
An Overview of SAL�
To Appear in the Fifth Langley Formal Methods Workshop, June 2000

Saddek Bensalemy Vijay Ganeshz Yassine Lakhnechy Cesar Muñozx Sam Owre{
Harald Rueß{ John Rushby{ Vlad Rusuk Hassen Saı̈di�� N. Shankar{

Eli Singermanyy Ashish Tiwarizz
Abstract

To become practical for assurance, automated for-
mal methods must be made more scalable, automatic,
and cost-effective. Such an increase in scope, scale, au-
tomation, and utility can be derived from an emphasis on
a systematic separation of concerns during verification.
SAL (Symbolic Analysis Laboratory) attempts to address
these issues. It is a framework for combining differ-
ent tools to calculate properties of concurrent systems.
The heart of SAL is a language, developed in collabora-
tion with Stanford, Berkeley, and Verimag, for specifying
concurrent systems in a compositional way. Our instan-
tiation of the SAL framework augments PVS with tools
for abstraction, invariant generation, program analysis
(such as slicing), theorem proving, and model checking
to separate concerns as well as calculate properties (i.e.,
perform symbolic analysis) of concurrent systems. We
describe the motivation, the language, the tools, their
integration in SAL/PVS, and some preliminary experi-
ence of their use.

1 Introduction

To become practical for debugging, assurance, and
certification, formal methods must be made more cost-�This research was performed in the Computer Science Laboratory,
SRI International, Menlo Park CA USA, and supported by DARPA
through USAF Rome Laboratory contract F30602-96-C-0204, by
NASA Langley Research Center contract NAS1-20334, and by the
National Science Foundation contract CCR-9509931.yVERIMAG, Grenoble, FrancezStanford University, Stanford CAxICASE, NASA Langley, Hampton VA{Computer Science Laboratory, SRI International, Menlo Park CAkIRISA, Rennes, France��Systems Design Laboratory, SRI International, Menlo Park CAyyIntel, Haifa, IsraelzzSUNY Stony Brook, NY

effective. Incremental improvements to individual ver-
ification techniques will not suffice. It is our basic
premise that a significant advance in the effectiveness
and automation of verification of concurrent systems is
possible by engineering a systematic separation of con-
cerns through a truly integrated combination of static
analysis, model checking, and theorem proving tech-
niques. A key idea is to change the perception (and im-
plementation) of model checkers and theorem provers
from tools that perform verifications to ones that calcu-
latepropertiessuch as slices, abstractions and invariants.
In this way, big problems are cut down to manageable
size, and properties of big systems emerge from those of
reduced subsystems obtained by slicing, abstraction, and
composition. By iterating through several such steps, it
becomes possible to incrementally accumulate proper-
ties that eventually enable computation of a substantial
new property—which in turn enables accumulation of
further properties. By interacting at the level of proper-
ties and abstractions, multiple analysis tools can be used
to derive properties that are beyond the capabilities of
any individual tool.

SAL (Symbolic Analysis Laboratory) addresses
these issues. It is a framework for combining dif-
ferent tools for abstraction, program analysis, theorem
proving, and model checking toward the calculation of
properties (symbolic analysis) of concurrent systems ex-
pressed as transition systems. The heart of SAL is an
intermediate language, developed in collaboration with
Stanford, Berkeley, and Verimag for specifying concur-
rent systems in a compositional way. This language will
serve as the target for translators that extract the tran-
sition system description for popular programming lan-
guages such as Esterel, Java, or Verilog. The intermedi-
ate language also serves as a common description from
which different analysis tools can be driven by translat-
ing the intermediate language to the input format for the
tools and translating the output of these tools back to the

1

SAL intermediate language.
This paper is structured as follows. In Section 2 we

describe the motivation and rationale behind the design
of the SAL language and give an overview of its main
features. The main part, Section 3, describes SAL com-
ponents including slicing, invariant generation, abstrac-
tion, model checking, simulation, and theorem proving
together with their integration into the SAL toolset. Sec-
tion 4 concludes with some remarks.

2 The SAL Common Intermediate Lan-
guage

Mechanized formal analysis starts from a description
of the problem of interest expressed in the notation of
the tool to be employed. Construction of this descrip-
tion often entails considerable work: first to recast the
system specification from its native expression in C, Es-
terel, Java, SCR, UML, Verilog, or whatever, into the
notation of the tool concerned, then to extract the part
that is relevant to the analysis at hand, and finally to re-
duce it to a form that the tool can handle. If a second tool
is to be employed for a different analysis, then a second
description of the problem must be prepared, with con-
siderable duplication of effort. Withm source languages
andn tools, we needm�n translators. This situation nat-
urally suggests use of a common intermediate language,
where the numbers of tools required could be reduced tom+ n translators.

The intermediate language must serve as a medium
for representing the state transition semantics of a sys-
tem described in a source language such as Java or Es-
terel. It must also serve as a common representation
for driving a number of back-end tools such as theorem
provers and model checkers. A useful intermediate lan-
guage for describing concurrent systems must attempt to
preserve both the structure and meaning of the original
specification while supporting a modular analysis of the
transition system.

For these reasons, the SAL intermediate language is a
rather rich language. In the sequel, we give an overview
of the main features of the SAL type language, the ex-
pression language, the module language, and the con-
text language. For a precise definition and semantics of
the SAL language, including comparisons to related lan-
guages for expressing concurrent systems, see [31].

The type system of SAL supports basic types such
as booleans, scalars, integers and integer subranges,
records, arrays, and abstract datatypes. Expressions
are strongly typed. The expressions consist of con-
stants, variables, applications of Boolean, arithmetic,
and bit-vector operations (bit-vectors are just arrays of
Booleans), and array and record selection and updates.

mutex : CONTEXT =
BEGIN

PC: TYPE = ftrying, criti-
cal, sleeping g
mutex [tval:boolean] : MODULE =
BEGIN
INPUT pc2: PC, x2: boolean
OUTPUT pc1: PC, x1: boolean

INITIALIZATION
TRUE --> pc1 = sleeping;

x1 = tval

TRANSITION
pc1 = sleeping

--> pc1’ = trying;
x1’ = (x2=tval)

[]
pc1 = trying AND

(pc2=sleeping OR x1= (x2/=tval))
--> pc1’ = critical

[]
pc1 = critical

--> pc1’ = sleeping;
x1’ = (x2=tval)

END

system: MODULE =
HIDE x1,x2

(mutex[FALSE]
|| RENAME pc2 TO pc1,

x2 TO x1,
pc1 TO pc2,
x1 TO x2

mutex[TRUE])

mutualExclusion: THEOREM
system |-

AG(NOT(pc1=critical
AND pc2=critical))

eventually1: LEMMA
system |- EF(pc1=critical)

eventually2: LEMMA
system |- EF(pc2=critical)

END

Figure 1. Mutual Exclusion

2

Conditional expressions are also part of the expression
language and user-defined functions may also be intro-
duced.

A module is a self-contained specification of a tran-
sition system in SAL. Usually, several modules are col-
lected in a context. Contexts also include type and con-
stant declarations. A transition systemmoduleconsists
of a statetype, aninitialization conditionon this state
type, and a binarytransition relationof a specific form
on the state type. The state type is defined by four pair-
wise disjoint sets ofinput, output, global, andlocal vari-
ables. The input and global variables are theobserved
variables of a module and the output, global, and local
variables are thecontrolledvariables of the module. It
is good pragmatics to name a module. This name can be
used to index the local variables so that they need not be
renamed during composition. Also, the properties of the
module can be indexed on the name for quick lookup.

Consider, for example, the SAL specification of a
variant of Peterson’s mutual exclusion algorithm in Fig-
ure 1. Here the state of the module consists of the
controlled variables corresponding to its own program
counterpc1 and boolean variablex1 , and the observed
variables are the correspondingpc2 andx2 of the other
process.

The transitions of a module can be specified variable-
wise by means ofdefinitions or transition-wise by
guarded commands. Henceforth, primed variablesX’
denote next-state variables. A definition is of the form
X = f(Y, Z) . Both the initializations and transitions
can also be specified as guarded assignments. Each
guarded command consists of a guarded formula and an
assignment part. The guard is a boolean expression in
the current controlled (local, global, and output) vari-
ables and current-state and next-state input variables.
The assignment part is a list of equalities between a left-
hand side next-state variable and a right hand side ex-
pression in both current-state and next-state variables.

Parametric modules allow the use of logical (state-
independent) and type parameterization in the definition
of modules. Modulemutex in Figure 1, for example, is
parametric in the Booleantval . Furthermore, mod-
ules in SAL can be combined by either synchronous
composition|| , or asynchronous composition[] . Two
instances of themutex module, for example, are con-
joined synchronously to form a module calledsystem
in Figure 1. This combination also useshiding andre-
naming. Output and global variables can be made local
by theHIDE construct. In order to avoid name clashes,
variables in a module can be renamed using theRENAME
construct.

Besides declaring new types, constants, or modules,
SAL also includes constructs for stating module prop-

erties and abstractions between modules. CTL formulas
are used, for example, in Figure 1 to state safety and live-
ness properties about the combined modulesystem .

The form of composition in SAL supports a com-
positional analysis in the sense that any module prop-
erties expressed in linear-time temporal logic or in the
more expressive universal fragment of CTL* are pre-
served through composition. A similar claim holds for
asynchronous composition with respect to stuttering in-
variant properties where a stuttering step is one where
the local and output variables of the module remain un-
changed.

Because SAL is an environment where theorem prov-
ing as well as model checking is available, absence of
causal loops in synchronous systems is ensured by gen-
erating proof obligations, rather than by more restrictive
syntactic methods as in other languages. Consider the
following definitions:

X = IF A THEN NOT Y ELSE C ENDIF
Y = IF A THEN B ELSE X ENDIF

This pair of definitions is acceptable in SAL because we
can prove thatX is causally dependenton Y only when
A is true, and vice-versa only when it isfalse—hence
there is no causal loop. In general,causality checking
generates proof obligations asserting that the conditions
that can trigger a causal loop are unreachable.

3 SAL Components

SAL is built around a blackboard architecture cen-
tered around the SAL intermediate language. Different
backend tools operate on system descriptions in the in-
termediate language to generate properties and abstrac-
tions. The core of the SAL toolset includes the usual
infrastructure for parsing and type-checking. It also al-
lows integration of translators and specialized compo-
nents for computing and verifying properties of transi-
tion systems. These components are loosely coupled
and communicate through well-defined interfaces. An
invariant generator may expect, for example, various ap-
plication specific flags and a SAL base module, and it
generates a corresponding assertion in the context lan-
guage together with a justification of the invariant. The
SAL toolset keeps track of the dependencies between
generated entities, and provides capabilities similar to
proof-chain analysis in theorem proving systems like
PVS.

The main ingredients of the SAL toolset are special-
ized components for computing and verifying properties
of transition systems. Currently, we have integrated var-

3

ious components providing basic capabilities for analyz-
ing SAL specifications, including� Validation based on theorem proving, model check-

ing, and animation;� Abstraction and invariant generation;� Generation of counterexamples;� Slicing.

We describe these components in more detail below.

3.1 Backend translations

We have developed translators from the SAL inter-
mediate language to PVS, SMV, and Java for validat-
ing SAL specifications by means of theorem proving
(in PVS), model checking (in SMV), and animation (in
Java). These compilers implementshallow structural
embeddings[26] of the SAL language; that is, SAL
types and expressions are given a semantics with re-
spect to a model defined by the logic of the target lan-
guage. The compilers performs a limited set of semantic
checks. These checks mainly concern the use of state
variables. More complex checks, as for example type
checking, are left to the verification tools.

3.1.1 Theorem Proving: SAL to PVS

PVS is a specification and verification environment
based on higher-order logic [27]. SAL contexts con-
taining definitions of types, constants, and modules, are
translated into PVS theories. This translation yields a se-
mantics for SAL transition systems. Modules are trans-
lated as parametric theories containing a record type to
represent the state type, a predicate over states to rep-
resent the initialization condition, and a relation over
states to represent the transition relation. Figure 2 de-
scribes a typical translation of a SAL module in PVS.
Notice that initializations as well as transitions may be
nondeterministic.

Compositions of modules are embedded as logical
operations on the transition relations of the correspond-
ing modules: disjunction for the case of asynchronous
composition, conjunction for the case of synchronous
composition. Hiding and renaming operations are mod-
eled as morphisms on the state types of the modules.
Logical properties are encoded via the temporal logic of
the PVS specification language.

3.1.2 Model Checking: SAL to SMV

SMV is a popular model checker with its own system
description language [25]. SAL modules are mapped to

module[para:Parameters] : THEORY
BEGIN

State : TYPE = [#
input : InputVars,
output : OutputVars,
local : LocalVars

#]

state,next : VAR State

initialization(state):boolean =
(guard_init_1 AND

output(state) = ... AND
local(state) = ...)

OR ... OR (guard_init_n AND ...)

transitions(state, next):boolean =
(guard_trans_1 AND

output(next) =
output(state) WITH [...]

local(next) =
local(state) WITH [...])

OR ... OR
(guard_trans_m AND ...)
OR
(NOT guard_trans_1 AND ... AND

NOT guard_trans_m AND
output(next) = output(state)
local(next) = local(state))

Figure 2. A SAL module in PVS

SMV modules. Type and constant definitions appearing
in SAL contexts are directly expanded in the SMV spec-
ifications. Output and local variables are translated to
variables in SMV. Input variables are encoded as param-
eters of SMV modules.

The nondeterministic assignment of SMV is used to
capture the arbitrary choice of an enabled SAL transi-
tion. Roughly speaking, two extra variables are intro-
duced. The first is assigned nondeterministically with a
value representing a SAL transition. The guard of the
transition represented by this variable is the first guard
to be evaluated. The second variable loops over all tran-
sitions starting from the chosen one until it finds a tran-
sition which is enabled. This mechanism assures that
every transition satisfying the guard has an equal chance
to being fired in the first place. Composition of SAL
modules and logical properties are directly translated via
the specification language of SMV.

4

3.1.3 Animation: SAL to Java

Animation of SAL specifications is possible via compi-
lation to Java. However, not all the features of the SAL
language are supported by the compiler. In particular,
the expression language that is supported is limited to
that of Java. For example, only integers and booleans are
accepted as basic types. Elements of enumeration types
are translated as constants and record types are repre-
sented by classes.

The state type of a SAL module is represented by
a class containing fields for the input, output, and lo-
cal variables. In order to simulate the nondeterminism
of the initialization conditions, we have implemented a
random function that arbitrary chooses one of the initial-
ization transition satisfying the guard.

Each transition is translated as a Java thread class.
At execution time, all the threads share the same state
object. We assume that the Java virtual Machine is non-
deterministic with respect to execution of threads. The
main function of the Java translation creates one state
object and passes the object as an argument to the thread
object constructors. It then starts all the threads. Safety
properties are encoded by using the exception mecha-
nism of Java, and are checked at run time.

3.1.4 Case Study: Flight Guidance System

Mode confusionis a concern in aviation safety. It oc-
curs when pilots get confused about the actual states of
the flight deck automation. NASA Langley conducts
research to formally characterize mode confusion situ-
ations in avionics systems. In particular, a prototype
of a Flight Guidance System (FGS) has been selected
a case study for the application of formal techniques to
identify mode confusion problems. FGS has been spec-
ified in various formalisms (see [23] for a comprehen-
sive list of related work). Based on work by Lüttgen
and Carreño, we have developed a complete specifica-
tion of FGS in SAL. The specification has been auto-
matically translated to SMV and PVS, where it has been
analyzed. We did not experience any significant over-
head in model checking translated SAL models com-
pared to hand-coded SMV models. This case study is
available athttp://www.icase.edu./˜munoz/
sources.html .

3.2 Invariant Generation

An invariant of a transition system is an assertion—
a predicate on the state—that holds of every reachable
state of the transition system. Aninductive invariantis
a assertion that holds of the initial states and is preserved
by each transition of the transition system. An inductive

invariant is also an invariant but not every invariant is
inductive.

Let SP(T ; �) denote the formula that represents the
set of all states that can be reached from any state in�
via a single transition of the systemT , and� denote the
formula that denotes the initial states. A formula� is
an inductive invariant for the transition systemT if (i)�! �; (ii) SP(T ; �) ! �.

We recall that for a given transition systemT and
a set of states described by formula�, the notation
SP(T ; �) denotes the formula that characterizes all
states reachable from states� using exactly one transi-
tion fromT . If � denotes the initial state, then it follows
from the definition of invariants that any fixed-point of
the operatorF (�) = SP(T ; �) _� is an invariant.

Notice that the computation of strongest postcondi-
tions introduces existentially quantified formulas. Due
to novel theorem proving techniques in PVS2.3 that are
based on the combination of a set of ground decision
procedures and quantifier elimination we are able to ef-
fectively reason about these formulas in many interest-
ing cases.

It is a simple observation that not only is the greatest
fixed point of the above operator an invariant, but ev-
ery intermediate�i generated in an iterated computation
procedure of greatest fixed point also is an invariant.�0 : true�i+1 : SP(T ; �i) _�
A consequence of the above observation is that we do
not need to detect when we have reached a fixed point in
order to output an invariant.

As a technical point about implementation of the
above greatest fixed point computation in SAL, we men-
tion that we break up the (possibly infinite) state space
of the system into finitely many (disjoint) control states.
Thereafter, rather than working with the global invari-
ants�i, we work with local invariants that hold at par-
ticular control states. The iterative greatest fixed point
computation can now be seen as a method of generating
invariants based onaffirmationandpropagation[6].

Note that rather than computing the greatest fixed
point, if we performed the least fixed point computation,
we would get the strongest invariant for any given sys-
tem. The problem with least fixed points is that their
computation does not converge as easily as those of
greatest fixed points. Unlike greatest fixed points, the
intermediate predicates in the computation of the least
fixed point are not invariants. We are currently investi-
gating approaches based on widening to compute invari-
ants in a convergent manner using least fixed points [8].

The techniques described so far are noncomposi-
tional since they examine all the transitions of the given

5

system. We use a novel composition rule defined in [29]
allowing local invariants of each of the modules to be
composed into global invariants for the whole system.
This composition rule allows us to generate stronger in-
variants than the invariants generated by the techniques
described in [6,7]. The generated invariants allows us to
obtain boolean abstractions of the analyzed system using
the incremental analysis techniques presented in [29].

3.3 Slicing

Program analyses like slicing can help remove code
irrelevant to the property under consideration from the
input transition system which may result in a reduced
state-space, thus easing the computational needs of sub-
sequent formal analysis efforts. Our slicing tool [18]
accepts an input transition system which may be syn-
chronously or asynchronously composed of multiple
modules written in SAL and the property under verifica-
tion. The property under verification is converted into a
slicing criterion and the input transition system is sliced
with respect to this slicing criterion. The slicing crite-
rion is merely a set of local/output variables of a subset
of the modules in the input SAL program that are not
relevant to the property. The output of the slicing al-
gorithm is another SAL program similarly composed of
modules wherein irrelevant code manipulating irrelevant
variables from each module has been sliced out. For ev-
ery input module there will be an output module, empty
or otherwise. In a nutshell the slicing algorithm does
a dependency analysis of each module and computes
backward transitive closure of the dependencies. This
transitive closure would take into consideration only a
subset of all transitions in the module. We call these
transitions observable and the remaining transitions are
called � or silent transitions. We replace silent transi-
tions with skips.

We are currently investigating reduction techniques
that are simpler than slicing and also ones that are more
aggressive. One example is the cone-of-influence re-
duction where the slicing criterion is a set of variablesV; and the reduction computes a transition system that
includes all the variables in the transitive closure ofV
given by the dependencies between variables [21]. In
comparison with slicing, the cone-of-influence reduc-
tion is insensitive to control and is therefore easier to
compute but generally not as efficient at pruning irrele-
vance. Slicing preserves program behavior with respect
to the slicing criterion. One could obtain a more dra-
matic reduction by admitting slices that admitted more
behaviors by introducing nondeterminism. Such aggres-
sive slicing would be needed for example to abstract
away from the internal behavior of a transition system

within its critical section for the purpose of verifying
mutual exclusion. Slicing for concurrent systems with
respect to temporal properties has been investigated by
Dwyer and Hatcliff [16].

3.4 Connecting InVeSt with SAL

So far we have described specialized SAL compo-
nents that provide core features for the analysis of con-
current systems, but we have also integrated the stand-
alone InVeSt [5] into the SAL framework. Besides com-
positional techniques for constructing abstraction and
features for generating counterexamples from failed ver-
ification attempts, InVeSt introduces alternative methods
for invariant generation to SAL. InVeSt not only serves
as a backend tool for SAL but also has been connected
to the IF laboratory [10], Aldebaran [9], TGV [17] and
Kronos [15].

The salient feature of InVeSt is that it combines the
algorithmic with the deductive approaches to program
verification in two different ways. First, it integrates the
principles underlying the algorithmic (e.g. [11, 28]) and
the deductive methods (e.g. [24]) in the sense that it uses
fixed point calculation as in the algorithmic approach but
also the reduction of the invariance problem to a set of
first-order formulas as in the deductive approach. Sec-
ond, it integrates the theorem prover PVS [27] with the
model checker SMV [25] through the automatic com-
putation of finite abstractions. That is, it provides the
ability to automatically compute finite abstractions of
infinite state systems which are then analyzed by SMV
or, alternatively, by the model checker of PVS. Further-
more, InVeSt supports the proof of invariance proper-
ties using the method based on induction and auxiliary
invariants (e.g. [24]) as well as a method based on ab-
straction techniques [2,12–14,21,22]. InVeSt uses PVS
as a backend tool and depends heavily on its theorem
proving capabilities for deciding the myriad verification
conditions.

3.4.1 Abstraction

InVeSt provides also a capability that computes an ab-
stract system from a given concrete system and an ab-
straction function. The method underlying this tech-
nique is presented in [4]. The main features of this
method is that it is automatic and compositional. It com-
putes an abstract systemSa = S1� k � � � k Sn� , for a
given systemS = S1 k � � � k Sn and abstraction func-
tion �, such thatS simulatesS� is guaranteed by the
construction. Hence, by known preservation results, ifS� satisfies an invariant' thenS satisfies the invari-
ant��1('). Since the produced abstract system is not

6

given by a graph but in a programming language, one
still can apply all the known methods for avoiding the
state explosion problem while analyzingS�. Moreover,
it generates an abstract system which has the same struc-
ture as the concrete one. This gives the ability to apply
further abstractions and techniques to reduce the state
explosion problem and facilitates the debugging of the
concrete system. The computed abstract system is op-
tionally represented in the specification language of PVS
or in that of SMV.

The basic idea behind our method of computing ab-
stractions is simple. In order to construct an abstrac-
tion of S, we construct for each concrete transition�
an abstract transition�a. To construct�a we proceed by
elimination starting from the universal relation, which
relates every abstract state to every abstract state, and
eliminate pairs of abstract states in a conservative way,
that is, it is guaranteed that after elimination of a pair the
obtained transition is still an abstraction of�. To check
whether a pair(a; a0) of abstract states can be eliminated
we have to check that the concrete transition� does not
lead from any state with �() = a to any state0 with�(0) = a0. This amounts to proving a Hoare triple. The
elimination method is in general too complex. There-
fore, we combine it with three techniques that allow
many fewer Hoare triples to be checked. These tech-
niques are based on partitioning the set of abstract vari-
ables, using substitutions, and a new preservation result
which allows to use the invariant to be proved during the
construction process of the abstract system.

We implemented our method using the theorem
prover PVS [27] to check the Hoare triples generated by
the elimination method. The first-order formulas corre-
sponding to these Hoare triples are constructed automat-
ically and a strategy that is given by the user is applied.
In [1] we developed also a general analysis methodol-
ogy for heterogeneousinfinite-state models, extended
automata operating on variables which may range over
several different domains, based on combining abstrac-
tion and symbolic reachability analysis.

3.4.2 Generation of Invariants

There are two different way to generate invariants in
InVeSt. First, we use calculation of pre-fixed points
by applying the body of the backward procedure a fi-
nite number of times and use techniques for the auto-
matic generation of invariants (cf. [3]) to support the
search for auxiliary invariants. The tool provides strate-
gies which allow derivation oflocal invariants, that is,
predicates attached to control locations and which are
satisfied whenever the computation reaches the corre-
sponding control point. InVeSt includes strategies for

deriving local invariants for sequential systems as well
as a composition principle that allows combination of
invariants generated for sequential systems to obtain in-
variants of a composed system. Consider a composed
systemS1 k S2 and control locationsl1 and l2 of S1
andS2, respectively. Suppose that we generated the lo-
cal invariantsP1 andP2 at l1 andl2, respectively. Let us
callPi interference independent, if Pi does not contain a
free variable that is written bySj with j 6= i. Then, de-
pending on whetherPi is interference independent we
compose the local invariantsP1 andP2 to obtain a lo-
cal invariant at(l1; l2) as follows: ifPi is interference
independent, then we can affirm thatPi is an invariant
at (l1; l2) and if bothP1 andP2 are interference depen-
dent, thenP1_P2 is an invariant at(l1; l2). This compo-
sition principle proved to be useful in the examples we
considered. However, examples showed that predicates
obtained by this composition principle can become very
large. Therefore, we also consider the alternative option
where local invariants are not composed until they are
needed in a verification condition. Thus, we assign to
each component of the system two lists of local invari-
ants. The first corresponds to interference independent
local invariants and the second to interference dependent
ones. Then, when a verification condition is considered,
we use heuristics to determine which local invariants are
useful when discharging the verification condition. A
useful heuristic concerns the case when the verification
condition is of the form(p(1) = l1 ^ p(2) = l2)) �,
wherep(1) = l1 ^ p(2) = l2 asserts that computation
is at the local control locationsl1 andl2. In this case, we
combine the local invariants associated tol1 andl2 and
add the result to the left hand side of the implication.

Second, we use abstraction generating invariants at
the concrete level: LetS�1 the result of the abstrac-
tion of a concrete systemS, the set of reachable states
denoted byReah(S�1) is an invariant ofS�1 (the
strongest one including the initial configurations in fact).
We developed a method that extract the formula which
characterizes the reachable states from the BDD. Hence,��11 (Reah(S�1)) is an invariant of the concrete modelS. This invariant can be used to strengthen' and show
that it is an invariant ofS.

3.4.3 Analysis of Counterexamples

The generation of the abstract system iscompletely au-
tomaticand compositional as we consider transition by
transition. Thus, for each concrete transition we obtain
an abstract transition (which might be nondeterministic).
This is a very important property of our method, since it
enables the debugging of the concrete system or alter-
natively enhancing the abstraction function. Indeed, the

7

constructed abstract system may not satisfy the desired
property, for three possible reasons:

1. The concrete system does not satisfy the invariant,

2. The abstraction function is not suitable for proving
the invariant, or

3. The proof strategies provided are too weak.

Now, a model checker such as SMV provides a trace as
a counterexample, if the abstract system does not satisfy
the abstract invariant. Since we have a clear correspon-
dence between abstract and concrete transitions, we can
examine the trace and find out which of the three rea-
sons listed above is the case. In particular if the concrete
system does not satisfy the invariant then we can trans-
form the trace given by SMV to a concrete trace, thus
generating a concrete counterexample.

3.5 Predicate/Boolean Abstraction

In addition to the InVeSt abstraction mechanisms, we
implemented boolean abstraction of SAL specifications.
We use the boolean abstraction scheme defined in [19]
that uses predicates over concrete variables as abstract
variables to abstract infinite or large state systems into
finite state systems analyzable by model checking. The
advantage of using boolean abstractions can be summa-
rized as follows:� Any abstraction to a finite state system can be ex-

pressed as a boolean abstraction.� The abstract transition relation can be repre-
sented symbolically using Binary Decision Dia-
gram (BDDs). Thus, efficient symbolic model
checking [25] can be effectively applied.� We have defined in [30] an efficient algorithm for
the construction of boolean abstractions. We also
designed an efficient refinement technique that al-
lows us to refine automatically an already con-
structed abstraction until the property of interest is
proved or a counter-example is generated.� Abstraction followed by model checking and suc-
cessive refinement is an efficient and more pow-
erful alternative to invariant generation techniques
such as the ones presented in [6,7].

3.5.1 Automatic Construction of Boolean Abstrac-
tions

The automatic abstraction module takes as input a SAL
basemodule and a set of predicates defining the boolean

abstraction. Using the algorithm in [30] we automati-
cally construct the corresponding abstract transition sys-
tem. This process relies heavily on the PVS decision
procedures.

...
INPUT x: integer
OUTPUT y, z: integer

INITIALIZATION
TRUE --> INIT(x) = 0;

INIT(y) = 0;
INIT(z) = y;

TRANSITION
NOT(x > 0) --> y’ = y + 1
[] z > 0 --> z’ = y - 1, y’ = 0

...

Figure 3. Concrete Module.

Figure 3 and 4 display a simple SAL module and its
abstraction where the boolean variablesB1, B2 andB3
correspond to the predicatesx > 0, y > 0, andz > 0.
Notice that the assignment toB3 is nondeterministically
chosen from the setfTRUE, FALSEg.

...
INPUT B1: boolean
OUTPUT B2,B3: boolean

INITIALIZATION
TRUE --> INIT(B1) = FALSE;

INIT(B2) = FALSE;
INIT(B3) = FALSE;

TRANSITION
NOT(B1) --> B2’=F

[] B3 --> B2’=T, B3’= f TRUE, FALSE g
...

Figure 4. Abstract Module.

3.5.2 Explicit Model Checking

Finite-state SAL modules can be translated to SMV for
model checking as explained above. However, model
checkers usually do not allow to access their internal
data structures where intermediate computation steps of
the model-checking process can be exploited. For this
reason, we implemented an efficient explicit-state model

8

checker for SAL systems obtained by boolean abstrac-
tion. The abstract SAL description is translated into
an executable Lisp code that performs the explicit state
model checking procedure allowing us to explore about
twenty thousand states a second. This procedure builds
an abstract state graph that can be exploited for further
analysis. Furthermore, additional abstractions can be
applied on the fly while the abstract state graph is be-
ing built.

3.5.3 Automatic Refinement of Abstractions

When model checking fails to establish the property of
interest, we use the results developed in [29, 30] to de-
cide whether the constructed abstraction is too coarse
and needs to be refined, or that the property is violated
in the concrete system and that the ge nerated counter-
example corresponds indeed to an execution of the con-
crete system violating the property. This is done by ex-
amining the generated abstract state graph. The refine-
ment technique computes the precondition to a transition
where nondeterministic assignments occur. The precon-
ditions corresponding to the cases where the variables
get eitherTRUEor FALSEdefine two predicates that are
used as new abstract variables. The following transition
from the example

B3 --> B2’=TRUE, B3’= fTRUE, FALSEg
can be automatically refined to

B3 --> B2’=TRUE, B3’=B4 ,
B4’=FALSE, B5’ = FALSE

whereB4 andB5 correspond to the predicatesy=1 and
y>1 , respectively.

4 Conclusions

SAL is a tool that combines techniques from static
analysis, model checking, and theorem proving in a truly
integrated environment. Currently, its core is realized as
an extension of the PVS system and has a well-defined
interface for coupling specialized analysis tools. So
far, we have been focusing on developing and connect-
ing back-end tools for validating SAL specifications by
means of animation, theorem proving, and model check-
ing, and also for computing abstractions, slices, and in-
variants of SAL modules. There are as yet no automated
translators into the SAL language. Primary candidates
are translators for source languages such as Java, Ver-
ilog, Esterel, Statecharts, or SDL. Since SAL is an open
system with well-defined interfaces, however, we hope
others will write those if the rest of the system proves
effective.

We are currently completing the implementation of
the SAL prototype which includes a parser, typechecker,
a slicer, an invariant generator, the connection to InVeSt,
and translators to SMV and PVS. We expect to release
the prototype SAL system in mid-2000.

Although our experience with the combined power of
several forms of mechanized formal analysis in the SAL
system is still rather limited, we predict that proofs and
refutations of concurrent systems that currently require
significant human effort will soon become routine cal-
culations.

References

[1] P. A. Abdulla, A. Annichini, S. Bensalem, A. Bouajjani,
P. Habermehl, and Y. Lakhnech. Verification of infinite-
state systems by combining abstraction and reachability
analysis. In Halbwachs and Peled [20], pages 146–159.

[2] S. Bensalem, A. Bouajjani, C. Loiseau, and J. Sifakis.
Property preserving simulations. In G. v. Bochmann and
D. K. Probst, editors,Computer Aided Verification’92,
volume 663 ofLNCS, pages 260–273. Springer-Verlag,
1992.

[3] S. Bensalem and Y. Lakhnech. Automatic generation of
invariants.Formal Methods in System Design, 15(1):75–
92, July 1999.

[4] S. Bensalem, Y. Lakhnech, and S. Owre. Computing
abstractions of infinite state systems automatically and
compositionally. In A. J. Hu and M. Y. vardi, editors,
Computer Aided Verification, volume 1427 ofLNCS,
pages 319–331. Springer-Verlag, 1998.

[5] S. Bensalem, Y. Lakhnech, and S. Owre. InVeSt: A
tool for the verification of invariants. In A. J. Hu and
M. Y. vardi, editors,Computer Aided Verification, vol-
ume 1427 ofLNCS, pages 505–510. Springer-Verlag,
1998.

[6] S. Bensalem, Y. Lakhnech, and H. Saı̈di. Powerful tech-
niques for the automatic generation of invariants. In
R. Alur and T. A. Henzinger, editors,Computer-Aided
Verification, CAV ’96, volume 1102 ofLecture Notes in
Computer Science, pages 323–335, New Brunswick, NJ,
July/Aug. 1996. Springer-Verlag.

[7] N. Bjørner, I. A. Browne, and Z. Manna. Automatic gen-
eration of invariants and intermediate assertions.Theo-
retical Computer Science, 173(1):49–87, 1997.

[8] F. Bourdoncle. Efficient chaotic iteration strategies with
widenings. In D. Bjørner, M. Broy, and I. V. Pottosin,
editors,Proceedings of the International Conference on
Formal Methods in Programming and their Applica-
tions, pages 128–141, 1993. Vol. 735 ofLecture Notes
in Computer Science, Springer-Verlag.

[9] M. Bozga, J. Fernandez, A. Kerbrat, and L. Mounier.
Protocol verification with the Aldebaran toolset.Soft-
ware Tools and Technology Transfer journal, 1998.

[10] M. Bozga, J.-C. Fernandez, L. Ghirvu, S. Graf,
J. Krimm, and L. Mounier. IF: An Intermediate Repre-
sentation and Validation Environment for Timed Asyn-

9

chronous Systems. InProceedings of FM’99, Toulouse,
France, LNCS, 1999.

[11] E. Clarke, E. Emerson, and E. Sistla. Automatic verifi-
cation of finite state concurrent systems using temporal
logic specifications: A practical approach. In10th ACM
symp. of Prog. Lang.ACM Press, 1983.

[12] E. Clarke, O. Grumberg, and D. Long. Model check-
ing and abstraction.ACM Transactions on Programming
Languages and Systems, 16(5), 1994.

[13] D. Dams. Abstract interpretation and partition refine-
ment for model checking. PhD thesis, Technical Univer-
sity of Eindhoven, 1996.

[14] D. Dams, R. Gerth, and O. Grumberg. Abstract in-
terpretation of reactive systems: Abstractions preserv-
ing ACTL�, ECTL� and CTL�. In Proceedings of the
IFIP WG2.1/WG2.2/WG2.3 (PROCOMET). IFIP Trans-
actions, North-Holland/Elsevier, 1994.

[15] C. Daws, A. Olivero, and S. Yovine. Verifying ET-
LOTOS programs with KRONOS. InProc. FORTE’94,
Berne, Switzerland, Oct. 1994.

[16] M. B. Dwyer and J. Hatcliff. Slicing software for model
construction. InProceedings of ACM SIGPLAN Work-
shop on Partial Evaluation and Semantics-Based Pro-
gram Manipulation (PEPM’99), Jan. 1999.

[17] J.-C. Fernandez, C. Jard, T. Jéron, L. Nedelka, and
C. Viho. Using on-the-fly verification techniques for the
generation of test suites. In R. Alur and T. A. Henzinger,
editors, Proceedings of the 8th International Confer-
ence on Computer-Aided Verification (Rutgers Univer-
sity, New Brunswick, NJ, USA), volume 1102 ofLNCS.
Springer Verlag, 1996. Also available as INRIA Re-
search Report RR-2987.

[18] V. Ganesh, H. Saı̈di, and N. Shankar. Slicing SAL. Draft,
1999.

[19] S. Graf and H. Saı̈di. Construction of abstract state
graphs with PVS. InConference on Computer Aided
Verification CAV’97, LNCS 1254, Springer Verlag,
1997.

[20] N. Halbwachs and D. Peled, editors.Computer-Aided
Verification, CAV ’99, volume 1633 ofLecture Notes in
Computer Science, Trento, Italy, July 1999. Springer-
Verlag.

[21] R. Kurshan.Computer-Aided Verification of Coordinat-
ing Processes, the automata theoretic approach. Prince-
ton Series in Computer Science. Princeton University
Press, 1994.

[22] D. E. Long. Model Checking, Abstraction, and Compo-
sitional Reasoning. PhD thesis, Carnegie Mellon, 1993.

[23] G. Lüttgen and V. Carreño. Analyzing mode confusion
via model checking. In D. Dams, R. Gerth, S. Leue,
and M. Massink, editors,Theoretical and Practical As-
pects of SPIN Model Checking (SPIN ’99), volume 1680
of Lecture Notes in Computer Science, pages 120–135,
Toulouse, France, September 1999. Springer-Verlag.

[24] Z. Manna and A. Pnueli.Temporal Verification of Reac-
tive Systems: Safety. Springer-Verlag, 1995.

[25] K. McMillan. Symbolic model checking. Kluwer Aca-
demic Publishers, Boston, 1993.

[26] C. Muñoz and J. Rushby. Structural embeddings: Mech-
anization with method. InProceedings of the World
Congress on Formal Methods FM 99, volume 1708 of
LNCS, pages 452–471, 1999.

[27] S. Owre, J. Rushby, N. Shankar, and F. von Henke. For-
mal verification for fault-tolerant architectures: Prole-
gomena to the design of PVS.IEEE Transactions on
Software Engineering, 21(2):107–125, Feb. 1995.

[28] J. P. Queille and J. Sifakis. Specification and verification
of concurrent systems in CESAR. InProc. 5th Int. Sym.
on Programming, volume 137 ofLNCS, pages 337–351.
Springer-Verlag, 1982.

[29] H. Saı̈di. Modular and incremental analysis of concur-
rent software systems. In14th IEEE International Con-
ference on Automated Software Engineering, Oct. 1999.

[30] H. Saı̈di and N. Shankar. Abstract and model check
while you prove. In Halbwachs and Peled [20], pages
443–454.

[31] The SAL Group. The SAL intermediate language. Avail-
able at:http://sal.csl.sri.com/ , 1999.

10

