High-fidelity Distributed Simulation of Local Area Networks*

Livio Ricciulli
Computer Science Laboratory
SRI International
Menlo Park, California, 94025

Abstract

The Adaptable Network COntrol and Reporting Sys-
tem (ANCORS) project merges technology from net-
work management, active networking, and distributed
simulation in a unified paradigm to assist in the as-
sessment, control, and design of computer networks.
After motivating our approach to metwork engineer-
ing, we describe an initial ANCORS prototype system.
In particular, we describe a high-fidelity model of a
Uniz-based networking protocol stack, and character-
ize and compare two different distributed simulation
synchronization mechanisms that were used to simu-
late an Ethernet-based Local Area Network.

1 Introduction

The Internet will become increasingly dynamic.
Changes in the Internet will affect both its control
mechanisms and the nature of information exchanged.
New trends in network design [12, 7, 4, 13, 11, 1] seek
to render network protocols more flexible and extensi-
ble, and to thus improve their overall usefulness. Con-
figuration changes can be as dynamic as interpreting
and executing a few predefined instructions as a net-
work packet is received, causing new protocols to be
loaded on demand, or modifying, deleting, or adding
more permanent objects that implement application-
specific network services. In addition to changing how
data is transmitted, the introduction of new technolo-
gies as they become available may change the nature
of network traffic. The Internet phone and the increas-
ing interest of cellular phone companies in accessing
services on the Internet are examples of future tech-
nologies that may greatly affect Internet traffic.

The current state of the art in network engineering,
monitoring, and control must improve dramatically. Tt
is becoming increasingly apparent that effective man-
agement of large, ever-changing networks depends on
sophisticated monitoring to help understand the way
a network changes. As new interdependencies arise in

* This work was supported by DARPA contract number
DABT63-97-C0040.

sharing resources beyond the domain level, monitoring
capabilities, like application-specific protocols, should
be able to change over time, should adapt to new con-
ditions as they develop, and should be scalable.

In addition to sophisticated and adaptable mon-
itoring, future networks would greatly benefit from
simulation services so that network engineers can ex-
periment, with new network technologies without com-
promising network operations. Current network engi-
neering tools can scale only to small and relatively
simple networks and are not inter-operable. Tools will
be required to scale far beyond current capabilities
and will need to promote inter-operability and model
reuse. In addition to evaluating performance metrics
to compare one design with another, network engi-
neering tools should implement a development envi-
ronment for validating new designs.

Hardware design tools have reached a very high
level of sophistication and can assist hardware design-
ers in all phases of design and development. Such tools
can support a wide spectrum of levels of abstraction,
from high-level purely behavioral specifications, to in-
creasingly finer detailed structural layouts, all the way
down to the actual design of the transistors on the
silicon. Simulation is used throughout all phases of
this design process, and it is the main mechanism that
guides design choices. As for hardware, network de-
sign should also be carried out in an environment that
can offer a variable degree of abstraction and that can
offer simulation as a pivoting technology to guide de-
velopment. We argue that, because of the organic na-
ture of current networks and their fast evolution pace,
design should be carried out in the real network it-
self. Future networks will need tools that can adapt
their functionality and scope, and that can grow and
change with the network itself. To generate results
that accurately predict network behavior and perfor-
mance, simulation and analysis must be closely tied to
the actual, rather than on artificially generated, net-
work traffic conditions. To that end, the tools should
run on the network itself, taking the actual observable

traffic conditions into consideration. Before commit-
ting network-wide changes such as the alteration of
the network routing algorithm, an operator may want
to conduct simulation experiments that can predict
the behavior of the network under the new algorithm
without affecting network reliability. That is, analysis
and design tools should be available to a wide range
of network operators, who could act independently or
in collaboration with one another.

ANCORS leverages network management and in-
troduces simulation as an additional network service.
Integrating distributed simulation with network man-
agement has four main advantages: (1) it naturally
supports reuse of both simulation software and net-
work models, (2) the simulated models can use real
network data produced by the monitoring agents, thus
improving fidelity, (3) the consumers of the data (the
simulation models) are placed close to the origin of
the data to reduce overhead, and (4) the monitoring
and control capabilities of network management can
be reused to monitor and control the simulations.

We have primarily focused on implementing (1) a
prototype of a root ANCORS agent that dynamically
accepts and instantiates simulations and/or monitor-
ing processes, and (2) a representative example of de-
ployable engineering service that can be used to con-
duct very accurate, end-to-end quantitative network
experimentation.

In the following sections, we will discuss some of
the key design ideas and implementation details of our
prototype network engineering system and will pro-
vide experimental results that characterize its perfor-
mance. In the process of describing the designs, we
will emphasize a novel, scalable, and efficient synchro-
nization technique used to coordinate the distributed
simulation of virtual LANs.

2 ANCORS Agent

The current prototype of an ANCORS agent ac-
cepts commands to download a binary-compatible ex-
ecutable from a remote location. The binary exe-
cutable is specified as a URL; the ANCORS agent,
after downloading the code with an HTTP GET com-
mand, strips the HTML header from the received code
and loads it as a dynamic library. As shown in Fig-
ure 1, the download command can either (1) trigger
the ANCORS agent to duplicate itself by using a fork
system call to run the downloaded code (as well to
accept further commands), or (2) simply add a thread
to an existing process. In either case, the downloaded
code is essentially a shared library initially accessed
through a universally predefined entry point (init()).
This initial configuration function can simply transfer

Load_process <URL 1>
Load thread <URL2>

ANCORS

Figure 1: ANCORS agents can spawn a new process
or a thread within a process

control to the downloaded code for execution, or it can
first gather runtime configuration data in a manner
specific to each instance 2 and then explicitly started.
In this first prototype we have assumed that the con-
figuration and monitoring functions are embedded in-
side the deployed code itself. These functions return
HTML code that is fed to the network manager to
gather some user-defined runtime parameters or for
displaying usage data. The network engineer config-
ures and monitors the downloaded code with HTML
forms that are then pushed back through a CGI script
to the created service. Each operation returns HTML
forms that in turn may call other functions, thus allow-
ing a hierarchical organization of HTML pages. Fu-
ture extensions to our management system will allow
the incorporation of existing NM software based on
SNMP and Java ® and the creation of new decentral-
ized management solutions based on the concept of
delegation (perhaps using Java as the delegation lan-
guage).

The ANCORS agent offers a set of built-in primi-
tives to the downloaded services that, in addition to
standard native system functionality (I/O, memory
management, networking), provide (1) multithread-
ing (nonpreemptive), (2) LAN multicast emulation,
and (3) global time synchronization. These support
services were designed to facilitate distributed simula-
tion network engineering applications, as well as some
forms of sophisticated network monitoring.

2For example, it could use a MIME-encapsulated document
to specify configuration and monitoring operations to be per-
formed by the management system.

3All product and company names mentioned in this paper
are the trademarks of their respective holders.

Unix API

ARP TCP UDP ICMP
Software
P Timers

) Memory
j
A
Device >
management Scheduler

Ethernet Y] Hardware
Interface B@ Graphics || Timer

\ Unix API \

ARP TCP UDP ICMP
Software
IP Timers
Malloc &
Free

Standard

Integrated from
existing code

Developed

Figure 2: Linux transformation

3 Virtual Networking Using ANCORS

To date we have produced a representative example
of an engineering network service that emulates a Unix
kernel. The service was obtained by modifying a Linux
operating system to allow its execution in user mode.

As shown in Figure 2, the modifications of the
operating system replaced all lower-level, hardware-
dependent procedures and interfaces with user-level
counterparts. We deleted the file system support and
incorporated all necessary configuration procedures
(like ifconfig and route) as additional system calls.
Memory management and standard I/O were com-
pletely deleted and replaced by user-level functions
(malloc, free, and printf) contained in the standard
¢ library. The scheduling and the software timers
were completely replaced and implemented on top of
the nonpreemptive threading offered by the simulation
package (CSIM [10]).

The resulting service executes in a virtual timescale,
offers the identical networking behavior of a real Linux
kernel, and can therefore be used as a vehicle to in-

stantiate high-fidelity distributed simulations of vir-
tual networks. One of the model’s configuration func-
tions accepts different timing configurations to ap-
proximate the protocol stack timing behavior of four
different kernels (SunOS 4.13, SunOS 5.5, Linux 2.02,
and BSD 2.2). To date we have made some gross ap-
proximations for SunOS 4.13, Linux 2.02, and BSD
2.2 but we have refined the models for SunOS 5.5 to
yield very accurate timing estimates to be used in the
first set of experiments documented in this paper in
Section 5.

The virtual kernel offers the network application
programming interface (API) of the real Linux coun-
terpart and therefore can be used to reproduce a wide
range of loading conditions. ANCORS’s ability to
add and delete threads can be used in this appli-
cation to dynamically change loading conditions (by
adding or deleting user-defined loading threads) or
by injecting user-defined monitoring probes into the
kernel so that specific parameters can be observed.
For the time being, we have implemented some sim-
ple load models borrowed from classic queuing theory.
As shown in Figure 3, the user-definable loads may be
produced by either closely mimicking real load condi-
tions recorded by network monitoring services or by
linking some real applications to the virtual kernel to
generate application-specific loads (for example, orig-
inating from a real-time video stream).

The virtual kernels communicate with each other
through TCP, and automatically configure themselves
to participate in emulated multicast sessions that par-
allel the behavior of virtual Ethernet segments. Ini-
tially, all real hosts are aware of all other real hosts
that may share the same virtual Ethernet segment.
Each virtual Ethernet segment network address as-
signed to a virtual host is transformed through a hash
function into a port number. When the virtual ker-
nel initializes its virtual interfaces, the multicast em-
ulation initialization procedure tries to connect to all
known peers that may share a virtual Ethernet seg-
ment, using the port associated with each virtual in-
terface. Thus, if two or more virtual hosts share a
virtual network address, and therefore use the same
port, they establish a TCP connection used to tunnel
virtual Ethernet packets. When a virtual host sends
a simulation packet pertaining to a particular virtual
Ethernet segment, it sends it to all virtual hosts that
have connected to the associated port.

The deployment of a virtual network is achieved
by downloading and configuring several virtual ker-
nels through ANCORS agents. All these operations
can be performed either through a standard HTML

User-defined Deployable virtual host
Threads Analytical
Model
|
v Y
\ Virtual TCP/UDP API
\ TCP | | UDP | ICMP |
Ethernet Interfacel Ethernet Interface 2 Ethernet Interface n
‘Ip|Network Broadcast‘ ‘Ip|Network Broadcast‘ eece ‘Ip|Network Broadcast‘
Hash Hash
Function Function
Port # Port # Port #
Virtual Kernel
TCP/IP

Figure 3: Deployable virtual host

browser or by using a script. We have so far instanti-
ated several virtual networks running on a network of
workstations including Sun SPARCstation 20s, Ultra-
SPARCs, and Intel-based machines running BSD and
Linux operating systems.

4 Synchronization

A practical distributed network engineering tool
should allow varying degrees of modeling refinement
and be able to trade off speed, level of abstraction,
and estimation accuracy in a flexible way. Tradi-
tionally, simulation techniques have been able to of-
fer good flexibility for modeling systems at different
levels of abstraction but have not been able to cope
well with high-fidelity simulation of large systems in a
scalable way. Traditional distributed simulation tech-
niques can offer mechanisms to effectively serialize the
event ordering of distributed nodes, thus increasing
simulation power by employing more computing re-
sources. Although these techniques are very useful
for performing analytical experiments in a distributed
way, they can impose high levels of overhead to keep
the distributed nodes synchronized.

We are developing a novel technique to trade off the
accuracy of simulated time with the speed and scal-
ability of distributed simulation while retaining the
flexibility of being able to offer an arbitrary level of
abstraction for modeling the target system. We have
derived some of the ideas from the theory of Lam-
port’s virtual time [6], and therefore we have named
our technique Lamport Synchronization (LS). LS dis-
tributed simulation is based on the idea of decoupling
the simulation into a behavioral component that em-

ulates the semantic behavior of the modeled system
(i.e., preserve the causal relationship among the dis-
tributed events according to the semantics of the sys-
tem being modeled) and a timing component that es-
timates the virtual time in which the executed behav-
ior could have been executed. We have successfully
applied these ideas to the efficient distributed simu-
lation of a massively parallel architecture [8, 9] and,
as we will see in the following sections, we have also
recently applied our techniques to simulate Ethernet
LANSs within the scope of the ANCORS project.

In addition to LS, for comparison purposes we have
also implemented a distributed simulation synchro-
nization algorithm derived from the algorithms pro-
posed by Chandy and Misra (CM)[2]. We have not
yet implemented a synchronization scheme based on
Time-warp [5, 3] but we plan to do so in the near
future. In the following sections we will describe in
detail and compare the two synchronization mecha-
nisms implemented so far (LS and CM) when applied
to the distributed simulation of local area networks,
using ANCORS.

4.1 Common Assumptions

Both the CM and the LS synchronization protocols
use TCP to transmit messages between the logical pro-
cesses (LPs) to guarantee that messages are reliably
delivered in program order.

We model contention by broadcasting virtual Eth-
ernet packets not only to the destination node but to
all other nodes sharing the same Ethernet segment.
A more efficient solution would be to centralize the
modeling of the Ethernet in a single host, thus reduc-

ing the ratio of the number of real messages sent for
each virtual message from n to two? (where n is the
number of hosts sharing the same Ethernet segment).
We plan to experiment with this solution in the near
future even though we realize that careful mapping
should be used to avoid creating a bottleneck in the
host modeling the Ethernet.

Another common design methodology was to en-
capsulate the simulation synchronization mechanisms
into the software module that implements the virtual
Ethernet without involving either the application or
the particular protocol stack used. Although this re-
quirement heavily penalizes the CM mechanism, it
permits reuse of the synchronization codes with dif-
ferent applications and/or protocols in a flexible and
modular way.

4.2 LS Mechanism

Each logical process (LP) has two separate clocks

a local clock 77 and a global clock that measures
global simulated time (Tj) (the estimation of what
would be the physical time if the simulated system
was real). In the LS scheme, T, does not order the ex-
ecution of the simulation, but it is derived simply to
obtain a performance measurement. We start from an
interleaving of distributed events that is guaranteed
to be legal by the simulated system synchronization
semantics, and we derive a T} estimate in which the
observed execution could have been carried out. We
always execute all local simulation mechanisms with
respect to 77, and perform all global operations with
respect to Ty. Events executing with respect to 1,
typically enforce the behavioral correctness of the dis-
tributed system, while events executed with respect
to T, tend to be executed purely for measurement
purposes. The separation of the Tp and T, clocks
is only a logical one and does not need two separate
event lists because scheduling T}, events can be piggy-
backed on the scheduling of the T}, events. For exam-
ple, for scheduling an event with respect to T, to time
T one would execute while(Ty; < T)hold(z) where x
is a reasonable amount of 77 time during which T}
may change. T, in general is explicitly adjusted dur-
ing the execution of the simulation by modeling the
synchronization interactions of a distributed system
as a series of requests, acquisitions, and releases of
global resources (i.e., the Ethernet segment). Once the
resource becomes available the execution is resumed
with T, adjusted to an appropriate value. For an in-
depth description of the LS technique applied to the
distributed simulation of parallel computers see [8, 9].

The LS distributed simulation technique applied to

4In the LS case from n+1 to 3

Va Va

‘ Application ‘ ‘ Application ‘

\ Packet receive time=Ts —" 4
To Packet send time=T1+T3-T2 Ts

‘ Protocol Stack y ‘ ‘ Protocol Stack ‘
T Ta
[] Ts

‘ Virtual Ethernet ‘ ‘ Virtual Ethernet “
Negative Aknowledgment T

may indicate acollision

Figure 4: LS scheme timing measurement. The proto-
col stack latency is measured locally while the Ether-
net timing is measured at the destination. If a collision
is detected, a negative acknowledgment will cause the
source to back off and try again.

simulating LANs is best described with a simple ex-
ample. In Figure 4 two virtual nodes Va and Vb that
share an Ethernet segment are executing on two dif-
ferent physical processors. In this example, node Va
sends a message to Vb. After Va accounts for the
protocol stack overhead, the message is time-stamped
with T, (time Ty in Figure 4). When the message
reaches Vb, the timestamp is updated by adding the
latencies of the network being simulated. In particu-
lar, in this case Vb would add the transmission latency
of the Ethernet and its receiving latency calculated at
the moment the message is received (time T3 — 75 in
Figure 4).

Depending on whether or not a collision has been
detected, Vb then sends back a positive or negative
acknowledgment to the originator. If positive, the
acknowledgment bears a timestamp that reflects the
time the message sending should have completed in
Va’s time reference (77 + T3 — T%). The timestamp of
the acknowledgment is then used by Va for adjusting
the estimate of T,. If the acknowledgment is nega-
tive (Vb detected a collision), Va triggers the stan-
dard Ethernet back-off and retry mechanism. On the
receiving end, if the message sent by Va did not trig-
ger a collision, the application receives the message at
Ty Ts and the timestamp is discarded.

4.3 Chandy and Misra

In this scheme, all LPs keep only one clock that
orders both local and global events in a synchronous
way. With this well-known synchronization scheme,
each distributed node waits for receipt of a message

from each of the other hosts that could possibly send
a message to compute the latest time at which it is safe
to send a message. Deadlock is avoided by broadcast-
ing null messages that advance time artificially when
necessary.

In our experiments each host waits for messages
transmitted by all other hosts that are connected on
the same virtual Ethernet segment and sends messages
on the virtual Ethernet only if the clock plus the Eth-
ernet latency is less than the timestamp of the latest
message received.

Each time an LP receives on all the input queues,
it broadcasts a null message to all other LPs bearing a
timestamp with the local time plus the local estimate
of lookahead time. If the LP is wanting to transmit,
the lookahead time is set to the timestamp of the next
message to be sent out; otherwise, the lookahead time
is set to the transmission latency of the smallest pos-
sible Ethernet packet (60 bytes). Our lookahead es-
timate is not very sophisticated because we did not
want to specialize this technique to a particular ap-
plication. A more intelligent use of lookahead would
look into the protocol stack or, even better, use in-
formation embedded in the application for increasing
the lookahead time and consequently improve perfor-
mance.

4.4 Qualitative Comparison

Because of the nondeterminism introduced by the
runtime behavior of the physical hosts, in the LS
scheme different scheduling behaviors might be ob-
served for the same simulated application. The ap-
plications, if correct, for each run, will always produce
the same results but might arrive at those results in
different ways following different scheduling behaviors.
This critical aspect about the LS scheme might inspire
skepticism. We try to show why we think this nonde-
terminism is an acceptable attribute of LS and can in
some cases be desirable.

As detailed in Section 5.2, we have observed that
the execution of a real distributed system exhibits non-
deterministic behavior because of runtime system in-
terferences. We therefore believe that it is not prac-
tical to introduce performance overhead in the sim-
ulation of a distributed system execution to make its
behavior totally deterministic when in reality this does
not happen. Furthermore, the inaccuracies introduced
by a nondeterministic scheduling behavior in our judg-
ment can be very small compared to other kinds of
inaccuracies introduced by simulation. (Abstracting
the behavior of certain components of the design and
adopting inaccurate timing estimates for components
that have never been built are examples of more im-

portant sources of inaccuracies introduced by simula-
tion.)

Some metrics greatly depend on the scheduling be-
havior of an application (false sharing is a good ex-
ample), a deterministic sequential simulation (or an
equivalent distributed one) is the only alternative if
one wants to obtain very accurate measurements. The
CM scheme offers a deterministic scheduling behav-
ior at the expense of higher synchronization cost and
can be used in those cases in which repeatability of
the results needs to be enforced at a very fine grain
level. Another hidden cost that is unique to the CM
scheme and that may become more and more relevant
in the context of Web-based simulations is that if one
of the LPs goes down, the simulation stops even if the
LP is not semantically necessary for the simulation to
proceed. In other nonconservative distributed simu-
lation approaches the simulation would make forward
progress even in the case of failures of some LPs.

5 Quantitative Comparison

Using ANCORS we have performed several dis-
tributed simulations aimed at evaluating the per-
formance and scalability of the two synchronization
schemes we have implemented (LS and CM) and com-
paring the timing accuracy of our models with the real
system being modeled.

The experiments consist in simulating an Ether-
net segment shared by four virtual hosts. The virtual
hosts establish virtual TCP connections and exchange
variable-length messages. The four virtual hosts can
be spawned on four physical hosts or on a single host.
Three of the four virtual hosts continuously send short
messages ° to the fourth host and block on the re-
ception of a message of length derived from an expo-
nential distribution with variable mean and standard
deviation. This kind of simulation tries to emulate
the dynamics of a small LAN in which a server is be-
ing queried by three clients for read-only data (like in
HTTP).

5.1 Efficiency

We have compared the efficiency of both the LS
and CM schemes for synchronizing the simulation of
our high-fidelity virtual LAN. Table 1 summarizes the
measurements we obtained. For both synchronization
schemes we report the slowdown of the distributed
simulation. The slowdown is calculated by dividing
the physical time needed by the simulation by the sim-
ulated global time. Table 1 also reports the slowdowns

for simulations running on four workstations ¢ or run-

5Messages with mean length of 10 bytes and standard devi-
ation of 10 bytes
6Sun Microsystems UltraSPARCs

Table 1: Simulation Efficiency

Simulation Efficiency

Packet 1 Workstation | 4 Workstation |
Size Slowdown Slowdown Speedup

C&M | LS C&M | LS C&M | LS
10 5993 1830 2774 641 2.16 2.85
1024 3989 523 1426 177 2.8 2.96
2048 3921 401 1375 128 2.85 3.12
4096 3884 307 1295 98 3.0 3.13
8192 3844 262 1265 86 3.04 3.03
16,384 3834 237 1257 81 3.05 2.92
32,768 3836 225 1247 78 3.07 2.88
65,536 3838 219 1243 77 3.09 2.82
131,072 | 3828 216 1214 78 3.15 2.76

ning on a single workstation. In the single workstation
experiments, the messages between the LPs (which
are separate Unix processes) are exchanged using the
loop-back device, thus eliminating any overhead due
to the Ethernet; in this case the bottleneck is the host
processing power. Because of the lack of lookahead
information, the CM simulations are much slower and
the slowdown is quite constant. The LS scheme is
much faster and becomes more efficient as the packet
size increases (this is because the simulation packets
are at most 60 bytes long and as the real system sat-
urates the Ethernet it is slowed down with respect to
the simulation). The speedup is calculated by dividing
the slowdown of 1 workstation by the slowdown of the
4 workstations. It is quite good for both simulation
schemes, thus suggesting that this kind of high-fidelity
simulation is a good candidate for parallelization.

5.2 Accuracy

Table 2 compares the estimation of the overall
throughput obtained with our high-fidelity simula-
tions using the LS and CM schemes with the through-
put of the real system being modeled. In addition we
report the standard deviation of the throughput esti-
mates that were obtained over multiple experiments.
Both the CM and the LS schemes give fairly good
estimates of the overall throughput, with the CM re-
quiring some adjustments in the timing model. CM of-
fers a deterministic behavior and thus a zero standard
deviation of the measurements. Notice that in both
the real system and in the LS simulations the stan-
dard deviation is considerable and it does not seem
to be related to the packet size. In both the real sys-
tem and the LS simulations the standard deviation is
about 10%, thus suggesting that a deterministic sim-
ulation may give an erroneous picture of the system’s
dynamics. The LS scheme, on the other hand, seems
to offer the same degree of variability with respect
to the real execution, thus offering more simulation

Table 2: Simulation Accuracy

Simulation Accuracy

Packet Real C&M LS

Size B/s S.D. | B/s S.D. | B/s S.D.
10 13041 235 41385 0 14566 1055
1024 275397 | 2856 | 371477 | O 299509 | 6280
2048 326715 | 8188 | 379014 | O 328191 | 7155
4096 355251 | 2858 | 389770 | 0 346504 | 6288
8192 364256 | 3315 | 394557 | O 355683 | 5919
16,384 364299 | 4468 | 397555 | O 354758 | 5247
32,768 360321 | 2661 | 400154 | O 361155 | 4122
65,536 357389 | 2721 | 401124 | O 363721 | 3377
131,072 | 349829 | 7860 | 402827 | 0 365064 | 645

fidelity. We plan to conduct more experiments mod-
eling more complex topologies and being executed on
more heterogeneous environments to better character-
ize the variability of the LS simulations as they are
compared to the variability of the system being mod-
eled.

6 Conclusion

As the Internet will become more dynamic both in
its control mechanisms (protocols) and in the user re-
quirements, new, efficient, and user-friendly network
engineering tools will be required to go far beyond cur-
rent capabilities. ANCORS offers a new paradigm for
designing, deploying, and monitoring networks that
integrates simulation as an additional component of
network management. In this paper we have out-
lined an initial ANCORS prototype consisting of mul-
tiple distributed agents capable of deploying network
engineering applications in a flexible and machine-
independent way and a high-fidelity model of a Unix
network protocol stack. We have used this initial AN-
CORS prototype to experiment with two synchroniza-
tion protocols for the distributed simulation of a high-
fidelity LAN. In comparing the two protocols we have
both qualitatively and quantitatively described the
two approaches and have concluded that the LS imple-
mentation, given our methodological assumptions, is
more efficient. In the near future, using both simula-
tion synchronization protocols, we plan to experiment
with more complex network loads and larger and more
interesting topologies. In particular, we plan to ex-
plore both simulation techniques and network design
issues in the presence of self-similar traffic.
Acknowledgments

I would like to thank Nachum Shacham, Phillip
Porras, José Meseguer, Patrick Lincoln and Chris
Dodd, all with SRI International, and Caveh Jalali
with Sun Microsystems for the helpful discussions and
significant technical advice that contributed to the
making of this paper.

References

(1]

2]

(3]

(4]

(5]
[6]

[7]

(8]
[9]

[10]

(11]

[12]

13]

D. Scott Alexander, Marianne Shaw, Scott M. Nettles, and
Jonathan M. Smith. Active bridging. Proceedings of the
ACM SIGCOMM’97 Conference, Cannes, France, Septem-
ber 1997.

K. M. Chandy and J. Misra. Asynchronous distributed
simulation via a sequence of parallel computations. Com-
munications of the ACM, April 1981.

R. M. Fujimoto. Optimistic approaches to parallel discrete
event driven simulation. Trans. Society for Computer Sim-
ulation, June 1990.

U. Manber J. Hartman, L. Peterson, and T. Proebsting.
Liquid software: A new paradigm for networked systems.
Technical Report 96-11, University of Arizona, 1996.

D. Jefferson. Virtual time. ACM Trans. Programming
Languages and Systems, July 1985.

L. Lamport. Time, clocks, and the ordering of events in
distributed systems. Communications of the ACM, July
1978.

U. Legedza, D. J. Wetherall, and J. V. Guttag. Improving
the performance of distributed applications using active
networks. Submitted to IEEE INFOCOM’98, 1998.

L. Ricciulli. A technique for the distributed simulation of
parallel computers. In MASCOTS ’95, January 1995.

L. Ricciulli, J. Meseguer, and P. Lincoln. Distributed sim-
ulation of parallel executions. In 29th Annual Simulation
Symposium, pages 15-24, 1996.

H. Schwetman. Csim: A c-based, process-oriented simula-
tion language. Technical report, MCC, 1989.

Jonathan Smith, David Farber, Carl A. Gunter, Scott Net-
tle, Mark Segal, William D. Sincoskie, David Feldmeier,
and Scott Alexander. Switchware: Towards a 21st century
network infrastructure. hitp://www.cis.upenn.edu/ switch-
ware/papers/sware.ps, 1997.

D. J. Wetherall, J. V. Guttag, and D. L. Tennenhouse.
Ants: A toolkit for building and dynamically deploying
network protocols. Submitted to IEEES OPENARCH’98,
1998.

Y. Yemini and S. da Silva. Towards programmable net-
works. IFIP/IEEE International Workshop on Distributed
Systems: Operations and Management, L’Aquila, Italy,
October 1996.

