityin operating systems. Communications of the ACM, 21(9):737{749, September1978.[29] L. Robinson. Quoted by P. zave in report of a panel session from speci�cationsof reliable software conference, July 1979.[30] John Rushby. Veri�cation of secure systems. Technical Report 166, ComputingLaboratory, University of Newcastle upon Tyne, Newcastle upon Tyne, UK,August 1981.[31] John Rushby. Proof of Separability|a veri�cation technique for a class of se-curity kernels. In Proc. 5th International Symposium on Programming, volume137 of Lecture Notes in Computer Science, pages 352{367, Turin, Italy, April1982. Springer-Verlag.[32] B. J. Walker, R. A. Kemmerer, and G. J. Popek. Speci�cation and veri�cationof the UCLA Unix security kernel. Communications of the ACM, 23(2):118{131, February 1980.[33] J. P. L. Woodward. Applications for multilevel secure operating systems. InNational Computer Conference, volume 48, pages 319{328. AFIPS ConferenceProceedings, 1979.

21

