
Formal Methods in Industry� Several UK and other European companies use Level 1 or 2formal methods to develop requirements speci�cations� GEC Alsthom (in France) use their expertise in formal methodsas a major element in developing their business in high-speedtrain and conventional power station control($18 billion backlog)� With NASA encouragement (and some sponsorship) all themajor US manufacturers of commercial avionics have activeformal methods programs(Allied Signal, Boeing, Collins, Honeywell, IBM/Loral)SEI 1994 49Status and Prospects� Europe has commanding lead in PR concerning formalmethods and tech-transfer (but the tech is low)� North America has a commanding lead in tools to supportformal methods� Next big step will be integration of classical theorem-provingmethods with state-exploration and other automatic techniques� And integration with testing, prototyping etc.� Need to better �gure out the connections between formalmethods and semi-formal techniques in software engineeringsuch as object-oriented design� Can get cost-e�ective return on formal methods now with afew highly skilled people working on the most di�cult aspectsof designSEI 1994 50

Conclusion� Use formal methods to augment, not replace traditionalmethods� Use where traditional methods are absent, ine�ective, expensive� Typically, requirements, and the hardest and trickiest aspectsof design; early lifecycle in either case� You need mechanized assistance to debug speci�cations� Need strong checks on consistency� And must probe consequences in order to validate spec'ns� Don't worry that you won't have a complete formal \proof ofcorrectness" from top to bottom|there's more than this toassurance for critical systems� Use proofs as \instruments of discovery," and to guaranteeabsence of certain conceptual errorsSEI 1994 51

To Learn More� Browse papers and technical reports in /pub/reports onftp.cs.sri.com (start with readme.txt)� You can get our veri�cation system PVS by anonymous FTPfrom ftp.csl.sri.com in /pub/pvs(Allegro Lisp implementation for Sun SparcStations;Recommend 32M real memory, 100M swap space, Sparc 2 orbetter)
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Lifecycle PhasesPros and cons of applying formal methods in early and latelifecycle phases� Late lifecyclePro: That's what runsCon: Size of description is large; must often leave purelyfunctional world of ordinary logic (i.e., need VCGs, Hoaresentences); traditional methods are very e�ective� Early lifecyclePro: That's where the serious errors are; that's where theconcern is; few other rigorous techniques availableCon: front-loads development time and costSEI 1994 45Formal Methods and Critical Systems� Intellectual argument that fully formal methods guaranteecertain modeled properties to very high degree� Validity depends on �delity of the modeling employed� Surely easier to validate abstract models that make a fewbroad assumptions than detailed models with intricateassumptions� Most likely to arise early in lifecycle and at the highest levelsof abstraction� Utility must be evaluated against alternatives� Current techniques seem adequate at later stages ofimplementation� Mishaps are generally due to design aws, multiple failures,unanticipated interactions, not coding errorsSEI 1994 46

Formal Methods in the PastOften applied to relatively routine aspects of system developmentat later lifecycle phases� Veri�cation of sequential program code� Very expensive (SACEM: 315,000 hours for 9,000 SLOC)� Adequately handled by conventional methods insafety/mission critical industries� Flow analysis for TCB interface of trusted systems� Not considered main design or V&V issue in trusted systems� Often unconnected to the main development� Formal veri�cation of microprocessor datapaths� Not considered main processor design or V&V issue� Not taken up by industrySEI 1994 47Making E�ective Use of Formal Methods� Apply where other methods are absent, ine�ective, expensive� And where it makes a di�erence (e.g., where faults could becatastrophic, or misunderstandings expensive to correct)� Often the hardest and trickiest parts of design (fault-tolerance,timing, interrupt and MMU management in securemicro-kernels, coordination of parallel and distributed activities,control-dominated aspects of microprocessors)� Best treated early in lifecycle in fairly abstract form, sovalidation is credible� By relatively few, but highly skilled people� Who are supported by e�ective tools� To explore and expose the problem, and/or to guarantee thatcertain conceptual errors are not presentSEI 1994 48



Partial Application of Formal Methods� Cannot achieve total coverage; there will always be gaps thatmust be covered informally� Must choose where those gaps should be, and how \big" theyshould be� There are four axes of selectivity:� Degree of rigor� Components� Properties� Lifecycle phasesSEI 1994 41Degrees of Rigor in Formal Methods� Can apply formal methods at many levels of rigor0. No use of formal methods1. Use the ideas of formal methods, but ad-hoc notation,proofs based on informal argument, tools are pencil anderaser (the way conventional mathematics is done)2. Formalize and maybe mechanize speci�cation language andmethodology, retain pencil and eraser for proofs3. Full mechanization with automated theorem proving orchecking� Roughly speaking, Europeans have focussed on Level 1 (; 2),US on Level 3� Higher levels are not necessarily better, but. . .SEI 1994 42

Formal Methods and Tools� Formal speci�cations are no more likely to be correct than areprograms (may not realize this unless you try proving theorems)� Need strong checks on consistency� And must validate speci�cations by probing theirconsequencesNeed mechanization to do this e�ectively� Without veri�cation, formal speci�cations are justdocumentation� To contribute to assurance, you need to prove theoremsSEI 1994 43Selected System Components and Properties� Most disciplines concerned with critical systems assigncriticality levels to software components based on hazardanalysis and potential consequences of failure (must considermalfunction and unintended function as well as loss of function)� Higher criticality levels seem good place to focus use offormal methods� May not need to verify all functional properties� May be enough to guarantee a \safe" action, not necessarilyan optimal one� In other cases, may want to verify properties other thanfunction (e.g., security, or fault containment)� Often, absence of speci�c malfunctions is most importantpropertySEI 1994 44



Assurance for Critical Systems� Dependable systems: reliance may justi�ably be placed inquality of service delivered� Critical systems require very small failure rates(e.g., 10�9 per hour)This is the \ultra-dependable" region� Require some evidence that this has been achieved� Direct measurement requires 114,000 years on test� Essentially all assurance has to derive from subjective factorsconcerning development processes� In other words, in the ultra-dependable region, cannot provideevidence of \how well you've done" (i.e., dependabilityachieved), instead provide evidence of \how hard you tried"SEI 1994 37Claims for Formal Methods1. Enable faults (of assumptions, requirements, design) to bedetected earlier than otherwise� Due to greater precision and explicitness early in the lifecycle2. Enable faults to be detected with greater certainty thanotherwise� Because they replace reviews (consensus) by analyses(calculations)� And can provide total coverage(of selected, modeled properties)3. Guarantee absence of speci�ed faults(subject to accuracy of modeling employed)� Because the calculations (proofs) can be checkedmechanically (by a theorem prover)SEI 1994 38

Limitations of Formal Methods� Formal methods are a modeling activity: they deal withmathematical models of reality� Just like applied math in all other engineering disciplines� To be useful, we must validate that our assumptions are truestatements about the real worldAnd that our formalized requirements accurately capture thereal requirements� These validation activities are necessarily informal, empiricaland imperfectSEI 1994 39Illustration of Limitations
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Fault Masking and Transient Recovery ThroughExact-Match Voting� Synchronous case developed by Rushby and formally veri�ed inEHDM, 1991 (reveals need for interactive consistency)� Mapping to more realistic loosely synchronized case(i.e., connection to clock synchronization)performed by Rick Butler and Ben DiVito (NASA), 1992� Four Level hierarchy:� Uniprocessor synchronous� Replicated synchronous� Distributed synchronous� Distributed loosely synchronous� Subsequently pushed down to hardware details(reveals need for address-space isolation)SEI 1994 33Lowest Level Mappings
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Current Work� Working with Collins to verify microcode of next-generationcommercial avionics processor(stack architecture, deep pipeline, prefetch)� Working with IBM/Loral, JPL, NASA on requirementsspeci�cation of \jet-select" function of Space Shuttle on-orbitDFCS in anticipation of major change in OI-24� Working with Allied Signal on veri�cation of MAFT algorithmsfor diagnosis, fault-tolerant scheduling� (Soon) working with Allied, Boeing, Collins, FAA, Honeywell,NASA on fault partitioning for avionics (e.g., Safebus for 777)SEI 1994 35

Overview� Examples of problems in critical systems: redundancymanagement in aircraft ight control systems� What might help: formal methods� Some examples of formal methods applied to redundancymanagement� Assurance for critical systems
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Modi�cations and Extensions to ICA Veri�cation� Erwin Liu (SRI) designed and formally veri�ed hardware circuitneeded to obtain accurate estimates of clock di�erencesrequired by ICA� Assumption that initial clock adjustments are zero found to beinconvenient� Eliminated from speci�cation, proofs re-run, adjustments made� Dan Palumbo (NASA) experimented with di�erent hardwareimplementation, found achieved synchronization tighter thanpredicted, and suggested adjustment to analysis� Modi�ed veri�cation to accommodate this adjustment, and toextend analysis to a hybrid fault model in just a couple of daysSEI 1994 29

More Clock Synchronization Veri�cations� Almost all clock synchronization algorithms can be regarded asvariations on a general paradigm due to Schneider� General case, and instantiation for ICA formally veri�ed byShankar using EHDM, 1991� As before, found numerous small aws in original� And developed streamlined argument� Paul Miner (NASA) subsequently veri�ed instantiation for theLundelius-Lynch algorithm, and extended the analysis toinclude transient recoverySEI 1994 30
Interactive Consistency Algorithms� Oral Messages Algorithm (OM): original Byzantinefault-tolerant algorithm due to Pease, Shostak, and Lamport(JACM, Apr 80; TOPLAS, Jul 82)� Formally veri�ed (together with an implementation) by Bevierand Young (CLI) using Boyer-Moore prover, 1990� Algorithm veri�cation later duplicated (and considerablysimpli�ed) by Rushby using EHDM(proof is an order of magnitude easier than ICA)SEI 1994 31

Interactive Consistency Algorithms� Extension of OM to hybrid fault model proposed byThambidurai and Park (SRDS, 1988)� Formal veri�cation attempted by Rushby, revealed bug in thealgorithm� Corrected algorithm for hybrid case developed by Lincoln (SRI)and Rushby using PVS, 1992 (much harder than pureByzantine case because of additional case-splits, morearithmetic)SEI 1994 32



Lemmas (continued)Lemma 3 If the clock synchronization conditions S1 and S2 holdfor i, channels p and q are nonfaulty through period i+ 1, andT 2 S(i), then jc(i)p (T +�(i)q p)� c(i)q (T)j < �+ �S:Lemma 4 If the clock synchronization conditions S1 and S2 holdfor i, channels p; q, and r are nonfaulty through period i+ 1, andT 2 S(i), thenjc(i)p (T) + ��(i)r p � [c(i)q (T) + ��(i)r q ]j < 2(�+ �S) + ��:Lemma 5 If the clock synchronization condition S1 holds for i,channels p and q are nonfaulty through period i+1, and T 2 S(i),then jc(i)p (T) + ��(i)r p � [c(i)q (T) + ��(i)r q ]j < �+ 2�:SEI 1994 25

Formal Veri�cation: Examplelemma3: ModuleUsing algorithm; lemma2Theoryp; q: Var proci: Var periodT; T0; T1; T2: Var clocktime�: Var realtimelemma3def: LemmaS1C(p; q; i) ^ S2(p; i)^nonfaulty(p; i+1) ^ nonfaulty(q; i+ 1) ^ T 2 S(i)� jc(i)p (T +�(i)q p)� c(i)q (T)j < �+ � � SSEI 1994 26

Example (continued)lemma3 proof: Prove lemma3def fromA2,rearrange altfx c(i)p (T +�(i)q p),y  c(i)q (T),u c(i)p (T0@p1+�(i)q p),v  T � T0@p1,w  c(i)q (T0@p1)g,lemma2bfT  T0@p1, � �(i)q p , � T � T0@p1g,lemma2c fp q, T  T0@p1, � T � T0@p1g,rho pos, nonfx, nonfx fp qg,mult mon2 fx jT � T0@p1j, y  S, z  �2g,in S lemma fT1 T , T2  T0@p1gEnd lemma3SEI 1994 27Details of Formal Veri�cation for ICA� About 3 man months of e�ort (at the time, one of the hardestcomputer-science veri�cations undertaken)� Could now be done in a couple of weeks24 modules (need supporting theories for induction, absolutevalue, summation, arithmetic mean, etc.)� 1,300 lines of speci�cation (formulas shown earlier takendirectly from the formal speci�cation)� 19 axioms, 25 de�nitions, 182 proofs� 10 minutes elapsed to check all proofs on a SparcStation 2� Since duplicated by Bill Young (CLI) using Boyer-Moore proverSEI 1994 28



Examples: Synchronous Fault-Tolerant Systems� Synchronous systems run the channels in lock-step, performidentical calculations in all channels, and use exact-matchvoting� Overwhelmingly preferred by researchers in fault-tolerantsystems since behavior is predictable� Used in at least one DFCS developed by commercialmanufacturer (MAFT by Allied Signal)� Our interest: use of formal methods to develop and analyzealgorithms and architectures for synchronous DFCS� Veri�cation should establish theorems of formif not too many/too bad faults then things OK� Reliability modeling should calculateProb[not too many/too bad faults]SEI 1994 21Synchronous Fault-Tolerant Systems� Must keep clocks synchronized so that all channels do thesame thing at about the same time� Need fault-tolerant distribution of sensor values so that eachchannel works on the same data|\interactive consistency"(aka. \source congruence" or \Byzantine agreement")� Vote actuator outputs to mask channel faults� And vote intermediate values for transient recovery� Need to prove individual elements work, and that it all hangstogether� Must have an explicit fault model: types and stochasticproperties of hardware faults that are to be toleratedSEI 1994 22
Clock Synchronization Algorithms and Implementations� Interactive Convergence Algorithm (ICA): Byzantinefault-tolerant algorithm due to Lamport and Melliar-Smith(JACM, Jan 85)� Formally veri�ed by Rushby and von Henke using EHDM, 1988� Veri�cation carried down to very elementary axiomatic basis(Noetherian induction, function extensionality, andmonotonicity of multiplication)� Found proof of main theorem, and all but one of the lemmasare awed in the original: e.g., main induction has the formjc(i)p (T)� c(i)q (T)j < � implies jc(i+1)p (T 0)� c(i+1)q (T 0)j <� �� Formal veri�cation led to considerable simpli�cation of theargument (and elimination of approximations)SEI 1994 23

LemmasThe proof that A1, A2, A3, and C0 through C6 are su�cient toensure that ICA achieves S1 and S2 depends on the following 5lemmas.Lemma 1 If the clock synchronization conditions S1 and S2 holdfor i, and channels p and q are nonfaulty through period i+1, thenj�(i)q p j < �:Lemma 2 If channel p is nonfaulty through period i+ 1, and Tand � are such that T + C(i)p and T +�+ C(i)p are both in theinterval [T (0)+ C(0)p ; T (i+2)+ C(i+1)p ], thenjc(i)p (T +�)� [c(i)p (T) +�]j � �2 j�j:SEI 1994 24



Formal Methods� Use of techniques from logic and discrete mathematics tomodel the requirements, speci�cation, design, andimplementation of computer systems� In a way that supports analysis of certain properties(e.g., consistency, completeness)� And prediction of (modeled) behavior� Through systematic processes that resemble calculationSEI 1994 17What Makes a Method Formal?� A formal method is equipped with some rules of deduction� These make it possible to calculate whether certain conclusionsfollow from certain premises� The calculation is called a proof� Because it is a calculation, it can be checked by others� Or by a machine� You don't have to understand what the symbols mean in orderto check the calculation, you just have to know the rules formanipulating them (just like arithmetic calculations)SEI 1994 18

Proof and Truth� Logic provides rules of calculation (i.e., of proof) that enablevalid conclusions to be deduced from assumed premises� Assumptions about the world are made explicit in the premises,separated from rules of deduction� If the premises are true statements about the world� Then the soundness theorems of logic guarantee that theconclusion is also a true statement about the world� Need to validate the premises and the interpretation of theconclusionSEI 1994 19

Overview� Examples of problems in critical systems: redundancymanagement in aircraft ight control systems� What might help: formal methods� Examples of formal methods applied to redundancymanagement� Assurance for critical systems
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Analysis: Dale Mackall, NASA EngineerAFTI F16 Flight Test� Nearly all failure indications were not due to actual hardwarefailures, but to design oversights concerning asynchronouscomputer operation� Failures due to lack of understanding of interactions among� Air data system� Redundancy management software� Flight control laws (decision points, thumps, ramp-in/out)SEI 1994 13

Overview� Examples of problems in critical systems: redundancymanagement in aircraft ight control systems� What might help: formal methods� Some examples of formal methods applied to redundancymanagement� Assurance for critical systems

SEI 1994 14
An Interpretation of Mackall's Analysis� Dealing with distributed, concurrent, real-time execution in thepresence of faults� Space of possible behaviors is vast� Testing and simulation visit only small fraction of that space,and extrapolation from tested to untested cases is dubious(behavior is not continuous)� Need a way to predict behavior under all circumstances� (And a rational design to give some structure to the space)SEI 1994 15Mathematical Modeling� One way to predict behavior of a system is to construct amathematical model and calculate it� Model must be reasonably accurate� And calculation must be performed without error� For continuous systems, use well-developed mathematicaltheories (e.g., Navier-Stokes equations for aerodynamics)� For computer systems, must use discrete mathematics(logic, set theory) and build our own theories� And proofs of theorems take the place of numerical calculationSEI 1994 16



AFTI F16 Flight Test, Flight 44� Asynchronous operation, skew, and sensor noise led eachchannel to declare the others failed� Analog backup not selected(simultaneous failure of two channels not anticipated)� Aircraft own home on a single digital channel(not designed for this)� No hardware failures had occurredSEI 1994 9Other AFTI F16 Flight Tests� Repeated channel failure indication in ight was traced toroll-axis software switch� Sensor noise and asynchronous operation caused one channelto take a di�erent path through the control laws� Decided to vote the software switch� Extensive simulation and testing performed� Next ight, same problem still there� Found that although switch value was voted, the unvoted valuewas usedSEI 1994 10

X29A Flight Test� Three sources of air data on X29A: nose and two side probes� If value from nose is within threshold of both side probes, usenose probe value� Threshold is large due to position errors in certain ight modes� If nose probe failed to zero at low speed it would still be withinthreshold of correct readings� Aircraft would become unstable and \depart"� Caught in simulation but 162 ights had been at riskSEI 1994 11

HiMAT Flight Test� Single failure in redundant uplink hardware� Software detected this, and continued operation� But would not allow the landing skids to be deployed� Aircraft landed with skid retracted, sustained some damage� Traced to timing change in the software that had survivedextensive testing, but not in presence of failuresSEI 1994 12



Redundancy Management in DFCS� Hardware components of DFCS are far less reliable than thesystem requirement� Hence, redundancy among sensors, actuators, and computingchannels� Impact of redundancy management is considerable� Typically more than 50% of code� Intrinsically di�cult problems: coordination of distributedsystems in presence of faults� Can become primary source of unreliability, and source ofsingle point failureSEI 1994 5

Historical Experience With Asynchronous Designs� Advanced Fighter Technology Integration (AFTI) F16� Digital Flight Control System (DFCS) to investigate\decoupled" control modes� Triplex DFCS to provide two-fail operative design� Analog backup� Digital computers not synchronized� \General Dynamics believed synchronization would introduce asingle-point failure caused by EMI and lightning e�ects"SEI 1994 6

AFTI F16 Flight Test, Flight 15� Stores Management System (SMS) relays pilot requests formode changes to DFCS� An unknown failure in the SMS caused it to request modechanges 50 times a second� DFCS responded at a rate of 5 mode changes per second� Pilot said aircraft felt like it was in turbulence� Analysis showed that if aircraft had been maneuvering at thetime, DFCS would have failedSEI 1994 7AFTI F16 Flight Test, Flight 36� Control law problem led to \departure" of three secondsduration� Sideslip exceeded 20�, normal acceleration exceeded �4g, then+7g, angle of attack went to �10�, then +20�, aircraft rolled360�, vertical tail exceeded design load, failure indications fromcanard hydraulics, and air data sensor� Side air data probe blanked by canard at high AOA� Wide threshold passed error, di�erent channels took di�erentpaths through control laws� Analysis showed this would cause complete failure of DFCS andreversion to analog backup for several areas of ight envelopeSEI 1994 8



Formal Methods: Instruments of Justi�cationor Tools for Discovery?John RushbyComputer Science LaboratorySRI InternationalMenlo Park CA USA
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Problem Domain� Digital Flight Control Systems (DFCS)� Computer systems that interpret pilot commands, samplesensors, evaluate control laws, and command the actuators� Used on all modern warplanes, increasingly on commercialairplanes (Airbus A320, Boeing 777)� Aircraft certi�cation requires assurance that catastrophicfailures will be \extremely improbable"� Not expected to occur in lifetime of eet� \As an aid to engineering judgment" probability ofcatastrophic failure should be less than 10�9/hour over aten hour ight� Many DFCS failures would be catastrophicSEI 1994 3What Goes Wrong?� Software for aircraft is developed to extremely rigorousstandards, and subjected to massive testing� Evidence is that design and coding bugs in sequentialcomponents are eliminated e�ectively� Concern centers on� Requirements (e.g., JPL data for Voyager and Galileospacecraft: only 3 of 197 mission-critical defects wereprogramming problems; IBM data for Space Shuttle: 400\user notes" documenting requirements anomalies|cf. 1 or2 implementation defects)� The intrinsically hard problems (coordination of distributedcomputations, timing, synchronization, fault tolerance)These mainly arise in redundancy managementSEI 1994 4


