
An Architecture for an Adaptive
Intrusion-Tolerant Server ?

Alfonso Valdes, Magnus Almgren, Steven Cheung, Yves Deswarte??,
Bruno Dutertre, Joshua Levy, Hassen Säıdi, Victoria Stavridou, and

Tomás E. Uribe

System Design Laboratory,
SRI International,

333 Ravenswood Ave., Menlo Park, CA 94025
valdes@sdl.sri.com

Abstract. We describe a general architecture for intrusion-tolerant en-
terprise systems and the implementation of an intrusion-tolerant Web
server as a specific instance. The architecture comprises functionally re-
dundant COTS servers running on diverse operating systems and plat-
forms, hardened intrusion-tolerance proxies that mediate client requests
and verify the behavior of servers and other proxies, and monitoring
and alert management components based on the EMERALD intrusion-
detection framework. Integrity and availability are maintained by dy-
namically adapting the system configuration in response to intrusions
or other faults. The dynamic configuration specifies the servers assigned
to each client request, the agreement protocol used to validate server
replies, and the resources spent on monitoring and detection. Alerts trig-
ger increasingly strict regimes to ensure continued service, with graceful
degradation of performance, even if some servers or proxies are compro-
mised or faulty. The system returns to less stringent regimes as threats
diminish. Servers and proxies can be isolated, repaired, and reinserted
without interrupting service.

1 Introduction

The deployment of intrusion-detection technology on mission-critical and
commercial systems shows that perfect detection and immediate miti-
gation of attacks remain elusive goals. Even systems developed at great
cost contain residual faults and vulnerabilities. In practice, emphasis must
shift from unattainable “bulletproof” systems to real-world systems that
can tolerate intrusions. An intrusion-tolerant system is capable of self-
diagnosis, repair, and reconstitution, while continuing to provide service
? This research is sponsored by DARPA under contract number N66001-00-C-8058.

The views herein are those of the authors and do not necessarily reflect the views of
the supporting agency. Approved for Public Release—Distribution Unlimited.

?? LAAS-CNRS, Toulouse, France

to legitimate clients (with possible degradation) in the presence of in-
trusions [6]. This paper describes the conceptual architecture of such a
system, and our experience with its initial implementation. Our design
integrates concepts from distributed intrusion detection, fault tolerance,
and formal verification.

Our primary concerns are availability and integrity: the system must
remain capable of correctly servicing requests from honest clients even
if some components are compromised. The architecture is also intended
to be scalable: servers and proxies can be added to improve the system’s
performance and reliability, depending on the resources available.

1.1 Architecture Outline

The architecture, shown in Figure 1, consists of a redundant tolerance
proxy bank that mediates requests to a redundant application server
bank, with the entire configuration monitored by a variety of mecha-
nisms to ensure content integrity, including intrusion-detection systems
(IDSs). The proxies and application servers are redundant in capability
but diverse in implementation, so that they are unlikely to be simulta-
neously vulnerable to the same attack. The application servers provide
the application-specific functionality using COTS products, thus reduc-
ing the cost of specialized custom-built components. The remainder of
the configuration provides intrusion tolerance by detecting, masking, and
recovering from attacks or nonmalicious faults.

The system is designed to provide continued reliable and correct ser-
vice to external clients, even if a fraction of the application servers and
proxies are faulty. The faults we consider include transient and permanent
hardware faults, software bugs, and intrusions into application servers and
tolerance proxies. The architecture can support a variety of client-server
systems, such as database applications or Web content distribution, under
the assumptions outlined below.

An important aspect of our system is a distributed management func-
tion that takes actions in response to adverse conditions and diagnoses.
All platforms and network interfaces within the system are instrumented
with a variety of monitors based on signature engines, probabilistic in-
ference, and symptom detection. Given the reports from this monitoring
subsystem, the management function undertakes a variety of tolerance
policy responses. Responses include enforcing more stringent agreement
protocols for application content but reducing system bandwidth, filtering
out requests from suspicious clients, and restarting platforms or services
that appear corrupt.

Proxies
IDS

Leader

COTS Application Servers

Clients

Fig. 1. Schematic view of the intrusion-tolerant server architecture

1.2 Assumptions

We assume that attackers do not have physical access to the configuration.
We assume that no more than a critical number of servers are in an
undetected compromised state at any given time.

Our agreement protocols assume that all nonfaulty and noncompro-
mised servers give the same answer to the same request. Thus, the archi-
tecture is meant to provide content that is static from the end user’s point
of view. The reply to a request can be the result of substantial computa-
tion, on the condition that the same result be obtained by the different
application servers. Target applications include plan, catalog, and news
distribution sites.

The system content can be updated periodically, by suspending and
then resuming the proxy bank, but we do not address specific mechanisms
for doing so (noting only that online content updates can introduce new
vulnerabilities). Survivable storage techniques [16,23] can be used in the
future to build a separate subsystem to handle write operations, while
retaining the current architecture for read requests.

The architecture focuses on availability and integrity, and does not ad-
dress confidentiality. We do not defend against insider threat or network-
flooding denial-of-service attacks.

1.3 Paper Outline

Section 2 describes the basic building blocks of our architecture. Section 3
describes the monitoring mechanisms, which aim to provide a picture
of the current system state, including suspected intrusions and faults.
Section 4 describes how this information is used to respond to threats,
adapting the system configuration to the perceived system state. Section 5
describes the details of our implementation, and Section 6 presents our
conclusions, including related and future work.

2 Architecture Components

2.1 Application Servers

In our architecture, the domain-specific functionality visible to the end
user (the client) is provided by a number of application servers. These
provide equivalent services, but on diverse application software, operat-
ing systems, and platforms, so that they are unlikely to be vulnerable
to common attacks and failure modes. They include IDS monitors but
are otherwise ordinary platforms running diverse COTS software. In our
instantiation (see Section 5), these servers provide Web content.

For our content agreement protocols to be practical, we assume there
are at least three different application servers; a typical number would be
five or seven. However, the enterprise can add as many of these as desired,
increasing the overall performance and intrusion-tolerance capabilities.1

2.2 Tolerance Proxies

The central components of our architecture are one or more tolerance
proxies. Proxies mediate client requests, monitor the state of the applica-
tion servers and other proxies, and dynamically adapt the system opera-
tion according to the reports from the monitoring subsystem (described
in Section 3).

One of the proxies is designated as the leader . It is responsible for
filtering, sanitizing, and forwarding client requests to one or more appli-
cation servers, implementing a content agreement protocol that depends
on the current regime, while balancing the load. In the presence of per-
ceived intrusions, increasingly stringent regimes are used to validate server
replies. The regime is selected according to a chosen policy , depending on
1 The architecture should be modified for large numbers of application servers, as

discussed in Section 6.

reports from the monitoring subsystem and on the outcome of the agree-
ment protocol currently in use.

Optional auxiliary proxies monitor all communication between the
proxy leader and the application servers, and are themselves monitored by
the other proxies and the sensor subsystem. If a majority of proxies detect
a leader failure, a protocol is executed to elect a new leader. Our current
design and implementation focuses on the case of a single proxy. However,
we discuss inter-proxy agreement protocols further in Section 4.4.

The tolerance proxies run only a relatively small amount of custom
software, so they are much more amenable to security hardening than
the more complex application servers, whose security properties are also
more difficult to verify. We believe there is greater return, both in terms of
security and utility, in expending effort developing a secure proxy bank
than in developing hardened application servers. Since the proxies are
mostly application-independent, their development cost can be amortized
by re-using them in different domains.

2.3 Intrusion-Detection System

The third main component of our architecture is an intrusion-detection
system (IDS), which analyzes network traffic and the state of the servers
and proxies to report suspected intrusions. Some IDS modules execute
on one or more dedicated hardware platforms, while others reside in the
proxies and application servers. We describe our IDS capabilities in more
detail in Sections 3.1 and 5.1.

2.4 Functional Overview

When a client request arrives, the following steps are performed:

1. The proxy leader accepts the request and checks it, filtering out mal-
formed requests.

2. The leader forwards the request, if valid, to a number of application
servers, depending on the current agreement regime.

3. The application servers process the request and return the results to
the proxy leader. If sufficient agreement is reached, the proxy forwards
the content to the client.

4. The regime is adjusted according to the result of the content agree-
ment and reports from the monitoring subsystem.

5. The auxiliary proxies, if present, monitor the transaction to ensure
correct proxy leader behavior.

3 Monitoring Subsystem

The monitoring subsystem includes a diversified set of complementary
mechanisms, including the IDS. The information collected by the moni-
toring subsystem is aggregated into a global system view, used to adapt
the system configuration to respond to suspected or detected threats and
malfunctions, as described in Section 4. Diversity helps make the moni-
toring subsystem itself intrusion-tolerant, since it may still be effective if
some of its components fail.

3.1 Intrusion Detection

Our intrusion-detection systems feature diverse event sources, inference
techniques, and detection paradigms. They include EMERALD host, net-
work, and protocol monitors [19,15,20,29], as well as embedded applica-
tion monitors [1].

Different sensors cover different portions of the detection space, and
have different detection rates, false alarm ratios, and operational con-
ditions (e.g., the maximum rate of incoming events that can be han-
dled). Their combination allows detecting more known attacks, as well as
anomalies arising from unknown ones. The advantages of heterogeneous
sensors come at the cost of an increased number of alerts. To effectively
manage them, they must be aggregated and correlated [30,18]. Alert cor-
relation can also detect attacks consisting of multiple steps.

3.2 Content Agreement

The proxy leader compares query results from different application servers,
according to the current agreement regime, as described in Section 4.1.
If two or more results fail to match, this is viewed as a suspicious event,
and suspect servers are reported.

3.3 Challenge-Response Protocol

Each proxy periodically launches a challenge-response protocol to check
the servers and other proxies. This protocol serves two main purposes:

– It provides a heartbeat that checks the liveness of the servers and other
proxies. If a proxy does not receive a response within some delay after
emitting a challenge, it raises an alarm.

– The protocol checks the integrity of files and directories located on
remote servers and proxies.

The integrity of application servers is also verified indirectly by con-
tent agreement, as mentioned above. However, a resolute attacker could
take control of several servers and modify only rarely used files. The
challenge-response protocol counters this by reducing file error latency,
detecting file modifications before they return incorrect content to the
users.

As an integrity check, the challenge-response protocol is similar to
TripwireTM [28]. For each data item whose integrity is to be checked, a
checksum is computed from a secret value (the challenge) and the content
of the item. To resist possible guesses by an attacker, the checksum is
computed by applying a one-way hash function to the concatenation of
the challenge and the content to be checked. The resulting checksum is
then compared with a precomputed one. This is sufficient to check if static
data items have been modified.

However, we must also consider the possibility that an attacker with
complete control of a server or proxy modifies the response program to
return a correct challenge response for a file incorrectly modified. In par-
ticular, if the challenge is always the same, it is easy for the attacker to
precompute all responses, store the results in a hidden part of the mem-
ory or disk, and then modify the data. The attacker would then be able
to return correct responses for incorrect files.

To guarantee the freshness of the response computation, a different
challenge is sent with each request. The proxy could check that each
response corresponds to the specified challenge by keeping a local copy of
all sensitive files and running the same computation as the server, but this
imposes an extra administrative and computational load on the proxy.

Instead, we can exploit the fact that servers and proxies are periodi-
cally rebooted (e.g., once a day), as a measure for software rejuvenation
[11]. In this case, a finite number C of challenges can be generated offline
for each file to be checked, and the corresponding responses computed
offline, too. The results are then stored on the proxy. At each integrity-
check period, the proxy sends one of the C challenges and compares the
response with the precomputed result. The challenges are not repeated,
provided

C > (time between reboots)×(frequency of challenge-response protocol) .

An attacker could circumvent this mechanism by keeping copies of
both the original and the modified files. But such a large-footprint at-
tack should be detected, either by checking the integrity of the concerned
directories, or by the host monitor IDS.

3.4 Online Verifiers

As part of the design process, we express the high-level behavior of the
proxy as a reactive system that can be formally verified. An abstraction
of the system is described using a finite-state omega-automaton and the
properties of interest are specified in temporal logic. The high-level speci-
fications can be formally verified using model checking [10]. However, this
does not guarantee that the implementation (the concrete system) meets
the corresponding requirements.

To fill this gap, we introduce online verifiers, which check that the ab-
stract properties hold while the concrete system is running, by matching
concrete and abstract states. If an unexpected state is reached, an alarm
is raised. Only temporal safety properties can be checked in this way
[27]; however, the challenge response heartbeat described in Section 3.3
provides a complementary liveness check.

The online verifiers are generated by annotating the proxy C program
source. Since type-safeness is not guaranteed, and only high-level prop-
erties are checked, this does not detect lower-level faults, such as buffer
overflows. We will apply complementary mechanisms at this level, such
as compilation using the StackGuard tool [2].

4 Adaptive Response

We now describe how the system responds to state changes reported by
the monitoring subsystem described in the previous section.

4.1 Agreement Regimes and Policies

A main role played by the proxy leader is to manage the redundant appli-
cation servers. The proxy decides which application servers should be used
to answer each query, and compares the results. The number of servers
used trades off system performance against confidence in the integrity of
the results.

Figure 2 presents the main steps in the content agreement protocol exe-
cuted by the proxy leader. This protocol is parameterized by an agreement
regime, which must specify, at each point in time:

1. Which application servers to forward the request to
2. What constitutes sufficient agreement among the replies
3. Which servers, if any, to report as suspicious to the monitoring sub-

system

Start
Accept
request

Forward
request to
n servers

Identify
suspicious

servers

Send
response
to client

Ask more
servers

Service
unavailable

invalid request

valid

sufficient
agreement

insufficient
agreement

sufficient
agreement

limit
reached

Fig. 2. Generic content agreement protocol

A good agreement regime should perform load balancing and choose
the application servers as randomly as possible, so attackers cannot always
predict which server will service a particular request.

Most important, the regime should be dynamically adjusted in re-
sponse to alerts: a policy specifies the action to take next if no agreement
is achieved, and which regime to use in response to various events. A
policy must also specify how to respond if intrusions or other adverse
conditions are detected, and when to return to a less stringent agreement
regime. The transition to a stricter regime can also occur as a result
of administrative action (e.g., if the administrator is alerted by external
sources).

Example 1 (Simple agreement regime). Given an architecture with N ap-
plication servers, the simple agreement regime n, for 1 ≤ n ≤ N , specifies
that each client request be forwarded to n different application servers,
randomly chosen, that are not considered compromised. Sufficient agree-
ment is reached if a majority of servers (at least bn/2c + 1) agree; ma-
chines in the minority are reported as suspicious. The absence of a reply
is counted as a vote in the minority.

We refer to simple agreement regimes 1, 2 and 3 as single, duplex and
triplex modes, respectively. The agreement regime where each client re-

quest is sent to all application servers is referred to as full mode. More
complex regimes are possible:

Example 2 (Probabilistic agreement regime). A probabilistic agreement
regime assigns to each server a real-valued confidence, as an estimated
probability of noncompromise. Given a request, the leader chooses a set
of servers such that the sum of their confidences is greater than a chosen
lower bound. Results are ranked by the sum of the confidences of the ma-
chines that produced them. If the top-ranked result’s confidence exceeds
a given threshold, it is used. The confidence for servers in the weighted
minority is reduced, and the monitoring subsystem is notified.

One possible policy uses the simple agreement regimes and queries
one more server if no majority is obtained; a more conservative policy
could move directly to full mode instead. In the probabilistic case, more
servers can be queried if the top-ranked reply does not reach the desired
confidence level. Suspicious application servers are taken offline for further
diagnosis and repair (see below).

Note that the agreement protocol is just one mechanism of many
to guard against corruption of content. To cause the system to provide
invalid content, an attacker must corrupt multiple servers simultaneously
so that they provide the same incorrect content, while evading the IDS and
challenge-response protocol. Any content corruption detected by these
stronger mechanisms is immediately repaired. The agreement protocol is
intended to make delivery of corrupt content very unlikely, as long as
assumptions about the maximal number of simultaneously compromised
servers hold.

4.2 Risk vs. Performance

The choice of policy poses a tradeoff between what is considered the
acceptable risk of bad content delivery versus the system performance
requirements. The reliability of any particular regime depends on the
quality of the IDS alerts and on the fault assumptions made.

Given assumptions about the number of failed servers, we can estimate
the probability that the content provided to a client under a given policy
is not correct. As an illustration, consider the simple agreement regime of
Example 1. Let N be the number of application servers, F be the total
number of compromised servers, and n be the starting simple regime
(number of queried servers). The following focuses on integrity: to cause
delivery of corrupt content, an attacker must modify content identically

F initial simple regime n

1 2 3 4 5

0 0 0 0 0 0
1 0.2 0 0 0 0
2 0.4 0.3 0.3 0 0

F initial simple regime n

1 2 3 4 5

3 0.6 0.7 0.7 1 1
4 0.8 1 1 1 1
5 1 1 1 1 1

Table 1. Probability of sending corrupted content, querying one more
server in case of a tie

on all compromised servers. This is the worst-case assumption from the
integrity point of view.2

Table 1 shows the probability of sending an incorrect response for
N = 5, using a policy that starts with the simple regime n and queries one
extra server in case of a tie, assuming that all F compromised servers agree
in their incorrect response. The higher regimes reduce the probability of
incorrect response and increase the probability of detecting compromised
servers, provided only a minority of servers are faulty (F ≤ 2). In duplex
mode, service integrity is guaranteed if at most one server is compromised,
but some requests may receive no response, unless the policy increases the
regime. In triplex mode, continued and correct service is guaranteed if one
server is compromised, but the system offers a reduced capacity to clients.
The full regime provides correct service (with performance degradation)
if several, but not a majority, of the servers are compromised (up to 2 for
N = 5).

4.3 Responses to Alerts

Alerts are indications of possible attacks or compromises. Experience
shows that all systems connected to the Internet are regularly attacked,
or at least probed. IDS components generate a large number of valid
alerts that do not always indicate system compromise, as well as numer-
ous false alarms. Other parts of the monitoring subsystem generate alerts
as well: the content agreement and challenge-response protocols provide
alerts that identify likely compromises.

Although alerts can arise from direct detection of an attack, many
report symptoms of a compromise that has already occurred. While attack
detection usually indicates only the possibility of a compromise, symptom
detection can reliably recognize a compromise after it has occurred. For
2 If the attacker wishes to deny availability, content corruption can be arbitrary; no

reply will be sent if the protocol fails.

example, unexpected server behavior such as an outbound connection
unambiguously indicates some compromise.

The system can invoke a variety of actions in response to alerts, in-
cluding:

– Temporarily blocking the address from which an attack appears to
originate

– Increasing the agreement regime
– Increasing the coverage and frequency of the challenge-response pro-

tocol
– Disconnecting and rebooting a server
– Refusing service and alerting the system administrator

The choice of action depends on the current system state and the nature
of the alert. Alerts can be evaluated according to the severity of the
compromise they indicate, the detail they provide, and the reliability of
the alert itself. We consider three classes of alerts: warnings of probes and
clearly unsuccessful attacks (detailed, reliable, but not severe), credible
indications that a specific asset is compromised (detailed, reliable, and
severe), and evidence of significant attacks with unknown outcome (not
detailed, somewhat reliable, and potentially severe).

The response to probes and unsuccessful attacks is to temporarily
block the apparent source address. We are careful not to block for too
long, since this can lead to denial of service if an attacker launches a
nuisance probe with a spoofed source address.

If an application server is detected as compromised or otherwise failed,
the system administrator is alerted, and the server is rebooted from a
read-only copy of its operating system and data. The proxies detect that
the server is back online by running a version of the challenge-response
protocol. The proxy recovery protocol is similar, with the difference that
the operational data for the proxy (e.g., current policy and regime, config-
uration) must be recovered from the other operational tolerance proxies,
if present.

Adaptation is used to respond to the third class of alerts. The response
to evidence of attacks with unknown outcome is to move to a more strin-
gent agreement regime, which provides greater integrity assurance and
helps identify compromised servers. The alert manager is a proxy mod-
ule that accepts alerts from the monitoring subsystem. It assesses the
state of each application server as up, down, or suspicious. This informa-
tion is used to choose the appropriate agreement regime, as part of the
implemented policy.

Finally, some alerts are both reliable and very severe, and indicate the
compromise of a significant number of components. Such alerts arise, for
example, if there is still insufficient agreement after all application servers
are queried. In such cases, the only safe option is to shut down the system
and alert the system administrator.

As an additional security mechanism, servers and proxies are regularly
rebooted to prevent software aging and defeat incremental intrusions,
as mentioned in Section 3.3. This does not fix any flaws present in the
system, but gives an attacker only a limited window of time to exploit
them.

4.4 Multiproxy Protocols

Our implementation to date has focused on detection and response proto-
cols for multiple application servers mediated by a single leader proxy, and
no auxiliary ones. However, we are developing the general case, where re-
dundant proxies mitigate the weakness presented by the leader as a single
point of failure (albeit a hardened and closely monitored one).

In a multiproxy configuration, auxiliary proxies monitor requests and
replies from the application servers, and can thus quickly observe if the
leader has failed. Like the leader, each auxiliary proxy includes an alert
manager, which receives reports from the monitoring subsystem. A de-
tected failure anywhere in the system is reported to all proxies, which
must agree on the response. In particular, the proxies must maintain a
consistent view of the current regime and of which proxy is the current
leader.

Our multiproxy design includes three proxies and is intended to tol-
erate the compromise or failure of one of them. Proxies communicate
with each other via a multicast channel implemented using a local eth-
ernet link (Figure 1). This channel is assumed to ensure with very high
probability that any message from one proxy is delivered to all other prox-
ies, and that all messages are received in the same order by all proxies.
In particular, this guarantees that asymmetric failures (a faulty proxy
sending inconsistent messages to its peers) do not occur. Under this as-
sumption, simple majority voting protocols are sufficient for maintaining
consistency. (If needed, reliable atomic multicast protocols, such as [25],
can be implemented to satisfy this assumption.)

When a proxy decides that a new agreement regime should be en-
forced, it multicasts a request to the other proxies, which reply by mul-
ticasting their agreement or disagreement. The regime is changed only if

at least two of the three proxies agree. The disagreeing proxy, if any, is
reported to the alert managers.

If an auxiliary proxy suspects that the leader is faulty, it multicasts a
request for changing leader. If the other auxiliary proxy agrees, the leader
is disconnected for repair and the administrator is alerted. The proxy that
initiated the change of leader remains auxiliary and the other becomes
the new leader. If the auxiliary proxies disagree on the leader status, the
“accuser” is considered suspect by the other two.

A similar protocol is used if an auxiliary proxy is suspected of com-
promise. The decision to expel a proxy (leader or auxiliary) requires una-
nimity between the two others. If they do not agree, the accuser is suspect
but not immediately shut down. After a delay, the accuser may persist
and reinitiate the expel protocol. After a fixed number of “false accusa-
tions”, the accuser is itself considered faulty and restarted. This reduces
the risk of prematurely removing a noncompromised proxy that accused
another by mistake.

5 Implementation

Our instantiation of the architecture provides intrusion-tolerant Web ser-
vices. The first prototype has been completed, focusing on the content-
agreement protocols, Web server deployment, and IDS. The Web servers
used are Apache 1.3.20 running under Solaris 8 and FreeBSD 4.2, Mi-
crosoft IIS 5.0 running under MS Windows 2000, and Netscape Fast-
Track 4.1 (iPlanet) under RedHat 7.1.

Figure 3 shows the main components of our proxy implementation.
The regime manager is responsible for executing the content agreement
protocol (Figure 2). The alert manager takes input from the IDS subsys-
tem and the challenge-reponse protocols, and notifies the regime manager
when changes are warranted.

5.1 Monitoring Subsystem

The implemented monitoring subsystem includes a variety of intrusion
detection sensors and alert correlation engines, as follows:

– Network-based sensors detect a variety of network attacks and probes
in real time. These sensors run on a dedicated machine that monitors
the traffic between the clients and the proxy, and the private subnet
between the proxy and the application server bank.

Proxy
Server

Regime
Manager

Alert
Manager

Challenge-
Response

Application
Servers

IDS

Peer
Proxies

Clients

Fig. 3. High-level view of proxy implementation

eXpert-Net is a suite of network-based sensors, each of which focuses
on a specific network protocol. It features an attack knowledge base
and inference engine developed using a forward-chaining rule-based
system generator, P-BEST [14]. eXpert-Net can detect complex at-
tacks and variations of known attacks. For example, by performing
session and transaction reconstruction, eXpert-HTTP, a sensor for
monitoring Web traffic, detects attacks that would be missed if the
analysis were performed on a per-packet basis.
Snort [26] is an open-source intrusion-detection sensor that has an
extensive and updated knowledge base of attack signatures. Although
both Snort and eXpert-Net are signature-based sensors, the diversity
of their knowledge bases and implementation enables them to com-
plement each other.
eBayes-TCP [29] uses a probabilistic model-based technique. This
combines the generalization potential of statistical anomaly detection
with the attack specificity of signature-based detection.

– Host-based operating-system-level sensors complement the network-
based sensors by monitoring events at the operating system level.
EMERALD eXpert-BSM [15] analyzes the audit records generated
by the Sun Solaris Basic Security Module (BSM) to perform real-time
signature-based detection. We are investigating deploying STAT host-
based monitors [31] and Real Secure sensors [12] to monitor the other
operating system platforms, including Windows. The generated alerts
must be in a common format, such as IDMEF [5], accepted by the
correlation engines.

– Host-based application-level sensors couple with an application to ob-
tain high-level, semantically rich data for intrusion-detection analy-
ses. We have developed an Apache module to collect HTTP trans-
action data, which is analyzed by the signature-based sensor eXpert-
HTTP [1].

– A blue sensor [29] discovers hosts and services, and monitors their
operational status, based on Bayesian inference. This sensor is coupled
to the EMERALD eBayes-TCP session monitor. As a result, detection
sensitivity is increased: failed accesses to invalid hosts and services
are inherently more suspicious. Moreover, false alarms are reduced:
accesses to unavailable services are expected to fail, so innocent traffic
accessing these services will not trigger an alert.

– An EMERALD probabilistic alert correlator [30] performs data fusion
from heterogeneous sensors.

5.2 Content Agreement using MD5 Checksums

A basic function performed by the proxy is checking that the pages re-
turned by two or more application servers match. To improve the effi-
ciency of this process, we use MD5 checksums [24], which the servers
compute for each page served. These checksums are cryptographically
strong: producing a fake page that matches a given MD5 checksum is an
intractable problem given the current and foreseeable state of the art.

When comparing content from several servers, only the MD5 check-
sums need to be retrieved from all but one, which is queried for both
checksum and content. The proxy verifies that the checksums match; if
so, it also verifies that the received content matches the common MD5.
This has the following advantages:
– Internal network bandwidth and proxy memory requirements are re-

duced
– When querying multiple servers, it is more efficient to compare the

checksums than the full n pages; verifying a single MD5 is relatively
inexpensive (linear-time in page size)

– The leader proxy can keep a cache of checksums, to be checked when
lower agreement regimes are used. If cache hits occur, the proxy can
operate at a higher assurance level despite using fewer application
servers for content.

The servers have all been instrumented to include the MD5 checksum
header, as specified by HTTP/1.1. The Apache Web server has experi-
mental support for MD5 checksum headers, while the feature was manu-
ally added to both iPlanet and IIS.

The MD5s could be replaced by a more general cryptographic signa-
ture, where each application server signs its pages using a unique private
key, and the proxy verifies each of the signatures. Such a signature can
certify that the origin of each message is the corresponding application
server, preventing spoofing on the private network (which can also be
prevented using dedicated hardware). It does not, however, guarantee the
integrity of the content itself. For instance, if source data files are com-
promised by an undetected attack, the application server will correctly
sign the wrong data.

Similarly, public-key infrastructure can be used so that the end-users
(clients) can certify that the origin of a served page is, indeed, the proxy
server. Again, this mechanism by itself cannot guarantee the integrity of
the content, but only the authenticity of the source.

5.3 Policy Implementation

Our implementation supports a variety of policies based on a general-
ization of the simple agreement regimes of Example 1. In general, each
regime is specified by a pair (n, k), where n is the number of servers to
query, and k is the minimum number of servers that yield sufficient agree-
ment in that regime. Let N be the number of application servers, and P
the set of pairs (i, j), where N ≥ i ≥ j ≥ 1.

The policy is specified by two functions, start : {0, 1, 2, . . .} → P and
δ : P → P ∪ {panic}. If the alert manager assesses that F servers are
suspicious, then start(F) = (n, k) specifies the initial regime. The client
request is forwarded to n servers, and a response is considered correct if
there is agreement between k of them; otherwise, the function δ is used to
identify a new pair (n′, k′), which dictates the new regime, querying n′−n
extra servers. This is repeated until satisfactory agreement is obtained,
or the panic state is reached, in which case the system is considered
too corrupted to function. The alert manager is notified of the content
agreement results.

Implemented policies can range from efficiency-conscious ones that
initially ask only a few servers and query one additional server when
needed, to integrity-conscious ones that query more servers initially and
immediately query all servers when in doubt.

6 Discussion and Conclusions

Our intrusion-tolerant architecture combines a variety of traditional se-
curity mechanisms, as well as concepts from fault tolerance and formal

Security mechanism Intended function

IDS – Detects attacks by monitoring network
– Detects unexpected traffic on internal network
– Triggers adaptation mechanisms
– Alerts system operator of serious conditions

Content agreement – Corroborates content served to client
– Detects erroneous application server (AS) behavior

Adaptive agreement
policies

– Given evidence of suspicious events, reduces
likelihood of serving incorrect content

– Avoids querying suspicious and compromised AS

Challenge-response – Verifies integrity of application servers and proxies
– Triggers adaptation mechanisms
– Provides heartbeat for liveness check

Proxy hardening – Limits proxy vulnerabilities
– Restricts communication between AS and

outside world
– Restricts many malformed requests forwarded to AS

Online verification – Ensures that proxy software behaves
according to specification

Regular reboot of
proxies and AS

– Prevents unreliability due to software “aging”
– Defeats long-term, incremental intrusions

Proxy peer monitoring – Verifies that proxies are operating properly

Table 2. A summary of security mechanisms in the proposed architecture

verification. Table 2 summarizes these mechanisms, and the protective
functions they play. The system is adaptive, responding to alerts and in-
trusions, trading off performance against confidence in the integrity of
the results. Our architecture allows for a wide variety of response poli-
cies to be implemented, depending on the environmental assumptions and
cost-benefit analysis made.

6.1 An Example—Code Red Scenario

The utility of the various mechanisms and levels of detection and recov-
ery can be illustrated using the well-known Code Red worm [17] as an
example.

Both the EMERALD eXpert-Net and Snort IDSs presently installed
detect the Code Red attack. The proxies are notified of the detection, and
the source address of the attack is temporarily blocked. Consider now an
attack that, like Code Red, depends on a buffer overflow included as
part of the request, but is sufficiently different to evade the diverse IDS.

Because of its length and unusual syntax, the attack request is likely
to be blocked by the proxy. Note that a hardened proxy, compiled with
tools such as StackGuard [2], should not be vulnerable to general buffer
overflow attacks.

Suppose nonetheless that the request is forwarded to the application
servers. Code Red will only affect the IIS servers, which will be a minority
in a diverse system implementation. These servers will be diagnosed as
failed and restarted when erroneous content is fetched from them, or as
a result of running the challenge-response protocol. Meanwhile, the other
servers remain available to provide valid content.

Worms such as Code Red propagate by hijacking the Web server and
initiating outbound connections from the server. Such connections are
detected by the IDS on the private net and blocked at the proxy, and the
corresponding server is diagnosed as failed.

In summary, the attack would have to bypass a number of mecha-
nisms to be successful, including direct detection on the external net-
work, symptom detection on the private network, failed agreement, and
challenge-response protocols. The means used by the attack to infect the
system, corrupt content, and propagate are effectively thwarted.

More generally, we believe that a multiplatform attack that can cor-
rupt content on a majority of sufficiently diverse application servers using
a single query or action is very unlikely. An attack that exploits simultane-
ously present but different vulnerabilities requires more malicious traffic,
increasing the likelihood of detection by at least one component.

6.2 Dangers and Tradeoffs

A carelessly implemented and overly reactive response policy can cause
the system to operate continuously at degraded capacity. Indeed, with
sufficient knowledge of the detection and response mechanisms, an at-
tacker may launch attacks to trigger responses that result in self-denial
of service.

As a simple example, it is possible to craft an HTTP request that
will make different server brands respond differently, as discussed in [1].
Replacing a regular space (ASCII 20h) with the tab character (09h) in a
GET request yields a valid reply from the Apache and the iPlanet servers,
but an error code from the IIS Web server. In this case, there is nothing
wrong with the IIS server and it should not be rebooted. Rather, the
client behaves suspiciously and should be blocked.

As mentioned in Section 2.2, the proxy forwards a sanitized version of
the original request. This includes changing all whitespaces to the regular
space, so we avoid such attacks.

6.3 Related Work

A number of commercial products, such as TripwireTM and EnterceptTM,
concentrate on protecting stand-alone Web servers, with no redundancy
management. Our architecture can use these techniques as additional
security measures.

SITAR [32] is an intrusion-tolerant architecture for distributed ser-
vices, and shares many of our goals and assumptions. It includes adaptive
reconfiguration, heartbeat monitors, runtime checks, and COTS servers
mediated by proxies. While we focus on the relationship between IDSs,
content agreement, and adaptive policies, SITAR focuses on using fault-
tolerance techniques, including Byzantine agreement protocols, to coor-
dinate the proxies.

The ITUA project [3] relies on intrusion detection and randomized
automated response. It provides middleware based on process replica-
tion and unpredictable adaptation to tolerate the faults that result from
staged attacks. HACQIT [13] uses a primary/backup server architecture
that does not perform content agreement, and focuses on learning by
generalizing new attacks.

Adaptive Fault Tolerance: One main characteristic of our architecture
is its ability to automatically adapt the server redundancy to the level of
alert. Most fault-tolerant systems adapt their redundancy to component
failures, rather than the level of perceived threat. When a persistent fault
is diagnosed, the faulty unit is isolated, repaired and then reinserted. In
most cases, this delay is made as short as possible to maintain a similar
level of redundancy for the whole mission.

Architectures such as SIFT [33] and GUARDS [21], assign different
levels of redundancy to concurrent tasks according to their criticality. In
other fault-tolerant architectures such as Delta-4 [22] and FRIENDS [8],
different redundancy levels and techniques are assigned according to fault
assumptions rather than criticality. In these architectures, as well as in
AQuA [4], the redundancy levels assigned to tasks can be modified by
operator commands to adapt to environment changes.

In SATURNE [7], idle computers are activated to increase the re-
dundancy of active tasks, proportionally to task criticality. Similarly, the

AFT architecture [9] dynamically adapts the task redundancy according
to task criticality and real-time constraints.

6.4 Future Work

We are working towards a rational tradeoff analysis, which we see as
essential to the development of automated response mechanisms and their
eventual adoption. Choosing a response policy poses difficult tradeoffs
between integrity, availability, latency, and assumptions about potential
threats. We will study the application of Markov decision process theory
to this problem. Our goal is an analysis framework that will let us evaluate
different policies given a variety of assumptions about faults, attacks, and
accuracy of the IDS and monitoring subsystem.

We also want to provide more guarantees concerning the ability of the
system to avoid self-denial of service as a result of a low-level attack, as
well as the ability to tolerate and recover from adverse conditions in a
timely fashion.

Our architecture should be modified if a large number of application
servers are needed. Diversity of COTS implementation is not practical
in this case. Instead, the architecture should be based on clusters, each
with a diverse COTS base and proxy bank, replicating the single-cluster
model that we have described. A load managing component based on our
hardened proxy can forward each query to one or more clusters, depending
on the current load.

Acknowledgments: We thank Dan Andersson and Phil Porras for their
feedback and comments, and Ayda Saidane and Vincent Nicomette for
their contribution to the challenge-response protocol.

References

1. M. Almgren and U. Lindqvist. Application-integrated data collection for security
monitoring. In Recent Advances in Intrusion Detection (RAID 2001), volume 2212
of LNCS, pages 22–36. Springer-Verlag, Oct. 2001.

2. C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie, A. Grier, P. Wagle,
Q. Zhang, and H. Hinton. StackGuard: Automatic adaptive detection and preven-
tion of buffer-overflow attacks. In Proc. 7th USENIX Security Conference, pages
63–78, Jan. 1998.

3. M. Cukier, J. Lyons, P. Pandey, H. V. Ramasamy, W. H. Sanders, P. Pal, F. Web-
ber, R. Schantz, J. Loyall, R. Watro, M. Atighetchi, and J. Gossett. Intrusion
tolerance approaches in ITUA. In Fast Abstract Supplement of the 2001 Intl.
Conf. on Dependable Systems and Networks, pages B–64, B–65, July 2001.

4. M. Cukier, J. Ren, C. Sabnis, D. Henke, J. Pistole, W. H. Sanders, D. E. Bakken,
M. E. Berman, D. A. Karr, and R. Schantz. AQuA: an adaptive architecture that
provides dependable distributed objects. In 17th IEEE Symposium on Reliable
Distributed Systems (SDRS-17), pages 245–253. IEEE Computer Society Press,
Oct. 1998.

5. D. Curry and H. Debar. Intrusion detection message exchange format: Data model
and extensible markup language (XML) document type definition, Nov. 2001.
Work in progress.

6. Y. Deswarte, L. Blain, and J.-C. Fabre. Intrusion tolerance in distributed comput-
ing systems. In Proc. Intl. Symposium on Security and Privacy, pages 110–121.
IEEE press, May 1991.

7. J.-C. Fabre, Y. Deswarte, J.-C. Laprie, and D. Powell. Saturation: Reduced idleness
for improved fault-tolerance. In 18th International Symposium on Fault-Tolerant
Computing (FTCS-18), pages 200–205. IEEE Computer Society Press, 1988.

8. J.-C. Fabre and T. Prennou. A metaobject architecture for fault-tolerant dis-
tributed systems: The FRIENDS approach. IEEE Transactions on Computers,
47:78–95, Jan. 1998.

9. O. Gonzalez, H. Shrikumar, J. Stankovic, and K. Ramamritham. Adaptive fault
tolerance and graceful degradation under dynamic hard real-time scheduling. In
18th IEEE Real-Time Systems Symposium (RTSS ’97). IEEE Computer Society
Press, Dec. 1997.

10. G. J. Holzmann. Design and Validation of Computer Protocols. Prentice Hall,
Engelwood Cliffs, NJ, 1991.

11. Y. Huang, C. Kintala, N. Kolettis, and N. Fulton. Software rejuvenation: Analysis,
module and applications. In 25th Symposium on Fault Tolerant Computing, pages
381–390. IEEE Computer Society Press, June 1995.

12. Real Secure server sensor policy guide version 6.0, May 2001. http://www.iss.net.
13. J. E. Just and J. C. Reynolds. HACQIT (Hierarchical Adaptive Control of QoS for

Intrusion Tolerance). In 17th Annual Computer Security Applications Conference,
2001.

14. U. Lindqvist and P. Porras. Detecting computer and network misuse through the
production-based expert system toolset (P-BEST). In Proceedings of the 1999
IEEE Symposium on Security and Privacy, pages 146–161. IEEE press, May 1999.

15. U. Lindqvist and P. Porras. eXpert-BSM: A host-based intrusion detection solu-
tion for Sun Solaris. In Proc. of the 17th Annual Computer Security Applications
Conference, Dec. 2001.

16. P. Liu and S. Jajodia. Multi-phase damage confinement in database systems for
intrusion tolerance. In Proc. 14th IEEE Computer Security Foundations Workshop,
pages 191–205, June 2001.

17. R. Permeh and M. Maiffret. .ida “Code Red” worm. Security Advisory
AL20010717, eEye Digital Security, July 2001. http://www.eeye.com/html/

Research/Advisories/AL20010717.html.
18. P. Porras. Mission-based correlation. Personal communication, SRI International,

2001. http://www.sdl.sri.com/projects/M-correlation.
19. P. Porras and P. Neumann. EMERALD: Event Monitoring Enabling Responses to

Anomalous Live Disturbances. In National Information Security Conference, Oct.
1997.

20. P. Porras and A. Valdes. Live traffic analysis of TCP/IP gateways. In Proc.
Symposium on Network and Distributed System Security. Internet Society, Mar.
1998.

http://www.iss.net
http://www.eeye.com/html/Research/Advisories/AL20010717.html
http://www.eeye.com/html/Research/Advisories/AL20010717.html
http://www.sdl.sri.com/projects/M-correlation

21. D. Powell, J. Arlat, L. Beus-Dukic, A. Bondavalli, P. Coppola, A. Fantechi, E. Jenn,
C. Rabjac, and A. Wellings. GUARDS: A generic upgradable architecture for real-
time dependable systems. IEEE Transactions on Parallel and Distributed Systems,
10:580–599, June 1999.

22. D. Powell, G. Bonn, D. Seaton, P. Verssimo, and F. Waeselynck. The Delta-4
approach to dependability in open distributed computing systems. In Proc. 18th
Int. Symp. on Fault-Tolerant Computing Systems (FTCS-18), pages 246–251. IEEE
Computer Society Press, June 1988.

23. G. R. Ranger, P. K. Khosla, M. Bakkaloglu, M. W. Bigrigg, G. R. Goodson,
S. Oguz, V. Pandurangan, C. A. N. Soules, J. D. Strunk, and J. J. Wylie. Sur-
vivable storage systems. In DARPA Information Survivability Conference and
Exposition II, pages 184–195. IEEE Computer Society, June 2001.

24. R. Rivest. The MD5 message digest algorithm. Internet Engineering Task Force,
RFC 1321, Apr. 1992.

25. L. Rodrigues and P. Verissimo. xAMp: a multi-primitive group communications
service. In 11th Symposium on Reliable Distributed Systems, pages 112–121, Oct.
1992.

26. M. Roesch. Snort: Lightweight intrusion detection for networks. In USENIX
LISA’99, Nov. 1999. www.snort.org.

27. F. B. Schneider. Enforceable security policies. Information and System Security,
3(1):30–50, 2000.

28. Tripwire white papers, 2001. http://www.tripwire.com.
29. A. Valdes and K. Skinner. Adaptive, model-based monitoring for cyber attack

detection. In Recent Advances in Intrusion Detection (RAID 2000), pages 80–92,
Oct. 2000.

30. A. Valdes and K. Skinner. Probabilistic alert correlation. In Recent Advances in
Intrusion Detection (RAID 2001), volume 2212 of LNCS, pages 54–68. Springer-
Verlag, Oct. 2001.

31. G. Vigna, S. Eckmann, and R. Kemmerer. The STAT tool suite. In DISCEX 2000.
IEEE press, Jan. 2000.

32. F. Wang, F. Gong, C. Sargor, K. Goseva-Popstojanova, K. Trivedi, and F. Jou.
SITAR: a scalable intrusion tolerance architecture for distributed server. In Second
IEEE SMC Information Assurance Workshop, 2001.

33. J. Wensley, L. Lamport, J. Goldberg, M. Green, K. Levitt, P. Melliar-Smith,
R. Shostack, and C. Weinstock. SIFT: the design and analysis of a fault-tolerant
computer for aircraft control. Proc. IEEE, 66:1240–1255, Oct. 1978.

www.snort.org
http://www.tripwire.com

	 An Architecture for an Adaptive Intrusion-Tolerant Server

