
Reasoning about Resources and Hierarchical

Tasks Using OWL and SWRL

Daniel Elenius, David Martin, Reginald Ford, and Grit Denker

SRI International, Menlo Park, California, USA
firstname.lastname@sri.com

Abstract. Military training and testing events are highly complex
affairs, potentially involving dozens of legacy systems that need to in-
teroperate in a meaningful way. There are superficial interoperability
concerns (such as two systems not sharing the same messaging formats),
but also substantive problems such as different systems not sharing the
same understanding of the terrain, positions of entities, and so forth. We
describe our approach to facilitating such events: describe the systems
and requirements in great detail using ontologies, and use automated
reasoning to automatically find and help resolve problems. The com-
plexity of our problem took us to the limits of what one can do with
owl, and we needed to introduce some innovative techniques of using
and extending it. We describe our novel ways of using swrl and dis-
cuss its limitations as well as extensions to it that we found necessary or
desirable. Another innovation is our representation of hierarchical tasks
in owl, and an engine that reasons about them. Our task ontology has
proved to be a very flexible and expressive framework to describe re-
quirements on resources and their capabilities in order to achieve some
purpose.

1 Introduction

In military training and testing events, many heterogeneous systems and re-
sources, such as simulation programs, virtual trainers, and live training instru-
mentation, are used. Often, the systems were not designed to be used together.
Therefore, many interoperability problems arise. These problems range from the
superficial – such as two systems not sharing the same messaging formats –
to more substantive problems such as different systems not sharing the same
understanding of the terrain, positions of entities, and so forth.

In [1], we described an approach for automated analysis of military train-
ing events. The approach used owl ontologies describing the systems and the
purpose for which they were to interoperate. A custom Prolog program was
used to produce warnings concerning potential interoperability problems, as
well as “configuration artifacts” such as a chain of mediation components that
could be used to connect two systems that otherwise would not be able to
communicate.

A. Bernstein et al. (Eds.): ISWC 2009, LNCS 5823, pp. 795–810, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

796 D. Elenius et al.

This paper describes our further work in this area1, which overcomes many of
the limitations of our previous work. We provide two main contributions. First,
we have extended owl with a representation of hierarchical tasks in owl. Tasks
describe the structure of events and the requirements of resources that perform
them. This has proved to be a flexible and expressive framework to describe
military training and testing events in a way that allows automated reasoning
in order to find problems and their solutions. Second, where we previously used
hard-coded Prolog rules to detect interoperability problems, we are now using
swrl2 rules and constraints. This approach is more declarative and extensible.
We discuss shortcomings of swrl as applied to our problem domain, and propose
solutions to overcoming some of these. We have implemented general-purpose
task processing tools to manage and reason about resources and hierarchical
tasks. While our work has been driven by military training and testing domain,
most of the problems and solutions discussed in this paper are applicable to
other domains.

The paper is organized as follows. Section 2 describes some of the core on-
tologies underlying our approach. Section 3 discusses our task and task plan
concepts. Section 4 discusses some specific uses of swrl, and the benefits and
limitations derived from its use. Section 5 describes our implementation of task
processing tools. Section 6 discusses related work. Section 7 summarizes the
lessons that we have learned and our conclusions.

2 Ontologies

Our approach to interoperability analysis depends on good-quality, authoritative
ontologies. Since our intent is to find very subtle problems, many details must be
ontologized regarding simulators, training instrumentation, vehicles, communi-
cation architectures, terrain, training and testing events, and so forth. It is also
important that the task processing software does not depend on specific domain
ontologies. Most of these will not be under the control of ONISTT developers,
and we also want the software to be reusable for other domains. To that end,
we have defined a very small set of core ontologies. Different organizations can
create and maintain their own domain-specific ontologies that import the core
ontologies and create subclasses of classes therein.

We investigate system interoperability in the context of a specific purpose.
The key concepts to capture purpose are as follows. A Task is an intended action
that requires some resource(s), and potentially has some additional constraints
associated with it. A Role is a “slot” of a task that needs to be filled with some
resource. A TaskPlan is a plan for how to perform a task, including assignment
of resources to roles. The task and task plan ontologies are described in more
detail in Section 3.
1 This work was performed under the ONISTT project, sponsored by DUSD/R-RTPP

(Training Transformation) and the ANSC project, sponsored by USD/AT&L-TRMC
(S&T Portfolio).

2 http://www.w3.org/Submission/swrl/swrl.owl

http://www.w3.org/Submission/swrl/swrl.owl

Reasoning about Resources and Hierarchical Tasks Using OWL and SWRL 797

The key concepts to capture details about resources are as follows. A Resource

is a thing that can do something, through the use of capabilities. Examples of
resources are a tank, a human, a simulator, or training instrumentation. We
also allow for intangible resources such as software systems. A resource can have
subresources. A Capability is a discrete piece of functionality that belongs to
a resource. Examples include the capability to send a “weapon fired” message
using some message format, the capability to physically move (at some max-
imum speed), or the capability to detect things in the infrared spectrum. A
Confederation is a set of resources.

A Deployment connects the purpose and resource descriptions. It describes an
event (such as a training or testing event) in terms of one TaskPlan and one
Confederation.

As an example of extending these core ontologies, we have an ontology of
capability types for military training and testing resources containing subclasses
of the Capability class, such as MovementCapability, DetectabilityCapability

and DirectFireCapability, and an ontology of military Task types such as TST

(time-sensitive targeting) and JCAS (joint close air support).

3 Tasks and Task Plans

A task is a description of the structure and requirements of some set of intended
actions. The structural aspects of tasks are based on two fundamental ideas:
composition and refinement. It is useful to express tasks in a compositional way,
grouping tasks into composite tasks. This allows reuse of larger units, and makes
it easier to understand a complex task at a high level. Furthermore, there are
often different ways to perform a task, imposing different requirements on the
participating resources. We model this using abstract tasks that can be refined
into several different more concrete tasks.

In the following, we define a task ontology. One could view this ontology as an
encoding of the syntax of a task language. This is analogous to the owl encoding
of swrl and owl-s3. In all three cases, an owl encoding is useful in order to
achieve a tight integration with owl. However, as in the case of owl-s process
models and swrl rules, owl cannot express the intended semantics of our task
concepts. Therefore, we provide a dedicated semantics for the new concepts. We
have in effect extended the owl language. We have also defined new reasoning
problems (task analysis and task synthesis) that could not practically be reduced
to the standard owl reasoning problems (such as class subsumption checking).

3.1 Task Ontology

The task ontology is shown in Figure 1. Tasks are structured in a hierarchi-
cal way. There are three kinds of tasks: abstract, primitive, and composite. All
tasks have formal arguments. The arguments are instances of the Role class.

3 http://www.daml.org/services/owl-s/

http://www.daml.org/services/owl-s/

798 D. Elenius et al.

Task

PrimitiveTask CompositeTaskAbstractTask

rdfs:subClassOf
refinedBy

rdf:List

formalArguments

Role

list contents

TaskInvocation

rdf:List

subtaskInvocations

NonPrimitiveTaskInvocation PrimitiveTaskInvocation

owl:subclassOf
invocationArguments

invocationArgument

formalArgument

owl:Class

Capability

class restricted to

capabilityNeeded

CapabilityConstraint

ConfigurationArtifactSpecification

configurationArtifactSpecification

capabilityConstraint

invokedTask

list contents

Fig. 1. Task ontology

Arguments are variables that can be assigned to resources in order to say what
resources are involved in performing a task. Role-resource assignments are dis-
cussed below.

Abstract tasks can be performed, or refined, in several alternative ways. Each
refinement is itself a task. Composite tasks have a list of subtasks, all of which
must be performed for the composite task to succeed. Task invocations are used
to bind the arguments of the composite task to those of its subtasks. Composite
tasks can also have constraints on their subtasks, and configuration artifacts
derived from their subtasks. Constraints and configuration artifacts are explained
below. Primitive tasks have only one formal argument and thus are performed by
one resource. Primitive tasks have an associated capability needed. The capability
needed is a subclass of the Capability class4. A resource can be assigned to a
primitive task only if it has a capability individual that is an instance of the
capability needed class.

3.2 Semantics of Tasks

The following semantics is intended to facilitate the understanding of the mean-
ing of tasks, and to provide an exact criterion for whether or not a task can be
performed.

The intended meaning of a task is a set of Horn clauses. The task atom of a task
T with formal arguments ϕ̄ is defined as the atomic formula α(T) = T (ϕ̄). Sim-
ilarly, a task invocation atom of a subtask invocation for task S with invocation
arguments ϕ̄′ is defined as the atomic formula ι(S) = S(ϕ̄′)5. We define the func-
tion H, denoting the Horn clauses of a task, in the following way (keeping the uni-
versal quantification of the variables in the clauses implicit). For an abstract task
4 This is a use of classes-as-instances, and puts the ontology in owl Full. This does

not cause us problems, because we do not perform DL reasoning on task structures.
5 From the perspective of the task ontology, the arguments are Roles. Logically, they

are variables ranging over Resources.

Reasoning about Resources and Hierarchical Tasks Using OWL and SWRL 799

A with refining tasks R1 . . . Rn, H(A) = {α(A) ⇐ α(R1), . . . , α(A) ⇐ α(Rn)}.
For a composite task C with subtask invocations S1 . . . Sn, H(C) = {α(C) ⇐
ι(S1) ∧ . . . ∧ ι(Sn)}. For a primitive task P with α(P) = P (x) and capability
needed Cap, H(P) = {α(P) ⇐ Resource(x) ∧ capability(x, y) ∧ Cap(y)}. A
task library L is a set of tasks T1 . . . Tn, and we extend the translation so that
H(L) = H(T1) ∪ . . . ∪ H(Tn). Let KB be an owl knowledge base, defined in
the usual way, possibly containing swrl rules, and T a function that translates
such knowledge bases to their first-order logic equivalent [2]. A task T in a task
library L is performable, given KB, iff α(T) is satisfiable by T (KB) ∪H(L).

The mathematical descriptions account for the satisfiability of tasks. However,
tasks have other characteristics that do not affect satisfiability but can be used by
a task processing engine to produce useful information for the user, or to guide its
processing. These features include constraints and configuration artifacts, both
of which are described below.

It may reasonably be asked why we do not use swrl rules (being a representa-
tion of Horn clauses) directly to represent the tasks. One reason was mentioned
above: the “additional features” of tasks that are not formalized in the Horn
clause semantics. The other reason is that we want to constrain the users some-
what, and not allow arbitrary rules as task descriptions.

3.3 Task Plans

The task plan ontology (see Figure 2) provides a layer on top of the task ontology,
whereby one can describe how to perform a task. Task plans add five types of
information to task descriptions:

– Role-resource assignments. A determination of which resource is to fill a
particular role of the task.

– Capability assignments. A determination of which capability of the resource
assigned to a primitive task is to be used for the task.

– Choices of which refining tasks to use for abstract tasks. For each abstract
task, at most one refining task is chosen, by creating a refining task plan.

– Information about which constraints failed.
– Values for configuration artifacts.

Task plans can be partial, i.e. they do not have to have resource or capability
assignments, refining plans, or subtask invocation plans.

Figure 3 shows an example of how the task and task plan ontologies can
be instantiated. The task instances are in the left half of the figure, and the
task plan instances in the right half. A RoleAssignment is used on the primitive
task plan SendPlan 1 to assign the resource UAV1 to the Sender role. A capability
of UAV1 is also assigned to the task plan via the assignedCapability property.
Note that the task instances are reusable, whereas the task plan instances are
not reusable to the same extent – they show a particular way of performing
the task.

800 D. Elenius et al.

TaskPlan

CompositeTaskPlan AbstractTaskPlan PrimitiveTaskPlan

RoleAssignment

TaskInvocationPlan

Task
task

invokedTaskPlan

TaskInvocation

taskInvocation

Resource Role
Capability

assignedCapability

refiningPlan

CapabilityConstraint

failedConstraint resourceAssigned roleAssigned

roleAssignment

rdfs:subClassOf

capability

ConfigurationArtifact owl:Thing

configurationArtifact

artifactValue

ConfigurationArtifactSpecificationspecifiedBy

subtaskInvocationPlan

Fig. 2. Task plan ontology

Communication

DirectCommunication

Send

Receive

subtaskInvocations

SendInvocation

ReceiveInvocation

rdf:List

refinedBy

invokedTask

CommunicationPlan_1

DirectCommunicationPlan_1

SendPlan_1

ReceivePlan_1

SendInvocationPlan_1

ReceiveInvocationPlan_1

refiningPlan

invokedTaskPlan

subtaskInvocationPlan

task

task

task

task

ta
sk
In
vo
ca
tio
n

UAV1

Sender

Sender_UAV1_RoleAss

UAV1_SendCapabilitySendCapability

AbstractTaskPlan

CompositeTaskPlan

TaskInvocationPlan
instance of

instance of

instance of

instance of

roleAssigned

resourceAssigned

capability

roleAssignment

AbstractTask instance of

CompositeTask instance of

PrimitiveTaskInvocation

instance of

capabilityNeeded

PrimitiveTask

instance of

PrimitiveTaskPlan

instance of

assignedCapability

Fig. 3. Example of task and task plan instances

3.4 Semantics of Task Plans

The following is a sketch of the semantics of task plans. We leave out the precise
details because of space considerations.

The meaning of a task plan P is a set of Horn clauses Hp(P). A role assign-
ment is a substitution of a resource for a variable (role) that can be applied to a
formula. Similarly, a capability assignment is a substitution of a capability for the

Reasoning about Resources and Hierarchical Tasks Using OWL and SWRL 801

variable corresponding to the capability needed in a primitive task. Intuitively,
the Horn clauses for a task plan are the Horn clauses for the corresponding task,
with the role and capability assignments applied as variable substitutions where
appropriate, and the choices of refining tasks for abstract tasks narrowed down to
what is selected in the task plan. We define the task plan atom αp of a task plan
P for task T and with role assignments R as the result of applying R to α(T). A
task plan P is valid, given an owl knowledge base KB, iff αp(P) is satisfiable
by T (KB) ∪Hp(P). Note that if a task plan is valid, the corresponding task is
performable, but the opposite is not true in general. We call the determination
of task plan validity the Task Plan Analysis problem.

A task plan is complete if it is fully specified to the primitive level, and assigns
all roles and capabilities. Note that a complete task plan is a set of ground
Horn clauses. A task plan Pc is a completion of a task plan P if Hp(Pc) can
be produced by instantiating all the variables (roles), and removing alternative
clauses for abstract tasks, in Hp(P). A completion is always complete. Note that
there are no valid completions of an invalid task plan. The Task Plan Synthesis
problem is to generate all valid completions from a task plan.

The constraints and artifacts part of task plans does not affect validity, and
is not part of the semantics, but task plan processors can use these fields to
return useful information. This is discussed in more detail below. In Section
5 we describe our implementation of an engine that performs both task plan
analysis and task plan synthesis.

Constraints

As mentioned above, a composite task can have additional constraints on its
subtasks. While primitive tasks place constraints on individual resources by
forcing them to have a capability of a certain type, the constraints on a com-
posite task are usually used to specify requirements on the interaction be-
tween several resources that perform subtasks of the composite task. For ex-
ample, suppose we have a TransferVideo composite task with primitive subtasks
ProvideVideo and ConsumeVideo. A constraint could be used to say that all the
supportedResolutions of the provider have to be supported by the consumer.

A CapabilityConstraint of a composite task has an associated message, a
severity, and a constraint atom (see Figure 4). The constraint atom is a swrl
atom. Typically, the predicate of the atom is defined using a swrl rule. A task
processor should try to prove the constraint atom in the context of the sur-
rounding Horn clause. If it fails to do so, the constraint failure is reported in the
result of the analysis, using the failedConstraint property on the generated task
plan. The message associated with a constraint is a natural language descrip-
tion of the problem, which can be shown to the user. The task processor should
also generate an overall score for each solution, by adding up the weights of the
severities of all the constraints that failed. In other words, a lower score is better,
and a score of zero signifies the absence of any known problems. All constraints
are soft, and as mentioned previously do not affect the performability of the
task.

802 D. Elenius et al.

CapabilityConstraint ConfigurationArtifactSpecification

SWRLAtom

xsd:string

ConstraintSeverity

constraintSeverity

artifactAtomconstraintAtom

messagemessage

xsd:decimalweight

Fig. 4. Ontology elements for constraints and configuration artifacts

3.5 Configuration Artifacts

Configuration artifacts are similar to constraints (see Figure 4), except that
they also have a return value. The return value is captured by letting the second
argument of the artifact atom be a variable. This variable is bound when the
task processor evaluates the artifact atom. The return value could be an rdf:List

(created using the swrl list built-ins) or any owl individual or data value.
A typical use of configuration artifacts is to explain why a constraint failed.

Continuing on the example above with supported resolutions, we could have a
configuration artifact returning all the resolutions supported by the provider but
not by the consumer. If the constraint succeeded, the list would be empty, but
if it failed, the configuration artifact would show why it failed.

4 Benefits and Limitations of SWRL

We discuss our various uses of swrl, the benefits we derived from its use, and
the limitations that we have run into. We have put swrl to use in many areas,
such as defining constraints and configuration artifacts, reasoning about units,
and ontology mapping. While swrl has allowed us to go far beyond owl, we
have identified several limitations that appeared in different application areas:
the limitation to unary and binary predicates, the lack of negation-as-failure and
other nonmonotonic operations, and the inability to produce new individuals as
a result of evaluating a rule.

We recognize that swrl is not a standard, but most of what is said here
also applies to other prospective rule languages such as rif6, and is of general
concern.

4.1 Defining Constraints

swrl rules provide a rather flexible way to evaluate capabilities of resources and
perform various operations on them. Indeed, with the swrl builtins7, we can
even do limited forms of “programming” with rules. There are some serious lim-
itations to the usefulness of swrl, however. First, swrl “predicates” are owl

6 http://www.w3.org/2005/rules/wiki/RIF Working Group
7 http://www.w3.org/Submission/SWRL/#8

http://www.w3.org/Submission/SWRL/#8

Reasoning about Resources and Hierarchical Tasks Using OWL and SWRL 803

classes or properties, and can therefore take only one or two arguments. swrl
builtin atoms solve this by using an rdf:List to contain the arguments. The
same approach can be used with the other types of swrl atoms in order to get
an arbitrary number of arguments, and we use this approach when necessary.
However, it is an awkward solution. First, we have to create a list to put argu-
ments into, in the constraint atom. Then, the swrl rule has to “unpack” the
arguments from the list, using the list operations swrlb:first and swrlb:rest.
Predicates with an arbitrary number of arguments is therefore high on our wish
list for a future Semantic Web rule language.

The lack of negation in swrl rules may be an even more serious limitation.
In principle, swrl allows any class expression, which means that one can use
complement classes, but this allows us to negate only class expressions, not ar-
bitrary swrl formulas. In addition, this is classical negation, whereas we often
need negation-as-failure. Going back to an example from Section 3, we may
want to check that a video consumer can handle all the resolutions that a video
provider can provide. Some capability of the provider and some capability of the
consumer have a property supportedResolution. We need to check that all the
provider’s property values are also property values of the consumer. However,
without negation-as-failure or a “closed world assumption” we cannot express
this in owl or swrl. owl’s open world assumption means that there could
always be more values of a property than what has been asserted. One could in-
troduce several additional axioms to express that the property values are exactly
the asserted property values:

Individual(ProvideVideoCapability

type(restriction(supportedResolution cardinality(3)))

value(supportedResolution 640x480)

value(supportedResolution 800x600)

value(supportedResolution 1024x768))

DifferentIndividuals(640x480 800x600 1024x768)

However, this quickly becomes unwieldy if one has to do this on all capabilities
and properties in order to evaluate constraints on them like the one discussed
here. Furthermore, we do not want to limit the capability to specific values in
general – we want to retain the ability to define a capability across different
ontologies in an open-ended manner. A better solution would be to make a
“local closed world assumption” inside the rule. Of course, swrl offers no such
capability. For the time being, we decided on the following solution. We introduce
a new swrl builtin, called allKnown. This works similarly to the setof predicate
in Prolog – it returns a list of all the “known” values of some property, for
some individual. Once we have lists of property values, we can use swrl’s list
built-ins to check whether one list is contained in another and so forth. The
allKnown operation is nonmonotonic, and does not fit neatly into owl’s semantic
framework. A more principled approach would be desirable, and is something we
would like to see in a future Semantic Web rule language. A promising starting

804 D. Elenius et al.

point is presented in [3], where a subset of the description logic underlying owl
is augmented with an auto-epistemic operator K that can be used with class and
role expressions. More general approaches of combining description logic with
“logic programming” are presented in [4].

4.2 Defining Configuration Artifacts

The representation of configuration artifacts using swrl shares all the issues
discussed above, and introduces an additional problem. As we mentioned in
Section 3, configuration artifacts are defined using a predicate (object property)
where the second argument is a “return value”. The value can be any owl
individual. However, there is no way to produce a new individual using a swrl
rule (with the exception that some swrl built-ins for lists can produce new
lists). We will see in the following sections how the same problem reappears in
different contexts.

4.3 Ontology Mapping

Addressing military training and testing problems on a large scale using our
ontology-based approach requires many detailed domain ontologies spanning a
wide range of subjects. The development of such ontologies will be distributed
among different stakeholders. However, not everyone will adhere to the same
ways of describing resources and capabilities. Therefore, ontology mapping will
be necessary. Ontology mapping is a wide topic, studied by many researchers
using different approaches [5]. For our purposes, what is needed is to bring in
knowledge from outside ontologies under our own upper ontologies (of resources,
capabilities and so forth).

A mapping from one ontology to another can be defined in some special
format, but a more flexible approach is to use a well-known logical formalism to
describe the relationships between the two ontologies. When there is a relatively
simple correspondence between entities in the two ontologies, one can define
class and property equivalence or subsumption between the existing classes and
properties, using owl axioms. With swrl rules, we can define more complex
mappings.

As an example, suppose we have a “normative” video ontology to describe
video provider resources, and an “external” camera ontology that we want to
map to the video ontology (see Figure 5).

camera:Camera camera:VideoFormat Resolutioncamera:videoFormat camera:resolution

video:VideoProvider
video:supportedResolution

Fig. 5. Different representations of supported resolutions of a video provider resource.
Dashed line shows relationship that needs to be generated.

Reasoning about Resources and Hierarchical Tasks Using OWL and SWRL 805

We can define camera:Camera to be a subclass of video:VideoProvider, but the
camera ontology describes the supported resolutions of the video provider in a
different way than the video ontology. This difference in representation can be
mapped using the swrl rule.

camera:Camera(?x) ∧ camera:videoFormat(?x, ?y)∧
camera:resolution(?y, ?z)⇒ video:supportedResolution(?x, ?z)

However, consider what happens if the “intermediate” instance is in the tar-
get ontology. This is a typical case in our real ontologies: Resources have ca-
pabilities (the intermediate individuals), which in turn have properties. For
example, a resource might have a video:ProvideVideoCapability that has the
video:supportedResolution property. Figure 6 shows the desired mapping.

camera:Camera camera:VideoFormat Resolutioncamera:videoFormat camera:resolution

video:provideVideoCapability ProvideVideoCapability video:supportedResolution

Fig. 6. Ontology mapping example. New property values (dashed lines) as well as a
new instance (dashed box) need to be generated.

The mapping can be expressed by the rule

camera:Camera(?x) ∧ camera:videoFormat(?x, ?y)∧
camera:resolution(?y, ?z)⇒∃?c: capability(?x, ?c)∧
video:ProvideVideoCapability(?c) ∧ video:supportedResolution(?c, ?z)

Here we have an existentially quantified variable in the rule head, representing a
“new instance” that needs to be created, viz. the ProvideVideoCapability of the
resource. This cannot be expressed in Horn logic or swrl rules. A limited form of
existential quantification is possible by using someValuesFrom class expressions
in a rule. However, the example above can still not be encoded in this way.
The pattern discussed here is very common in owl, since all structured data is
described using property-value chains. Thus, swrl can be used only for relatively
simple types of mapping, where there is little structure in the target ontology.

4.4 Reasoning about Units

A common problem in ontologies is how to represent and reason about units
of measure. Units are ubiquitous in our military training and testing domain,
for example, in describing formats representing time and space positions, or the
speed of vehicles. owl by itself can be used to represent information about
units, but is not adequate for making the right inferences from the information.
However, this is an area where swrl can be used to great advantage.

806 D. Elenius et al.

Figure 7 shows the essence of our “quantity” ontology. A quantity is an entity
that has a unit and a magnitude, for example 5 kg or 10 lbs. A unit has a
primary unit and a conversion factor to its primary unit. For example, the unit
lbs has primary unit kg and conversion factor 0.4535924. Based on this quantity
ontology, we have developed ontologies for engineering values (e.g., accelerations,
areas, frequencies) and computation values (e.g., bits per second, megabytes,
mebibytes).

Quantity magnitude

xsd:decimal

Unit

unit

primaryUnit

conversionFactorToPrimary

Fig. 7. Quantity ontology

Being able to describe quantities is only the first step, however. We also want
to do things with them. For example, we want to compare quantities in differ-
ent units. The quantity ontology defines a number of operations on quantities,
using swrl rules. First, we define a “helper” predicate primaryMagnitude. This
is the magnitude of a quantity in its primary unit. swrlb:multiply is a swrl
built-in, where the first argument is the result of multiplying the rest of the
arguments.

magnitude(?q, ?mag)∧ unit(?q, ?u)∧ conversionFactorToPrimary(?u, ?convf)∧
swrlb:multiply(?pmag, ?mag, ?convf)⇒ primaryMagnitude(?q, ?pmag)

Next, we can define equals, less than, and so on, using this helper predicate:

primaryMagnitude(?q1, ?pmag1)∧ primaryMagnitude(?q2, ?pmag2)∧
swrlb:lessThan(?pmag1, ?pmag2)⇒ qLessThan(?q1, ?q2)

These operations can be used to determine for example that 10 lbs is less than
5 kg. This shows a common use of swrl in our domain: We define some “abstract
data type” [6] along with some operations on it. Another example (not shown
here), which builds on the previously defined operations (e.g., less than) is quan-
tity intervals, with operations such as checking whether two quantity intervals
overlap.

One limitation is that we cannot use swrl to define operations that produce
new entities. This cannot be expressed using swrl rules because of the limita-
tion regarding existential variables illustrated in the discussion about ontology
mapping above. For example, adding two quantities produces a new quantity
that is the sum of the two. For some operations, like division, the result could
even have a different unit than the inputs.

Reasoning about Resources and Hierarchical Tasks Using OWL and SWRL 807

5 Implementation

We have implemented tools that realize the task planning framework described
in Section 3. The two main components are a Protégé plug-in and a task engine,
described below. The overall architecture is shown in Figure 8.

Java Virtual Machine

Protégé

OWL files

Task Engine

XSB Prolog Environment

Interprolog

Prolog
ontology

representation
OWL <-> Prolog

translator

Protégé plugin

GUI (Protégé tab etc)

Protégé
Ontology

representation

Fig. 8. Implementation architecture. The new components are the Protégé plug-in and
task engine. As shown by arrows, results from the task engine can be translated all the
way back to owl files.

5.1 Task Engine

Our task engine is a program that solves the task plan analysis and synthesis
problems discussed in Section 3.3. The engine is implemented in XSB Prolog8.
Prolog was a natural choice because it provides built-in backtracking, which we
use to generate all solutions during task plan synthesis.

Given that the meaning of a task or task plan is a set of Horn clauses, for
task plan analysis we could just translate task plans directly into Prolog rules,
query the task plan atom, and see if it succeeded or not. However, for the more
interesting task plan synthesis problem, we also want to know how the task
succeeded. This means that the engine has to “interpret” the task descriptions
and construct structured result terms. This is similar to evaluating rules and
returning the call tree and all variable assignments generated along the way.

As mentioned in Section 3, the engine depends on the entire owl KB (i.e.,
knowledge beyond the task structure) for two purposes:

– When a primitive task is evaluated, the engine must perform a KB query of
the form Resource(x) ∧ capability(x, y) ∧ Cap(y).

– When a constraint atom or artifact atom is evaluated, the engine must per-
form a KB query given by atom.

To perform these queries, the owl KB is translated to Prolog (by the owl
↔ Prolog translator component in Figure 8). The translation uses the well-
known correspondence of a large subset of owl, called DLP [7], to Horn clauses

8 http://xsb.sourceforge.net/

http://xsb.sourceforge.net/

808 D. Elenius et al.

(the translation is the same as in our previous work [1]). This means that not
all of owl’s semantics is covered (i.e., the query answering is not complete), but
in practice we have not found this to be a limitation for the ontologies that we
work with, as we do not tend to rely on the more complex owl axioms and the
inferences that they would enable.

5.2 Protégé Plug-In

We developed a plug-in for Protégé [8] to help in creating tasks and task plans,
invoking the task engine, and navigating results from the task engine.

Figure 9 shows one of several views of the results of running task synthesis for
a given deployment. Results can be fairly complex. Our plug-in helps the user
explore the result in terms of which resources were used, what warnings were
generated, and the structure of the generated task plan.

Fig. 9. Results of running the task engine from the Protégé plug-in. This view shows
which resources were used to generate the selected solution. In the view shown, the
user can explore warnings due to failed constraints.

6 Related Work

A related paradigm for task planning is Hierarchical Task Network (HTN) Plan-
ning [9]. HTNs have tasks (corresponding to our abstract tasks), methods (corre-
sponding to our composite tasks), and primitive tasks. The goal is to decompose
tasks down to primitive tasks, and assign operations to the primitive tasks. This
is constrained by preconditions and effects on the tasks. Thus, the HTN planning
engine has to keep track of the state of the world, and changes to it that tasks
achieve. This makes HTN planning a harder problem than ours, since we do not
care about the order in which tasks are performed. On the other hand, HTN plan-
ning is also easier than our problem, because the arguments to tasks are known
in advance, whereas our task planning paradigm allows us to run the planning
with variable “roles”, which then need to be assigned by the planning engine.

Reasoning about Resources and Hierarchical Tasks Using OWL and SWRL 809

Another related paradigm is Semantic Web Services, and owl-s in particu-
lar. owl-s is used to describe services based primarily on their inputs, outputs,
preconditions, and effects (IOPEs). This is useful in order to infer which com-
bination of services can be used to achieve a particular goal. Services can be
thought of as tasks, and indeed HTN planning has been used with owl-s ser-
vice descriptions [10]. However, owl-s is an open-ended representation scheme
without any particular mandated computational paradigm. Our task ontology
focuses on requirements on resources, whereas owl-s focuses on IOPEs and
sequencing of services, using control constructs such as sequence and split-join.

Finally, there is a wealth of work generally referred to as “scheduling” or
“planning with resources” [11]. This focuses on deciding which resources can be
used for multiple tasks at the same time and how tasks should be scheduled onto
resources in an optimal way. In contrast, we assume that all resources can be
used for any number of tasks.

7 Conclusions

Military training and testing events are highly complex affairs, potentially in-
volving dozens of legacy systems that need to interoperate in a meaningful way.
Our approach to facilitating such events is ambitious: describe the systems and
requirements in great detail using ontologies, and use automated reasoning to
automatically find and fix problems.

Our approach relies on ontologies, and it will be infeasible for us (the authors)
to create all the domain ontologies. Therefore, a standard ontology language on
which everyone can agree is critical, and owl is the de facto standard. How-
ever, the complexity of our problem took us to the limits of what one can do
with owl, and we needed to introduce some innovative techniques of using and
extending it.

One of our main contributions is our task and task plan concepts, which
can be viewed as extensions to the owl language. These concepts allow us to
represent events and their requirements in a structured way, and break down an
overwhelming amount of detail into manageable and reusable chunks. The second
main contribution is a discussion of the benefits and limitations of swrl. We
put swrl to use in many areas, such as defining constraints and configuration
artifacts, reasoning about units, and ontology mapping. Among the limitations
are the restriction to unary and binary predicates, the lack of negation-as-failure
and other nonmonotonic operations, and the inability to produce new individuals
as a result of evaluating a rule.

Our next task will be to define and evaluate a large real-world event using
the techniques described in this paper. The long-term goal is to provide a com-
plete system that is usable by military training and testing experts who are not
necessarily knowledgeable in Semantic Web technologies. For such a transition
to be successful, several different Semantic Web technologies and research areas
need to progress further. The scale and distributed nature of the necessary on-
tology development will require significant improvement in ontology engineering
approaches and tools.

810 D. Elenius et al.

References

1. Elenius, D., Ford, R., Denker, G., Martin, D., Johnson, M.: Purpose-aware rea-
soning about interoperability of heterogeneous training systems. In: Aberer, K.,
Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J.,
Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.)
ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 750–763. Springer, Heidelberg
(2007)

2. Tsarkov, D., Riazanov, A., Bechhofer, S., Horrocks, I.: Using Vampire to reason
with OWL. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC
2004. LNCS, vol. 3298, pp. 471–485. Springer, Heidelberg (2004)

3. Grimm, S., Motik, B.: Closed world reasoning in the Semantic Web through epis-
temic operators. In: Grau, B.C., Horrocks, I., Parsia, B., Patel-Schneider, P. (eds.)
Second International Workshop on OWL: Experiences and Directions (OWLED
2006), Galway, Ireland (2005)

4. Motik, B., Rosati, R.: A faithful integration of description logics with logic pro-
gramming. In: Veloso, M.M. (ed.) Proc. 20th Int. Joint Conference on Artificial
Intelligence (IJCAI 2007), Hyderabad, India, pp. 477–482. Morgan Kaufmann Pub-
lishers, San Francisco (2007)

5. Kalfoglou, Y., Schorlemmer, M.: Ontology mapping: The state of the art. In:
Semantic Interoperability and Integration. Number 04391 in Dagstuhl Seminar
Proc., Internationales Begegnungs- und Forschungszentrum fuer Informatik (IBFI),
Schloss Dagstuhl, Germany (2005)

6. Ehrig, H., Mahr, B.: Fundamentals of Algebraic Specification 1. Springer,
Heidelberg (1985)

7. Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description logic programs: Com-
bining logic programs with description logic. In: Proc. of the 2nd International
Semantic Web Conference, ISWC 2003 (2003)

8. Knublauch, H., Fergerson, R.W., Noy, N.F., Musen, M.A.: The Protégé OWL
plugin: An open development environment for Semantic Web applications. In:
McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS,
vol. 3298, pp. 229–243. Springer, Heidelberg (2004)

9. Ghallab, M., Nau, D., Traverso, P.: Hierarchical task network planning. In: Au-
tomated Planning: Theory and Practice, ch.11. Morgan Kaufmann Publishers,
San Francisco (2004)

10. Sirin, E., Parsia, B., Wu, D., Hendler, J., Nau, D.: HTN planning for web service
composition using SHOP2. Web Semantics: Science, Services and Agents on the
World Wide Web 1, 377–396 (2004)

11. Ghallab, M., Nau, D., Traverso, P.: Planning and resource scheduling. In: Au-
tomated Planning: Theory and Practice, ch.15. Morgan Kaufmann Publishers,
San Francisco (2004)

	Reasoning about Resources and Hierarchical Tasks Using OWL and SWRL
	Introduction
	Ontologies
	Tasks and Task Plans
	Task Ontology
	Semantics of Tasks
	Task Plans
	Semantics of Task Plans
	Configuration Artifacts

	Benefits and Limitations of SWRL
	Defining Constraints
	Defining Configuration Artifacts
	Ontology Mapping
	Reasoning about Units

	Implementation
	Task Engine
	Protégé Plug-In

	Related Work
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

