
The OWL-S Editor – A Development Tool for
Semantic Web Services

Daniel Elenius, Grit Denker, David Martin, Fred Gilham, John Khouri, Shahin
Sadaati, and Rukman Senanayake ?

SRI International, Menlo Park, California, USA
firstname.lastname@sri.com

Abstract. Semantic Web Services (SWSs) promise to provide solutions
to the challenges associated with automated discovery, dynamic compo-
sition, enactment, and other tasks associated with managing and using
service-based systems. One of the barriers to a wider adoption of SWS
technology is the lack of tools for creating SWS specifications. OWL-S
is one of the major SWS description languages. This paper presents an
OWL-S Editor, whose objective is to allow easy, intuitive OWL-S ser-
vice development and to provide a variety of special-purpose capabilities
to facilitate SWS design. The editor is implemented as a plugin to the
Protégé OWL ontology editor, and is being developed as open-source
software.

1 INTRODUCTION

Semantic Web Services (SWSs) [1] introduce ontologies to describe, on the one
hand, the concepts in the services’ domains (e.g., flights and hotels, tourism, e-
business), and on the other hand, characteristics of the services themselves (e.g.,
control flow, data flow) and their relationships to the domain ontologies (via
inputs and outputs, preconditions and effects, and so on). These semantically
rich descriptions enable automated machine reasoning over service and domain
descriptions, thus supporting automation of service discovery, composition, and
execution, and reducing manual configuration and programming efforts. The
three most prominent SWS specification approaches currently under develop-
ment are OWL-S [2], WSMO1, and SWSL2.

The field of SWSs is still in an early stage, and adoption has been slow.
A limiting factor has been the lack of tool support. The objective has been to
enable machines to manipulate services, yet so far arduous human work has been
necessary to create the semantic service descriptions. While tools to create and
edit Semantic Web ontologies in general do exist [3], modeling SWSs requires
additional functionality and developer support in order to be practically feasible.

? Supported by the Defense Advanced Research Projects Agency through the Air
Force Research Laboratory under Contract F30602-00-C-0168 to SRI, and in part
by Vinnova (grant no. 2002-00907) and The Swedish Research Council (grant no.
621-2003-2991).

1 http://www.wsmo.org
2 http://www.daml.org/services/swsl/



Tools that make the SWS technology accessible to a broad audience with
diverse needs are a crucial factor in the success of SWS technology. Tools are
needed to facilitate tasks such as service definition and annotation, execution
and monitoring, and service registration and discovery. The OWL-S Editor is
aimed at providing a flexible, yet powerful editor for OWL-S service definitions.
This paper describes the design and current functionality of the OWL-S Editor
as well as its future directions.

2 DESIGN PHILOSOPHY

There are two main tasks in the development of OWL-S services. The first task
is to define the service’s domain ontologies in terms of OWL classes, properties,
and instances. The second task is to create an OWL-S description of the service,
relating this description to the domain ontologies. An OWL-S service description
consists of instances of OWL-S classes such as Service, Process, Input, and
Output. In some cases, the OWL-S ontology is also extended to handle specific
modeling situations.

In order to best facilitate these tasks, we built the OWL-S Editor on top of the
Protégé OWL Ontology Editor [3]. Protégé allows editing of domain ontologies
out-of-the-box. However, efficient development of services requires additional
features. Our strategy has been to leverage the existing functionality of Protégé,
and to utilize Protégé’s pluggable architecture to extend it where we judged
it would be helpful for the SWS developer. The result is a SWS development
environment where the domain ontologies are well integrated with the service
descriptions.

In addition, building our tool on top of Protégé means that users can take
advantage of the many other existing Protégé plugins, e.g. for querying and
visualizing the Knowledge Base (KB), and to export the KB to different formats.
These different plugins coexist gracefully, all working on the same KB.

3 OVERVIEW OF FEATURES

The OWL-S Editor presents the user with a tab inside Protégé as the main
point of interaction (see Figure 1). The OWL-S tab provides a more direct view
of the OWL-S classes and instances than what Protégé provides by default. The
OWL-S tab is separated into two parts. The left-hand side provides instance
panes which allow users to easily navigate their service descriptions. The in-
stance panes list all instances of a service, divided into service, profile, process,
and grounding instances. The right-hand side of the OWL-S tab is an editing
pane that changes depending on the selection in the instance panes, to show a
specialized editing mode for the chosen type of OWL-S instance. For example, if
the user selects a profile instance (used for service discovery), then the right pane
will show all properties of the profile, allowing the user to create fine-tuned ser-
vice advertisements. If a composite process is selected, the editing pane changes
to a graphical process editor (see below).

Additional functionality provided by the OWL-S Editor includes:



Fig. 1. The OWL-S Editor, a tab-widget plugin for Protégé, is shown here next to the
standard Protégé-OWL tabs to the left, and, to the right, other tab-widget plugins for
ontology management, queries, and XML management.

WSDL Support In many cases, it will be desirable to create a “skele-
tal” OWL-S description based on a preexisting WSDL file. Parts of the OWL-S
description can be generated automatically based on the inputs and outputs de-
fined in the WSDL file. To this end, we have integrated the WSDL2OWLS code
that is part of the OWL-S API from Mindswap3 into the OWL-S Editor. We
also provide support for managing the mappings between the XSD datatypes of
the inputs and outputs in the WSDL file, and the OWL classes in the OWL-S
ontologies.

Input/Output/Precondition/Result Management OWL-S services are
characterized by their inputs, outputs, preconditions, and results (IOPRs). A
specialized window called the IOPR Manager (see Figure 2) allows users to a)

3 http://www.mindswap.org/2004/owl-s/api/



get an overview of, and edit the properties of all IOPRs in the knowledge base
(for preconditions and results, a semi-graphical SWRL expression builder will be
used) and b) manage the sometimes complex relationships between how different
processes and profiles utilize the IOPRs.

Fig. 2. IOPR Manager

Graphical Overview A special window shows the relationships of all top-
level OWL-S instances graphically. For example, this makes it easy to see all
profiles for a given service, all groundings (descriptions of concrete implementa-
tion details) of a given process, and so on.

Execution We also provide an integrated execution environment for the
OWL-S services being developed. Developers are thus able to verify that their
specifications reflect their intentions, and to try out different possibilities before
deploying their services. The execution environment takes the form of a window
where users provide values for service inputs from the Protégé KB, and are
provided with the outputs of the services.

Process Modeling A powerful feature of OWL-S is the ability to model
composite processes. A composite process is constructed from subprocesses that
can in turn be composite, atomic, or simple. The control flow of a composite
process is defined using control constructs, such as If-Then-Else, Sequence, and
Repeat-Until. These constructs can be nested to an arbitrary depth.

These control flows are particularly difficult to generate by hand or in a
plain ontology editor not designed for this task. The OWL-S editor visualizes
these control flows graphically, in a style similar to UML Activity Diagrams,
using boxes for subprocess invocation (called Performs in OWL-S), diamonds
for conditional nodes (e.g., for If-Then-Else constructs), and arrows showing the
flow of execution. OWL-S control flows have more structure than arbitrary flow
charts or UML activity diagrams, however. Therefore, we do not allow users to



directly “draw” the work flow. Instead, we take advantage of the fact that all
OWL-S control flows are trees. We let the user model the control flow in a GUI
tree component, with drag-and-drop support, whereas the corresponding work
flow graph is updated to reflect any changes to this tree (see Figure 3).

Fig. 3. A composite process, its tree structure shown to the left, and its graph repre-
sentation to the right.

We can also specify the data flow of composite processes. For example, we
can state that a certain input of Process B should be taken from a certain output
of Process A. This is also supported by our graphical editor (not shown here).

4 CONCLUDING REMARKS
Our strategy has been to leverage the existing functionality of Protégé, and to
utilize Protégé’s pluggable architecture to extend it where we judged it would be
helpful for the SWS developer. The result is a SWS development environment
where the domain ontologies are well integrated with the service descriptions.

Looking forward, there are several developments that would further our aims
of easy and powerful Semantic Web Service development:

A highly desirable feature which we have not yet implemented is online search
for services. Such a search facility could be used to find services or service com-
ponents to be included as parts of a composite process that the user is working
on in the OWL-S Editor. Ideally, the user should be able to give detailed search
criteria, and find a service that matches her current needs (e.g. to find a service



with inputs matching the outputs of previous processes in a composite process
model). In conjunction with the built-in service execution, this would provide
an extremely powerful development environment.

In the long term, we would also like to see a tighter connection between the
semantic service markup, and the actual development of the service implemen-
tation (e.g. using Java). The OWL-S IDE project4 is to some extent based on
this idea, providing an Eclipse 5 plugin which can generate OWL-S “skeletons”
directly from Java code. However, there is no feature for ontology editing in
Eclipse. An integration of Protégé with Eclipse would be ideal.

We are also looking forward to the planned support for simultaneously editing
multiple knowledge bases in Protégé. We often want to edit service components
spread across different subontologies, and the domain ontologies are normally
separated from the service descriptions.

In conclusion, providing this tool to the community, our aim is to make it
easier to understand the concepts of SWSs, and to create semantic descriptions
of services. We believe that this can bring a fruitful cross-pollination between
practice and theory. As more people start developing SWSs, important feedback
on using the service ontologies in various projects, and on design and implemen-
tation aspects of SWSs, could benefit the knowledge in this field.

The OWL-S Editor is available for download in both binary and source for-
mats on http://owlseditor.semwebcentral.org. We welcome all feedback on
our mailings list.

REFERENCES
1. McIlraith, S., Song, T., Zeng, H.: Semantic Web services. IEEE Intelligent Systems,

Special Issue on the Semantic Web 16 (2001) 46–53
2. Martin, D., Paolucci, M., McIlraith, S., Burstein, M., McDermott, D., McGuin-

ness, D., Parsia, B., Payne, T., Sabou, M., Solanki, M., Srinivasan, N., Sycara, K.:
Bringing semantics to Web Services: The OWL-S approach. In: Proc. First Intern.
Workshop on Semantic Web Services and Web Process Composition (SWSWPC
2004), July 6-9, 2004, San Diego, California, USA. (2004) http://www.daml.org/

services/owl-s.
3. Knublauch, H., Fergerson, R., Noy, N., Musen, M.: The Protégé OWL plugin: An

open developoment environment for semantic web applications. In McIlraith, S.,
Plexousakis, D., van Harmelen, F., eds.: Proc. 3rd Intern. Semantic Web Conference
(ISWC 2004), Hiroshima, Japan, November 2004, Springer (2004) 229–243 LNCS
3298.

4 http://projects.semwebcentral.org/projects/owl-s-ide/, formerly known as
CODE

5 http://www.eclipse.org


