
Steps Towards Mechanizing Program TransformationsUsing PVS ?Natarajan ShankarComputer Science LaboratorySRI InternationalMenlo Park CA 94025 USAshankar@csl.sri.comURL: http://www.csl.sri.com/~shankar/shankar.htmlPhone: +1 (415) 859-5272 Fax: +1 (415) 859-2844AbstractPVS is a highly automated framework for speci�cation and veri�cation. We showhow the language and deduction features of PVS can be used to formalize, mech-anize, and apply some useful program transformation techniques. We examine twosuch examples in detail. The �rst is a fusion theorem due to Bird where the com-position of a catamorphism (a recursive operation on the structure of a datatype)and an anamorphism (an operation that constructs instances of the datatype) isfused to eliminate the intermediate data structure. The second example is Wand'scontinuation-based transformation technique for deriving tail-recursive functionsfrom non-tail-recursive ones. These examples illustrate the utility of the languageand inference features of PVS in capturing these transformations in a simple, gen-eral, and useful form.
1 IntroductionCorrectness-preserving program transformations [15] often capture deep algo-rithmic insight and therefore pose interesting challenges for mechanization.The mechanization of program transformations has typically been carried out? This paper is a sequel to a paper entitled Computer-Aided Computing [19] that appeared in the pro-ceedings of the 3rd International Conference on the Mathematics of Program Construction held at KlosterIrsee, Germany, during July 1995. The author is grateful to the programme committee of that conference,especially Bernhard M�oller, for the invitation to participate in a thoroughly stimulating meeting. This re-search has been supported by NSF Grant CCR-930044 and ARPA under contract PR8556. Some of the workreported here was inspired by Richard Bird's talk at the conference and the related paper [1]. The feedbackfrom the 1995 Dagstuhl workshop on induction theorem proving was also valuable. Healfdene Goguen, Bern-hard M�oller, Sam Owre, Harald Ruess, John Rushby, and Mandayam Srivas supplied valuable commentson draft versions of this paper. Sam Owre has been, and continues to be, instrumental in the design andimplementation of PVS. Many others at SRI and elsewhere have contributed to PVS in important ways.Preprint submitted to Elsevier Science 11 March 1996



using special-purpose tools such as the KIDS system [21]. This paper examinesthe utility of the general-purpose veri�cation system PVS [14,19], for mecha-nizing program transformation. The main challenge is that program transfor-mations are normally expressed and applied in metatheoretic, i.e., syntactic,form and are therefore not easily formalized in a formal speci�cation logic. Weobserve that the speci�cation language and inference mechanisms of PVS arequite e�ective for the task of formalizing and verifying program transforma-tions, but are not without certain drawbacks.Richard Bird [1] makes a persuasive argument that functional programmingcan be used to elegantly derive reasonably e�cient analogues of imperativealgorithms. In that paper he presents a fusion theorem showing that the com-position of a catamorphism (a function that is de�ned by structural recursionon a recursive datatype) and an anamorphism (a function that recursivelyconstructs an instance of the recursive datatype) can be simpli�ed to a sin-gle function where the intermediate data structure has been eliminated. Thistransformation is closely related to deforestation [22]. We show how variousfeatures of PVS can be exploited in order to give an elegant formalization ofan instance of the fusion theorem for the speci�c recursive datatype of bi-nary trees. In particular, we show that the technical di�culty engendered inde�ning anamorphisms can be easily handled using subtyping and dependenttyping as implemented in PVS. Note that the general fusion theorem for ar-bitrary positive recursive datatypes cannot be proved within PVS since it isa metatheorem. We also apply this transformation to derive an applicativequicksort algorithm from a treesort speci�cation, and demonstrate that thisalgorithm returns an ordered permutation of its input.Wand's continuation-based program transformation strategy is a powerfultechnique for transforming non-tail-recursive de�nitions into tail-recursiveform [23]. In fact, a number of otherwise di�cult induction arguments canbe seen as simple instances of continuation-based transformations. We showhow such transformations can be easily mechanized using parametric theoriesand the higher-order logic of PVS.In general, the insights and techniques underlying such transformations arealso useful in other domains such as hardware veri�cation. 1 The results in thispaper constitute preliminary steps towards mechanizing program transforma-tion techniques using the general-purpose veri�cation system PVS. Dold [8]has already veri�ed a divide-and-conquer scheme using PVS and has instan-tiated it to synthesize a binary search algorithm for arrays. Ruess [18] hascarried out a similar development using the type theory of LEGO [11]. Nei-ther of these e�orts achieves the level of mechanization claimed below. Most ofthe theorems in this paper are proved by a single PVS proof step that invokesa strategy for measure induction. This strategy was de�ned during the course1Rajan [17] describes the use of PVS in verifying hardware-oriented transforma-tions on control data ow graphs. 2



of this work and is a straightforward combination of existing strategies. Itshould be emphasized that the proofs presented in this paper are among themore elementary proofs that have been checked using PVS. The main point ofthis paper is not that these are hard proofs but that these highly interestingtheorems can be formalized, proved, and used with negligible e�ort becauseof the combination of language constructs and deductive apparatus present inPVS. Even so, several challenges remain as fodder for future research.2 A Brief Introduction to PVSPVS (Prototype Veri�cation System) is intended as an environment for con-structing clear and precise speci�cations and for developing readable proofsthat have been mechanically veri�ed [14, 19]. While many of the individualideas in the system pre-date PVS, what is new in PVS is the coherent real-ization of these ideas in a single system. The key elements of the PVS designare captured by the combination of features listed below.An expressive language with powerful deductive capabilities. ThePVS speci�cation language is based on classical, simply typed, higher-orderlogic with base types such as the Booleans bool and the natural numbers nat,and type constructors for functions [A -> B], records [# a : A, b : B #],and tuples [A, B, C]. The PVS type system also admits predicate subtypes,e.g., f i : nat | i > 0g is the subtype of positive numbers. The PVS typesystem includes dependent function, record, and tuple types, e.g., [# size :nat, elems : [below[size] -> nat] #] is a dependent record where thetype of the elems component depends on the value of the size component.It is also possible to de�ne recursive abstract datatypes such as lists and treesas discussed in Section 3 below. The PVS typechecker checks for simple typecorrectness and generates proof obligations (called TCCs for type correctnessconditions) corresponding to predicate subtypes. Typechecking is undecidablefor PVS to the extent that it involves discharging such proof obligations. PVSalso has parametric theories, so that it is possible to capture, say, the notionof sorting with respect to arbitrary array sizes, types, and ordering relations.Constraints on the theory parameters can be stated by means of assumptionswithin the theory. When an instance of a theory is imported with concreteparameters, there are proof obligations for the corresponding instances of theparameter assumptions. A theory is a list of declarations of constants (with orwithout de�nitions) and theorems. A constant or function de�nition has theform constant : type = de�nition3



Powerful decision procedures with user interaction. PVS proofs areconstructed interactively. The primitive inference steps for constructing proofsare quite powerful. They make extensive use of e�cient decision proceduresfor equality and linear arithmetic [20]. They also exploit the tight integrationbetween rewriting, the decision procedures, and the use of type information.PVS also uses BDD-based propositional simpli�cation so that it can combinethe capability of simplifying very large propositional expressions with equality,arithmetic, induction, and rewriting.Higher-level inference steps can be de�ned by means of strategies (akin to LCFtactics [9]) written in a simple strategy language. Typical strategies includeheuristic instantiation of quanti�ers, propositional and arithmetic simpli�ca-tion, and induction and rewriting. The PVS proof checker tries to strike acareful balance between an automatic theorem prover and a low-level proofchecker. Through the use of BDD-based simpli�cation, simple PVS proofstrategies can be de�ned for e�ciently and automatically verifying simpleprocessor designs and N-bit arithmetic circuits [6].A useful strategy for well-founded induction (speci�cally, measure induction)was de�ned during the course of this work. This strategy is de�ned in termsof the existing measure-induct and induct-and-simplify strategies. It in-troduces the measure induction scheme instantiated with a suitable inductionpredicate, then simpli�es the result to yield an induction goal. The strategythen expands the de�nitions of speci�ed recursive functions and uses the casestructure of these de�nitions to guide the remaining simpli�cation steps.Model checking with theorem proving. The details of this are notrelevant to this paper. See [16, 19] for more details.A variety of examples have been veri�ed using PVS [7]. The most substan-tial use of PVS has been in the veri�cation of the microcode for selectedinstructions of a commercial-scale microprocessor called AAMP5 designed byRockwell-Collins [12].3 Abstract Datatypes in PVSLike many other speci�cation and programming language, PVS has a con-struct for de�ning (possibly) recursive abstract datatypes corresponding todata structures that are freely generated by a collection of constructor oper-ations. The list datatype is a simple example. 2 For example, the abstractdatatype of lists is generated by the constructors null and cons. Similarly,the abstract datatype of stacks is generated by the constructors empty and2The abstract datatype mechanism of PVS is partly inspired by the shell principleused in the Boyer-Moore theorem prover [3]. Similar mechanisms exist in a numberof other speci�cation and programming languages [5, 10, 13].4



push. An unordered list or a bag is an example of a data structure that is notfreely generated since two di�erent sequences of insertions of elements intoa bag can yield equivalent bags. The datatype of queues is freely generatedby emptyqueue and enqueue, but it cannot be directly de�ned by the PVSabstract datatype mechanism since it is not recursive, i.e., the accessors topand dequeue are not inverses of the constructors.The abstract datatype of lists of a given element type is declared in PVS asshown below.list [T: TYPE]: DATATYPEBEGINnull: null?cons (car: T, cdr:list):cons?END listHere list is declared as a type that is parametric in the type T. The twoconstructors null and cons are introduced. The constructor null takes noarguments. The predicate null? holds for exactly those elements of the listdatatype that are identical to null. The constructor cons takes two argu-ments where the �rst is of the type T and the second is a list. The recognizerpredicate cons? holds for exactly those elements of the list type that areconstructed using cons, namely, those that are not identical to null. Thereare two accessors corresponding to the two arguments of cons. The accessorscar and cdr can be applied only to lists satisfying the cons? predicate so thatcar(cons(x, l)) is x and cdr(cons(x, l)) is l.The PVS typechecker generates several theories corresponding to the decla-ration of the list abstract datatype. These generated theories are describedin greater detail below for the case of the binary tree datatype. These theo-ries can of course be generated by hand, but the datatype mechanism has theadvantage that many of the datatype simpli�cations are built into the PVSinference mechanisms.A binary tree is treated below as a recursive data structure that in the basecase is an empty leaf node, and in the recursive case consists of a value com-ponent, and left and right subtrees that are themselves binary trees. Thedeclaration for the binary trees datatype is similar to that for lists above. Thetwo constructors leaf and node have corresponding recognizers leaf? andnode?. The leaf constructor does not have any accessors. The node construc-tor has three arguments: the value at the node, the left subtree, and the rightsubtree. The accessor functions corresponding to these three arguments areval, left, and right, respectively.binary_tree[T : TYPE] : DATATYPEBEGINleaf : leaf?node(val : T, left : binary_tree, right : binary_tree) : node?END binary_tree 5



When the above datatype declaration is typechecked, the theoriesbinary tree adt, binary tree map and binary tree reduce are generated.The initial portion of the binary tree adt theory is displayed below, and theremaining parts are discussed later.binary_tree_adt[T: TYPE]: THEORYBEGINbinary_tree: TYPEleaf?, node?: [binary_tree -> boolean]leaf: (leaf?)node: [T, binary_tree, binary_tree -> (node?)]val: [(node?) -> T]left: [(node?) -> binary_tree]right: [(node?) -> binary_tree]...END binary_tree_adtNote that the binary tree adt theory is parametric in the value type T. The�rst declaration above declares binary tree as a type. The two recognizerpredicates on binary trees leaf? and node? are then declared. The subtypescorresponding to these predicates are written as (leaf?) and (node?), respec-tively. The three accessors on value (i.e., non-leaf) nodes are then declared.Each of these accessors takes as its domain the subset of binary trees that areconstructed by means of the node constructor. This means that an expressionof the form val(leaf) is not type correct, i.e., typechecking this expressionyields an unprovable TCC proof obligation of the form node?(leaf).Several axioms are generated in the binary tree adt theory. There is anextensionality axiom corresponding to each constructor that for the case ofnodes asserts that any two value nodes that agree on all the accessors are equal.Each accessor{constructor pair generates an axiom indicating the e�ect ofapplying the accessor to an expression constructed using the constructor. Theaxiom asserting that the recognizers leaf? and node? hold of disjoint subsetsof the type of binary trees, is not generated since its size is quadratic in thenumber of recognizers. However, this property is built into the proof checkersimpli�cations and is also implicit in the semantics of the CASES constructused below.The theory binary tree adt also contains an induction scheme and a fewrecursion schemes. The induction scheme for binary trees is shown below.6



binary_tree_induction: AXIOM(FORALL (p: [binary_tree -> boolean]):p(leaf)AND(FORALL (node1_var: T), (node2_var: binary_tree),(node3_var: binary_tree):p(node2_var) AND p(node3_var)IMPLIES p(node(node1_var, node2_var, node3_var)))IMPLIES (FORALL (binary_tree_var: binary_tree):p(binary_tree_var)))In other words, to prove a property of all binary trees, it is su�cient to provein the base case that the property holds of the binary tree leaf, and thatin the induction case, the property holds of a binary tree node(v, A, B)assuming (the induction hypotheses) that it holds of the subtrees A and B.The PVS proof checker commands can automatically locate such inductionschemes and hence they rarely need to be explicitly invoked.As a consequence of induction, we can demonstrate the existence and unique-ness of functions de�ned by recursion over binary trees. It is, however, conve-nient to have an operation that can be used to explicitly de�ne such recursivefunctions. Such a \recursion operator" can be parametric in the range type ofthe function being de�ned. A generic recursion operator reduce is de�ned inthe theory binary tree reduce. The idea is that we want to de�ne a functionf by the following recursion over binary trees:f(leaf)= af(node(v; A; B))= g(v; f(A); f(B))We de�ne such an f by taking a and g as arguments to the function reduce.The de�nition of reduce uses the CASES construct to de�ne a pattern-matchingcase split over a datatype value which in this case is a binary tree.reduce(leaf?_fun: range, node?_fun: [[T, range, range] -> range]):[binary_tree[T] -> range] =LAMBDA (binary_tree_var: binary_tree[T]):CASES binary_tree_var OFleaf: leaf?_fun,node(node1_var, node2_var, node3_var):node?_fun(node1_var,reduce(leaf?_fun, node?_fun)(node2_var),reduce(leaf?_fun, node?_fun)(node3_var))ENDCASESFollowing the terminology of Lambert Meertens, Bird refers to datatype re-cursion operators such as reduce, as catamorphisms. The typechecker alsogenerates functions every and map corresponding for binary trees. The former7



checks that a given predicate on the parameter type T holds of each val com-ponent in a binary tree, and the latter maps a function on T over each nodein a binary tree.Ordered binary trees are de�ned in the theory obt which takes the value typeT as a parameter, but also takes a second parameter <= which is constrained(by a subtype restriction) to be a total order (i.e., linear, reexive, transitive).In theory obt the natural number instance reduce nat of the reduce functioncan be used to de�ne the size of a binary tree, i.e., the number of nodes init, which is then used to provide the termination measure for the ordered?predicate. The every predicate is used to de�ne the ordered? predicate whichrecursively checks that each subtree is ordered and that the values in the leftsubtree are no greater than the value at the node, which in turn must be nogreater than the values in the right subtree.obt [T : TYPE, <= : (total_order?[T])] : THEORYBEGINIMPORTING binary_tree[T]A, B, C: VAR binary_treex, y, z: VAR Tpp: VAR pred[T]i, j, k: VAR natsize(A) : nat =reduce_nat(0, (LAMBDA x, i, j: i + j + 1))(A)ordered?(A) : RECURSIVE bool =(IF node?(A)THEN (every((LAMBDA y: y<=val(A)), left(A)) ANDevery((LAMBDA y: val(A)<=y), right(A)) ANDordered?(left(A)) AND ordered?(right(A)))ELSE TRUE ENDIF)MEASURE sizeEND obt4 Bird's Fusion TransformationBird [1] starts with the example of an applicative quicksort function which heshows can be obtained as a fusion of the composition of:(i) a mktree function (an anamorphism) which constructs an ordered binarytree from a given list, and(ii) a flatten function (a catamorphism) which attens the ordered binarytree into an ordered list.Catamorphisms over binary trees are already captured by the reduce opera-tion shown earlier. Bird de�nes anamorphisms in terms of the unfold func-tion presented below. This de�nition is not straightforward. In de�ning this8



function, Bird writes that \the recursion is not well-de�ned unless f is `well-founded' in a suitable sense that we will not make precise." The PVS de�nitionbelow does make this notion of well-foundedness precise through the use ofsubtyping and dependent typing. The subtype smaller(x) of the type S con-tains all and only those y in S such that size(y) < size(x), where < is theusual ordering on natural numbers. 3 Given a predicate p over the type S, wewrite (p) for the subtype containing all the elements x of S such that p(x)holds. The dependent function type well fnd(p) contains functions whosedomain is (p) and that map an x in (p) to an element of the 3-tuple [T,smaller(x), smaller(x)].unfold [ T, S: TYPE, size : [S -> nat] ] : THEORYBEGINIMPORTING binary_tree[T]p : VAR PRED[S]x, y, z : VAR Sa : VAR Tsmaller(x) : TYPE = f y | size(y) < size(x)gwell_fnd(p) : TYPE =[x : (p) -> [T, smaller(x), smaller(x)]]unfold(p, (f: well_fnd(p)))(x) :RECURSIVE binary_tree =(IF p(x)THEN (LET (a, y, z) = f(x)IN node(a,unfold(p, f)(y),unfold(p, f)(z)))ELSE leaf ENDIF)MEASURE size(x)END unfoldThe curried recursive function unfold takes as arguments a predicate p anda function f in well fnd(p). It returns a function which when applied to anx satisfying p, computes the triple (a, y, z) using f(x), and then returnsthe node constructed from the value a, the left subtree unfold(p, f)(y),and the right subtree unfold(p, f)(z). In the base case when p(x) is false,unfold returns the leaf node leaf. When typechecked, the theory generatestwo termination TCC proof obligations that are automatically proved by thedefault TCC proof strategy.3The speci�cation of unfold can easily be modi�ed to use any well-founded or-dering instead of the less-than relation on natural numbers.9



The fusion theorem is stated and proved in the theory fusion below. Thefusion theory is parametric in the binary tree value type T, the domain typeS of the unfold operation, and the range type Range of the reduce operation.The parameter size serves the same role here as in the unfold theory. Wehave already seen that reduce(c, g)(A) is de�ned to return c when A isleaf, and g(a, reduce(c, g)(B), reduce(c, g)(C)) when A is of the formnode(a, B, C). The fusion theorem asserts that the composition of reduceand unfold, namely, reduce(c, g)(unfold(p, f)(x)) which involves tworecursive passes can be reduced to a single recursion given by the de�nition offun below. As with unfold, there are two termination TCC proof obligationsassociated with fun that are easily discharged by the default proof strategy.fusion [ T, S, Range: TYPE, size : [S -> nat] ] : THEORYBEGINIMPORTING unfold[T, S, size]p : VAR PRED[S]x, y, z : VAR Sc : VAR Rangeg: VAR [T, Range, Range -> Range]a : VAR Tfun(p, (f : well_fnd(p)), c, g)(x) :RECURSIVE Range =(IF p(x)THEN (LET (a, y, z) = f(x)IN g(a, fun(p, f, c, g)(y),fun(p, f, c, g)(z)))ELSE c ENDIF)MEASURE size(x)...END fusionThe fusion theorem stated below states the equivalence between the com-position of reduce with unfold and the fused version fun. The PVS proofof fusion proceeds by a straightforward measure induction on the measuresize(x) and is in fact proved by a single command that invokes the measureinduction strategy. Due to space restrictions, we do not outline the details ofthis and other proofs in the paper.fusion: THEOREM(FORALL (p, (f: well_fnd(p)), c, g, x):reduce(c, g)(unfold(p, f)(x))= fun(p, f, c, g)(x))The next step in the development is that of applying the fusion theoremto derive quicksort as a fusion of flatten and mktree, where the latterconstructs an ordered binary tree from a given list of elements, and the formerconstructs a list by an in-order traversal of the resulting tree. The rest of the10



development of this example is carried out in the theory treesort partiallydisplayed below. This theory takes a parameter list that is identical to that ofordered binary tree theory obt. The theory imports the fusion theory withthe PVS datatype list[T] as the actual parameter for both S and Range.The flatten operation is de�ned as a catamorphism.treesort [T: TYPE, <= : (total_order?[T])]: THEORYBEGINIMPORTING fusion[T, list[T], list[T], length[T]], obt[T, <=]A, B, C : VAR binary_tree[T]x, y, z : VAR list[T]a, b, c : VAR Tp, q : VAR PRED[T]flatten(A) : list[T] =reduce(null[T],(LAMBDA a, x, y: append(x, cons(a, y))))(A)...END treesortA few more preliminary de�nitions and lemmas are needed. The curried pred-icate below(a)(b) asserts that b is below a in the ordering <=, and similarly,above(a)(b) asserts that a is above b. The PVS prelude which contains anumber of basic theories already de�nes the filter operation to return a listof those elements in a given list that satisfy a given predicate. The lemmaslength append, length filter, and filter length are self-evident.below(a)(b): bool = (b <= a)above(a)(b): bool = NOT (b <= a)length_append: LEMMA length(append(x, y)) = length(x) + length(y)length_filter: LEMMA(FORALL (p: PRED[T]): length(filter(x, p)) <= length(x))filter_length: LEMMAlength(filter(x, below(a)))= length(x) - length(filter(x, above(a)))The de�nition of mktree is given as an anamorphism and is de�ned usingunfold. The function unjoin constructs the triple consisting of the �rst ele-ment of the input list, the list of elements below it in the rest of the input list,and the list of elements above it. 11



unjoin: well_fnd(cons?[T]) =(LAMBDA (x: (cons?[T])):(LET a = car(x),y = cdr(x)IN(a, filter(y, below(a)), filter(y, above(a)))))mktree(x) : binary_tree[T] =unfold(cons?, unjoin)(x)The quicksort operation can also be directly de�ned by means of the recur-sion shown below. This is of course essentially the same de�nition one wouldobtain by applying the fusion theorem. This fact is proved by the theoremquicksort by fusion. The PVS proof of this theorem consists of a step inwhich the fusion theorem is used to rephrase the right-hand side in terms offun, and a second in which the measure induction strategy is used to provethe resulting equality. This results in three trivial subgoals that are proved byapplying the lemma length filter.quicksort(x): RECURSIVE list[T] =(CASES x OFnull : null,cons(a, y) : append(quicksort(filter(y, below(a))),cons(a, quicksort(filter(y, above(a)))))ENDCASES)MEASURE length(x)quicksort_by_fusion: THEOREMquicksort(x) = flatten(mktree(x))As one can see, the progress up to this point has been pretty smooth in thesense that it has been easy to capture the letter and spirit of Bird's de�nitionsand the proofs have been essentially trivial given the automation availablein PVS. However, the story takes a somewhat disappointing turn when onetries to show that quicksort returns an ordered permutation of its input byusing its \speci�cation", namely, flatten(mktree(x)). Bird loosely sketchesan algebraic argument along such lines. We did not try to esh out Bird'sargument but instead proceeded along conventional lines. These proofs werenot as straightforward as one might hope. The lemmas filter every andevery filter are proved in a single step.filter_every: LEMMA every(p, filter(x, p))every_filter: LEMMA every(p, x) IMPLIES every(p, filter(x, q))The lemmas every mktree and every mktree implies are also essentiallytrivial and proved in about �ve steps apiece. The assertion that mktree alwaysconstructs an ordered binary tree is stated as ordered? mktree below. This12



proof takes up about a dozen steps: the bulk of the work is completed by themeasure induction strategy with the assistance of every mktree, but the partinvolving the right branch of the mktree requires the explicit use of the lemmaevery mktree implies and the linearity of the ordering relation <= given bythe type constraint on it.every_mktree: LEMMAevery(p, x) IMPLIESevery(p, unfold(cons?, unjoin)(x))every_mktree_implies: LEMMA(FORALL (p, q : PRED[T]):(FORALL a: p(a) IMPLIES q(a)) ANDevery(p, x)IMPLIES every(q, unfold(cons?, unjoin)(x)))ordered?_mktree: LEMMA ordered?(mktree(x))It remains to show that the result of quicksort is ordered by showing thatflatten maps an ordered binary tree to an ordered list. This theorem isstated as ordered? flatten below. It is proved in a single step using thestandard PVS induction strategy and the lemmas ordered? append andevery flatten. The lemma ordered? append took up the most e�ort since itmakes a fairly strong assertion of equivalence, and requires a nested induction.The veri�cation of this proof had to be carried out at a fairly manual leveland required about �fty interactions. 4ordered?_append: LEMMAordered?(append(x, cons(a, y))) =(ordered?(x) ANDordered?(y) ANDevery((LAMBDA b: b <= a), x) ANDevery((LAMBDA b: a <= b), y))The lemmas every flatten and every append were easily proved in a singlestep each. Observe that it would have been slightly easier to directly provethe orderedness property of quicksort since the lemma ordered? append isthe key result needed for this proof.4Healfdene Goguen has been able to simplify this argument by using a de�nitionof ordered? that is closer to the corresponding de�nition over binary trees. Thisde�nition checks that the �rst element in a list lies below all the remaining elements,rather than just the second element as done above, and thus avoids the awkwardnessof checking whether a second element exists.13



every_append: LEMMAevery(p, append(x, y)) = (every(p, x) AND every(p, y))every_flatten: LEMMAcheckall(p, A) = every(p, flatten(A))ordered?_flatten: LEMMA ordered?(flatten(A)) = ordered?(A)The property that quicksort returns a permutation of its input list is statedas count quicksort below and proved directly of the quicksort function it-self. It asserts that the number of occurrences of any element a in the input andoutput lists agree. This proof is straightforward and uses the measure induc-tion strategy and the lemmas length append, count filter, count append,filter length, and length filter. These lemmas are proved trivially.count(a, x): RECURSIVE nat =(CASES x OFnull: 0,cons(b, y):IF a = b THEN 1 + count(a, y) ELSE count(a, y) ENDIFENDCASES)MEASURE length(x)count_filter: LEMMAcount(a, filter(x, p)) =(IF p(a) THEN count(a, x) ELSE 0 ENDIF)count_append: LEMMAcount(a, append(x, y)) = count(a, x) + count(a, y)count_quicksort: THEOREMcount(a, quicksort(x)) = count(a, x)The main observation here is that the transformation steps were easily for-malized and mechanically veri�ed in PVS, but the correctness proof requireda large number of lemmas. Though these lemmas were proved trivially, theoverall e�ort involved was surprisingly large. This seems to suggest that thesource of the transformation, flatten(mktree(x)), is not as close to the spec-i�cation of sorting as one might hope. Even so, the fusion transformation is asigni�cant one since it frequently is the case that a good speci�cation can beobtained by composing two operations using an intermediate data structure.As a simple example, consider the case of checking if a given variable hasa free occurrence in a term by constructing the intermediate data structureconsisting of the list of free variables in the term and then applying a listmembership test. 14



5 Continuation-Based Program TransformationTransforming non-tail-recursive functions to tail-recursive (iterative) form isone of the basic forms of program transformation. Wand [23] describes a pow-erful technique for such transformations where the non-tail-recursive part ofthe program is captured as a continuation, and the pattern of these continua-tions is used to convert the continuation into a data structure. This is perhapsone of the most ubiquitously used optimizations in algorithm design. We showhow Wand's technique can be formalized using PVS. Consider the example ofthe list reverse operation. This is de�ned in the PVS prelude library as shownbelow, where l is a variable ranging over list[T].reverse(l): RECURSIVE list[T] =CASES l OFnull: l,cons(x, y): append(reverse(y), cons(x, null))ENDCASESMEASURE lengthThis de�nition is not tail-recursive because the recursive call to reverse issurrounded by the template append(: : : , cons(x, null)). By viewing thispart as a continuation and adding it as an extra argument, we can convertreverse into a tail-recursive operation with an extra continuation argument.revc(l, f): RECURSIVE list[T] =CASES l OFnull: f(l),cons(x, y):revc(y, (LAMBDA u: f(append(u, cons(x, null)))))ENDCASESMEASURE lengthIt is easy to con�rm that revc(l, f) = f(reverse(l)), and hence if id isthe identity operation on lists, then reverse(l) can be computed by revc(l,id). It is also easy to observe that the continuations have the pattern(LAMBDA u: f(append(: : : append(u, cons(x n, null)),: : : , cons(x 1, null)))).By the associativity of append and by its de�nition, this is just (LAMBDA u:f(append(u, cons(xn, : : : , cons(x1, null))))). This continuation canbe easily reconstructed from the list cons(xn, : : : , cons(x1, null)). Hencerevc can be transformed to the following de�nition of reva where the contin-uation has been replaced by an accumulator.15



reva(l, w): RECURSIVE list[T] =CASES l OFnull: wcons(x, y):reva(y, cons(x, w))ENDCASESMEASURE lengthThe relation between revc and reva isreva(l, w) = revc(l, (LAMBDA u: append(u, w))),so that reverse(l) = reva(l, null). As shown by Wand, the sequence ofsteps shown above for the case of the reverse function can be generalized. Wepresent the PVS mechanization of this generalization below. The theory wandshown below takes nine theory parameters. The parameters dom and rng arethe domain and range types of the recursive function being transformed. Thisfunction is also supplied as the parameter F. The de�nition of F involves the useof the parameter p as the branching condition for the recursion, the parametera in the base case, and the parameters d, b, and c in the recursion step. Theparameter b is the continuation-builder, c is the recursion destructor, and d isthe recursion parameter. The parameter m supplies the well-founded measurefor the recursion. The measure yields a natural number but this can easily begeneralized to an arbitrary type equipped with a well-founded relation.wand [dom, rng: TYPE, %function domain, rangea: [dom -> rng], %base case functiond: [dom-> rng], %recursion parameterb: [rng, rng -> rng], %continuation builderc: [dom -> dom], %recursion destructorp: PRED[dom], %branch predicatem: [dom -> nat], %termination measureF : [dom -> rng]] %tail-recursive function: THEORYBEGINASSUMING...ENDASSUMING...END wandThere are three important assumptions on the theory parameters for wand. The�rst assumption assoc asserts the associativity of the continuation-builder b.The second assumption wf asserts that the destructor c must decrease themeasure on any x where predicate p is false. The �nal assumption F def assertsthat F is given by the non-tail-recursive de�nition using the parameters p, a,b, c, and d. 16



u, v, w: VAR rngassoc: ASSUMPTION b(b(u, v), w) = b(u, b(v, w))x, y, z: VAR domwf : ASSUMPTION NOT p(x) IMPLIES m(c(x)) < m(x)F_def: ASSUMPTIONF(x) =(IF p(x) THEN a(x) ELSE b(F(c(x)), d(x)) ENDIF)The continuation-passing variant of F is de�ned as FC. The main invariantrelating F and FC is proved as FFC. The theorem FFC can be proved in a singlestep using the measure induction strategy.f: VAR [rng -> rng]FC(x, f) : RECURSIVE rng =(IF p(x)THEN f(a(x))ELSE FC(c(x), (LAMBDA u: f(b(u, d(x)))))ENDIF)MEASURE m(x)FFC: LEMMA FC(x, f) = f(F(x))The accumulator version of F is given by the function FA. The main invariantrelating FC and FA is proved as FAFC. This theorem is also proved in a singlemeasure induction step.FA(x, u): RECURSIVE rng =(IF p(x)THEN b(a(x), u)ELSE FA(c(x), b(d(x), u)) ENDIF)MEASURE m(x)FAFC: LEMMA FA(x, u) = FC(x, (LAMBDA w: b(w, u)))Finally, we can apply this transformation to the non-tail-recursive reversefunction to obtain the tail-recursive accumulator version. This step is carriedout in the theory reverse shown below. 5 The �rst declaration in this theoryintroduces a conversion so that a list operation that is de�ned only on thedomain (cons?) (namely on conses) is converted to an operation on all listswhere the value null is returned on null. The next declaration imports andrenames (as reverse wand) the theory wand with list[T] for dom, list[T]5 PVS allows considerable leeway in the overloading of names so that we can haveboth a theory and a function named reverse.17



for rng, the list identity operation id[list[T]] for a, the expression (LAMBDA(x: (cons?[T])): cons(car(x), null)) 6 , append for b, cdr for c, nullfor p, length for m, and reverse for F. This declaration generates three TCCscorresponding to the instances of each of the three assumptions in the theorywand. The associativity assumption on append is already proved in the prelude,and is, in any case, an easy induction. The remaining two TCCs are provedautomatically by the default TCC strategy. It is easy then to prove that thefunction FA in the theory reverse wand can be used to compute reverse asshown in tail reverse.reverse [T : TYPE]: THEORYBEGINCONVERSION extend[list[T], (cons?[T]), list[T], null[T]]reverse_wand: THEORY =wand[list[T], list[T], id[list[T]],(LAMBDA (x: (cons?[T])): cons(car(x), null)),append[T], cdr[T],null?[T], length[T], reverse[T]]u, x, y, z: VAR list[T]tail_reverse: LEMMA FA(x, u) = append(reverse(x), u)END reverse5.1 Transforming Binary Recursive SchemesWand [23] presents several extensions of the above transformation of linearrecursive de�nitions to other nonlinear forms of recursion. We round o� ourpresentation of continuation-based transformation in PVS by illustrating howbinary tree recursion schemes can be similarly transformed into iterative form.The theory binary below has some of the same parameters as wand. As withwand, dom and rng are the domain and range of the recursive function, F isthe recursive function to be transformed, a is the function used in de�ning thebase case, b is the continuation builder, p is the branching conditional for therecursion, and m is the termination measure. The main di�erence from wandis that the destructor c has been replaced by a pair of destructors l (for left)and r (for right), and the recursion parameter d has been eliminated.6The domain subtyping (cons?[T]) of the lambda-abstraction is needed to makeit type-correct to invoke car(x). The conversion extend is then automatically in-troduced to extend this operation to null lists as well.18



binary [dom, rng: TYPE, %function domain, rangea: [dom -> rng], %base case functionb: [rng, rng -> rng], %continuation builderl: [dom -> dom], %recursion destructorr: [dom -> dom], %recursion destructorp: PRED[dom], %branch predicatem: [dom -> nat], %termination measureF : [dom -> rng]] %non-tail-recursive function: THEORYBEGINASSUMING...ENDASSUMING...END binaryThere are now six assumptions on the parameters. The �rst assumption assertsthe associativity of the continuation builder b.u, v, w: VAR rngassoc: ASSUMPTION b(b(u, v), w) = b(u, b(v, w))The assumptions wfl and wfr assert that the measure m decreases with thedestructors l and r on any x where p(x) is false. The fourth assumptionstates that the measure always returns a positive natural number, and the�fth assumption states that when p(x) is false, the measure m(x) exceeds thesum of the measures m(l(x)) and m(r(x)).x, y, z: VAR domwfl : ASSUMPTION NOT p(x) IMPLIES m(l(x)) < m(x)wfr : ASSUMPTION NOT p(x) IMPLIES m(r(x)) < m(x)mpos: ASSUMPTION m(x) > 0m_left_right: ASSUMPTIONNOT p(x) IMPLIES m(x) > m(l(x)) + m(r(x))The sixth assumption introduces the binary recursion scheme characterizingthe parameter F.F_def: ASSUMPTIONF(x) =(IF p(x) THEN a(x) ELSE b(F(l(x)), F(r(x))) ENDIF)The transformation of F to the continuation-passing variant is captured by thefunction FC where there is now an additional contination argument f, and the19



result of the left recursive call is now part of the continuation argument givento the right recursive call. Lemma FFC captures the main invariant relatingF and FC. It requires an additional constraint relating the contination argu-ment f with the contination-builder b. The proof of FFC employs the measureinduction proof strategy.f: VAR [rng -> rng]FC(x, f) : RECURSIVE rng =(IF p(x)THEN f(a(x))ELSE FC(r(x), (LAMBDA u: b(FC(l(x), f), u)))ENDIF)MEASURE m(x)FFC: LEMMA(FORALL u, v: f(b(u, v)) = b(f(u), v))IMPLIES FC(x, f) = f(F(x))In the next transformation step, the continuation argument f in FC is replacedby an accumulator argument v in FA. The de�nition of FA is straightforward.The main invariant relating FC and FA is stated as FAFC. The proof of thisinvariant is also by a single measure induction step.FA(x, v): RECURSIVE rng =(IF p(x)THEN b(v, a(x))ELSE FA(r(x), FA(l(x), v)) ENDIF)MEASURE m(x)FAFC: LEMMA FA(x, v) = FC(x, (LAMBDA w: b(v, w)))The accumulator passing version FA of F is still not tail-recursive. Wand [23]presents a further transformation to reduce FA to tail-recursive form. This\familiar" transformation is that of introducing a stack to save the right re-cursive calls. The resulting iterative de�nition is given by FI which takes anadditional stack argument Y. Observe that in the case corresponding to thebase case of FA, there is a further recursive call to FI where the stack argumentY is popped. Note that the termination argument for FI is nontrivial and themeasure used is the sum of the m(x) and the m(y) for each element y in Y.20



X, Y: VAR list[dom]mlist(X): RECURSIVE nat =(IF cons?(X)THEN m(car(X)) + mlist(cdr(X))ELSE 0 ENDIF)MEASURE length(X)FI(x, v, Y): RECURSIVE rng =(IF p(x)THEN (IF cons?(Y)THEN FI(car(Y), b(v, a(x)), cdr(Y))ELSE b(v, a(x))ENDIF)ELSE FI(l(x), v, cons(r(x), Y))ENDIF)MEASURE (m(x) + mlist(Y))The invariant relating FA and FI essentially asserts that when the stack Y isempty, FA and FI coincide. The PVS proof of this lemma is the �rst nontrivialproof in the mechanization of these transformations. This proof could not becarried out automatically in a single command since the quanti�er instantia-tion heuristics used by PVS were not powerful enough, and also several of thelemmas had to be invoked by hand. This proof required about forty interactivesteps. The reader is invited to try out this proof as an exercise.The main conclusion is that continuation-based transformations are extremelypowerful and yet easily veri�ed using PVS. Many examples that pose seriouschallenges for induction theorem provers [3,4] are often just straightforward in-stances of such continuation-based transformations. We have formalized thesetransformations in a schematic manner so that individual instances of thesetransformations can be easily obtained by means of suitable parameter instan-tiations rather than through the use of clever induction heuristics.Wand makes heavy use of mutual recursion in writing his programs. PVSdoes not admit mutually recursive de�nitions. Mutual recursion is useful inan informal development, but is quite unwieldy for a formal approach since itcan be hard to establish the termination of mutually recursive functions, andtheir correctness arguments typically involve simultaneous induction. 7Wand [23] shows how continuation-based transformations can be applied tonontrivial examples by deriving the alpha-beta form of minimax search froma naive minimax search algorithm. We did not retrace Wand's developmentsteps but instead veri�ed the correspondence between naive minimax searchand alpha-beta search in PVS. This speci�cation makes aggressive use of sub-typing and dependent typing to constrain the � argument to be at least �,7The SPIKE theorem prover is based on �rst-order term-rewriting and successfullymechanizes mutual recursion and simultaneous induction [2].21



and the search result to lie in the subrange between � and �. The proof wasonly moderately di�cult. It involved a fair amount of case analysis but thepotentially laborious aspects of the proof were handled by the decision proce-dures.6 ConclusionsWe have studied the veri�cation of two speci�c forms of program transforma-tion using PVS. The �rst is a fusion theorem due to Bird [1] that can be usedto eliminate the intermediate data structure in the composition of two recur-sive functions in order to obtain a more e�cient algorithm. We showed howan applicative quicksort could be derived in this way from the composition ofa tree attening function with a function that constructs an ordered binarytree from a list. The mechanical proofs needed to justify the transformationwere essentially trivial, but the functional correctness of the resulting quick-sort remained a moderately serious challenge regardless of whether the sourceor the target of the transformation was used.The second class of transformations (due to Wand [23]) involves the use of ex-plicit continuation arguments to transform non-tail-recursive de�nitions intotail-recursive form. The mechanical proofs of these transformations were alsomostly trivial. It should also be noted that the manual e�ort needed to con-struct and debug these speci�cations and proofs is quite small: all lemmas, the-orems, and proof obligations used in this paper were established in about twoor three days. The correspondence between minimax and alpha-beta searchwas established in about a day.The main conclusion of this paper is that although general-purpose veri�cationsystems like PVS are not customized for program transformation, they are al-ready quite e�ective at formalizing and verifying the mathematics underlyingthese transformations. Both the Bird and the Wand transformations could becaptured at a useful level of abstraction through the use of the parametrictheories. The continuation-based transformations also exploited the assump-tions on parameters in order to state the associativity and well-foundednessassumptions. Through the use of predicate subtyping and dependent typingin PVS, we were able to overcome Bird's \problem" with well-foundednessin de�ning anamorphisms. A versatile proof strategy for measure inductionwas developed during the course of this work and it played a crucial role inautomating all but a few of the proofs.Conversely, program transformation should be based on general-purpose ver-i�cation tools, since the mathematical tools needed are much the same asthose used in other forms of veri�cation. We have shown how some impor-tant transformations can be formalized using the speci�cation tools availablein PVS such as parameterized theories, higher-order logic, predicate subtyp-ing, dependent typing, and that these transformations can be mechanized22



using equational, propositional, and quanti�cational reasoning combined witharithmetic decision procedures and induction strategies. It will be interestingto see whether other transformational strategies [15] can also be successfullyformalized.References[1] Richard S. Bird. Functional algorithm design. In Bernhard M�oller, editor,Mathematics of Program Construction '95, number 947 in Lecture Notes inComputer Science, pages 2{17. Springer Verlag, 1995.[2] Adel Bouhoula. SPIKE: a system for su�cient completeness and parameterizedinductive proofs (system description). In A. Bundy, editor, AutomatedDeduction | CADE-12, number 814 in Lecture Notes in Computer Science,pages 836{840. Springer Verlag, 1994.[3] R. S. Boyer and J. S. Moore. A Computational Logic. Academic Press, NewYork, NY, 1979.[4] Alan Bundy, Frank van Harmalen, Jane Hesketh, and Alan Smaill. Experimentswith proof plans for induction. Journal of Automated Reasoning, 7(3):303{324,September 1991.[5] R. L. Constable, et al . Implementing Mathematics with the Nuprl. Prentice-Hall, New Jersey, 1986.[6] D. Cyrluk, S. Rajan, N. Shankar, and M. K. Srivas. E�ective theorem provingfor hardware veri�cation. In Ramayya Kumar and Thomas Kropf, editors,Theorem Provers in Circuit Design (TPCD '94), volume 910 of Lecture Notes inComputer Science, pages 203{222, Bad Herrenalb, Germany, September 1994.Springer Verlag.[7] David Cyrluk, Patrick Lincoln, Steven Miller, Paliath Narendran, Sam Owre,Sreeranga Ragan, John Rushby, Natarajan Shankar, Jens Ulrik Skakkeb�k,Mandayam Srivas, and Friedrich von Henke. Seven papers on mechanizedformal veri�cation. Technical Report SRI-CSL-95-3, Computer ScienceLaboratory, SRI International, Menlo Park, CA, January 1995.[8] Axel Dold. Representing, verifying and applying software development stepsusing the PVS system. In V. S. Alagar and Maurice Nivat, editors, AlgebraicMethodology and Software Technology, AMAST'95, number 936 in LectureNotes in Computer Science, pages 431{445, Montreal, Canada, July 1995.Springer-Verlag.[9] M. J. Gordon, A. J. Milner, and C. P. Wadsworth. Edinburgh LCF, volume 78of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1979.[10] M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL: A TheoremProving Environment for Higher-Order Logic. Cambridge University Press,Cambridge, UK, 1993. 23



[11] Z. Luo and R. Pollack. The LEGO proof development system: A user's manual.Technical Report ECS-LFCS-92-211, University of Edinburgh, 1992.[12] Steven P. Miller and Mandayam Srivas. Formal veri�cation of the AAMP5microprocessor: A case study in the industrial use of formal methods. InWIFT'95: Workshop on Industrial-Strength Formal Speci�cation Techniques, pages2{16, Boca Raton, FL, 1995. IEEE Computer Society.[13] R. Milner, M. Tofte, and R. Harper. The De�nition of Standard ML. MITPress, 1990.[14] S. Owre, J. Rushby, N. Shankar, and F. von Henke. Formal veri�cation for fault-tolerant architectures: Prolegomena to the design of PVS. IEEE Transactionson Software Engineering, 21(2):107{125, February 1995.[15] Helmut A. Partsch. Speci�cation and Transformation of Programs: A FormalApproach to Software Development. Springer Verlag, 1990.[16] S. Rajan, N. Shankar, and M.K. Srivas. An integration of model-checkingwith automated proof checking. In Pierre Wolper, editor, Computer-AidedVeri�cation, CAV '95, volume 939 of Lecture Notes in Computer Science, pages84{97, Liege, Belgium, June 1995. Springer-Verlag.[17] Sreeranga P. Rajan. Correctness of transformations in high level synthesis. InSteven D. Johnson, editor, CHDL '95: 12th Conference on Computer HardwareDescription Languages and their Applications, pages 597{603, Chiba, Japan,August 1995. Proceedings published in a single volume jointly with ASP-DAC'95, CHDL '95, and VLSI '95, IEEE Catalog no. 95TH8102.[18] Harald Rue�. Towards high-level deductive program synthesis based on typetheory. In The Tenth Knowledge-Based Software Engineering Conference, pages174{183. IEEE Computer Society Press, November 1995.[19] N. Shankar. Computer-aided computing. In Bernhard M�oller, editor,Mathematics of Program Construction '95, number 947 in Lecture Notes inComputer Science, pages 50{66. Springer-Verlag, 1995.[20] Robert E. Shostak. Deciding combinations of theories. Journal of the ACM,31(1):1{12, January 1984.[21] Douglas R. Smith. KIDS: a semiautomatic program development system. IEEETransactions on Software Engineering, 16(9):1024{1043, September 1990.[22] Philip Wadler. Deforestation: Transforming programs to eliminate trees.Theoretical Computer Science, 73:231{248, 1990.[23] Mitchell Wand. Continuation-based program transformation strategies.Journal of the ACM, 27(1):164{180, January 1980.
24


