
PVS: Combining Speci�cation, Proof Checking,and Model Checking?To appear in CAV'96S. Owre, S. Rajan, J. M. Rushby, N. Shankar, and M. SrivasComputer Science Laboratory, SRI International, Menlo Park CA 94025 USAfowre, sree, rushby, shankar, srivasg@csl.sri.comURL: http://www.csl.sri.com/pvs.htmlPhone: +1 (415) 859-5272 Fax: +1 (415) 859-2844PVS (Prototype Veri�cation System) is an environment for constructing clearand precise speci�cations and for developing readable proofs that have beenmechanically veri�ed. It is designed to exploit the synergies between languageand deduction, automation and interaction, and theorem proving and modelchecking. For example, the type system of PVS requires the use of theoremproving to establish type correctness, and conversely, type information is usedextensively during a proof. Similarly, decision procedures are heavily used inorder to simplify the tedious and obvious steps in a proof leaving the user tointeractively supply the high-level steps in a veri�cation. Model checking is onesuch decision procedure that is used to discharge temporal properties of speci�c�nite-state systems.A variety of examples from functional programming, fault tolerance, and realtime computing have been veri�ed using PVS [8]. The most substantial use ofPVS has been in the veri�cation of the microcode for selected instructions ofa commercial-scale microprocessor called AAMP5 designed by Rockwell-Collinsand containing about 500,000 transistors [6]. Most recently, PVS has been ap-plied to the veri�cation of the design of an SRT divider [10]. The key elementsof the PVS design are described below in greater detail below.1 Combining Theorem Proving and TypecheckingThe PVS speci�cation language is based on classical, simply typed higher-orderlogic, but the type system has been augmented with subtypes and dependenttypes. Though typechecking is undecidable for the PVS type system, the PVStypechecker automatically checks for simple type correctness and generates proofobligations corresponding to predicate subtypes. These proof obligations can bedischarged through the use of the PVS proof checker. PVS also has parametrictheories so that it is possible to capture, say, the notion of sorting with respect toarbitrary sizes, types, and ordering relations. By exploiting subtyping, dependenttyping, and parametric theories, researchers at NASA Langley Research Centerand SRI have developed a very general bit-vector library. Paul Miner at NASA? The development of PVS was funded by SRI International through IR&D funds.Various applications and customizations have been funded by NSF Grant CCR-930044, NASA, ARPA contract A721, and NRL contract N00015-92-C-2177.



has developed a speci�cation of portions of the IEEE 854 oating-point standardin PVS [7].In PVS, the injective function space injection can be de�ned as a higher-order predicate subtype using the higher-order predicate injective? as shownbelow. The notation (injective?) is an abbreviation for ff j injective?(f)gwhich is the subtype of functions from D to R for which the predicate injective?holds.functions [D, R: TYPE]: THEORYBEGINf, g: VAR [D -> R]x, x1, x2: VAR Dinjective?(f): bool = (FORALL x1, x2: (f(x1) = f(x2) => (x1 = x2)))injection: TYPE = (injective?)END functionsWe can also de�ne the subtype even of even numbers and declare a functiondouble as an injective function from the type of natural numbers nat to thesubtype even.even: TYPE = fi : nat | EXISTS (j : nat): i = 2 * jgdouble : injection[nat, even] = (LAMBDA (i : nat): 2 * i)When the declaration of double is typechecked, the typechecker generatestwo proof obligations or type correctness conditions (TCCS). The �rst TCCchecks that the result computed by double is an even number. The second TCCchecks that the de�nition of double is injective. Both TCCs are proved quicklyand automatically using the default TCC strategy employed by the PVS proofchecker. Proofs of more complicated TCCs can be constructed interactively.The PVS speci�cation language has a number of other features that exploitthe interaction between theorem proving and typechecking. Conversely, typeinformation is used heavily within a PVS proof so that predicate subtype con-straints are automatically asserted to the decision procedures, and quanti�erinstantiations are typechecked and can generate TCC subgoals during a proofattempt. The practical experience with PVS has been that the type system doesrapidly detect a lot of common speci�cation errors.2 Combining Decision Procedures with Interactive ProofDecision Procedures. PVS employs decision procedures include the congruenceclosure algorithm for equality reasoning along with various decision proceduresfor various theories such as linear arithmetic, arrays, and tuples, in the presenceof uninterpreted function symbols [11]. PVS does not merely make use of de-cision procedures to prove theorems but also to record type constraints and to2



simplify subterms in a formula using any assumptions that govern the occur-rence of the subterm. These governing assumptions can either be the test partsof surrounding conditional (IF-THEN-ELSE) expressions or type constraints ongoverning bound variables. Such simpli�cations typically ensure that formulasdo not become too large in the course of a proof. Also important, is the fact thatautomatic rewriting is closely coupled with the use of decision procedures, sincemany of the conditions and type correctness conditions that must be dischargedin applying a rewrite rule succumb rather easily to the decision procedures.Strategies. The PVS proof checker provides powerful primitive inference stepsthat make heavy use of decision procedures, but proof construction solely interms of even these inference steps can be quite tedious. PVS therefore pro-vides a language for de�ning high-level inference strategies (which are similarto tactics in LCF [3]). This language includes recursion, a let binding con-struct, a backtracking try strategy construction, and a conditional if strategyconstruction. Typical strategies include those for heuristic instantiation ofquanti�ers, repeated skolemization, simpli�cation, rewriting, and quantifer in-stantiation, and induction followed by simpli�cation and rewriting. There areabout a hundred strategies currently in PVS but only about thirty of these arecommonly used. The others are used as intermediate steps in de�ning more pow-erful strategies. The use of powerful primitive inference steps makes it possibleto de�ne a small number of robust and exible strategies that usually su�ce forproductive proof construction.3 Integrating Model Checking and Theorem ProvingIn the theorem proving approach to program veri�cation, one veri�es a propertyP of a programM by provingM � P . The model checking approach veri�es thesame program by showing that the state machine for M is a satisfying modelof P , namely M j= P . For control-intensive approaches over small �nite states,model checking is very e�ective since a more traditional Hoare logic style proofinvolves discovering a su�ciently strong invariant. These two approaches havetraditionally been seen as incompatible ways of viewing the veri�cation problem.In recent work [9], we were able to unify the two views and incorporate a modelchecker as decision procedure for a well-de�ned fragment of PVS.This integration uses the mu-calculus as a medium for communicating be-tween PVS and a model checker for the propositional mu-calculus. We haveused this integration to verify a complicated communication protocol by meansof abstraction and model checking [4], and also to prove the correctness of anN-process mutual exclusion protocol in such a way that the induction step usedthe correctness of the 2-process version of the protocol as veri�ed by the modelchecker.The general mu-calculus over a given state type essentially provides operatorsfor de�ning least and greatest �xpoints of monotone predicate transformers. InPark's mu-calculus, the state type is restricted to n-tuple of booleans and extendsquanti�ed boolean formulas (i.e., propositional logic with boolean quanti�cation)3
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