
Depender Graphs: A Method of Fault-TolerantCerti�ate Distribution�Rebea N. WrightAT&T Labs { Researh180 Park AvenueFlorham Park, NJ 07932 USArwright�researh.att.om Patrik D. LinolnSRI International333 Ravenswood AveMenlo Park, CA 94025 USAlinoln�sl.sri.omJonathan K. MillenSRI International333 Ravenswood AveMenlo Park, CA 94025 USAmillen�sl.sri.omAbstratWe onsider salable erti�ate revoation in a publi-key infrastruture (PKI).We introdue depender graphs, a new lass of graphs that support eÆient and fault-tolerant revoation. Nodes of a depender graph are partiipants that agree to forwardrevoation information to other partiipants. Our depender graphs are k-redundant, sothat revoations are provably guaranteed to be reeived by all non-failed partiipantseven if up to k � 1 partiipants have failed. We present a protool for onstruting k-redundant depender graphs that has two desirable properties. First, it is load-balaned,in that no partiipant need have too many dependers. Seond, it is loalized, in that itavoids the need for any partiipant to maintain the global state of the depender graph.We also give a loalized protool for restruturing the graph in the event of permanentfailures.Keywords: fault tolerane, publi key infrastrutures (PKI), revoation1 IntrodutionPubli keys and their erti�ates eventually beome invalid. Most erti�ates have an expi-ration date, but for various reasons a erti�ate may beome invalid prior to the expirationdate. For example, the seret key may have been lost or ompromised. The subjet's iden-tifying information, whih might inlude an e-mail address or employer, may have hanged.The erti�ate might have been used to enable organizational privileges that have sinebeen withdrawn by the employer. Under these irumstanes, there should be some way torevoke the erti�ate.�A preliminary version of this paper appeared in Proeedings of the Seventh ACM Conferene on Com-puter and Communiations Seurity (CCS), November 2000.1

1.1 Existing ApproahesCurrent proposed standards for revoation, as found in the X.509 diretory framework [14℄,and the Internet draft standard Publi Key Infrastruture [1℄, involve erti�ate revoationlists (CRLs) maintained on key servers, whih at as repositories for erti�ates. To revokea erti�ate, the subjet or another responsible authority sends the key server a revoationnotie, whih is a signed message identifying the erti�ate to be revoked.Upon reeipt of a valid revoation notie, the key server updates its CRL and no longergives out the revoked erti�ate. In a push-based system, signed CRL updates are sent outperiodially to interested users. In a pull-based system, end users who want to hek thevalidity of a erti�ate must query the key server, and in response reeive all or part ofthe latest CRL. Good disussions of revoation tehnologies an be found in [4℄ and [11℄.There are various strategies for reduing ommuniation and storage osts while maintain-ing timeliness of revoation, suh as Koher's erti�ate revoation trees [8℄ and relatedadvanes [7, 12℄, and methods for reduing server load, as in [2, 9℄.One an try to redue the need for revoation by limiting erti�ates to brief expirationperiods, but this inreases server load beause new erti�ates must be sent more frequently.Rivest [13℄ suggested a two-level staged expiration, but this more omplex system stillrequires a \suiide bureau" to maintain revoations due to key ompromise. MDaniel andRubin [10℄ suggest that revoation will remain a neessary part of any PKI.In pratie, it is important to reognize the fat that many erti�ates are issued byindividuals, perhaps using PGP, and distributed without the use of a key server [15℄. Cer-ti�ates and revoations might be posted on Web pages to publiize them, but these pagestypially do not support key server responsibilities suh as CRL maintenane or distribution.1.2 A New Distributed ApproahIn this paper, we propose a new method for handling distribution of revoations or erti�-ate updates. Our method is a push-based method in whih eah erti�ate has a list ofdependers . Revoations and updates for a erti�ate, when they our, are to be sent tothe erti�ate's dependers.Having a set of dependers for eah erti�ate narrows the burden of noti�ation to theminimal set of interested parties, whih is an advantage in a push-based system. However,a solution in whih a single root entity sends revoation noties for a partiular erti�ateto all the dependers for that erti�ate has several disadvantages. If the root entity is akey server with many erti�ates and many ustomers, it may be too ostly to provideand distribute ustomized CRL's for eah of its ustomers. On the other hand, if the rootentity is an individual, it need only be responsible for sending noties regarding its ownerti�ate, but even so may not have the resoures to distribute them to a large list. Forexample, everyone with a opy of the PGP software has the erti�ate of its reator PhilZimmerman, and he would not and ould not put everyone on his depender list. Finally,it is not fault-tolerant. For example, if the network link onneting a depender to the rootentity is rashed or slow, then the depender will not be able to reeive revoation noties ina timely fashion.In our system, rather than having a entralized revoation server who sends revoationsto all end users either periodially or in response to queries, the dependers themselves willpartiipate in distributing revoations and other updates. To that end, partiipants whowish to reeive revoation noties for a partiular erti�ate must register as dependers on2

\parent" partiipants. The partiipants an then be onsidered to form a depender graph. Apartiipant agrees to forward any revoations or other updates she reeives to her dependers.The soure of a revoation notie sends the notie to dependers registered diretly with it;those dependers then forward the revoations to their dependers, and so on.The simplest kind of depender graph is a tree. For example, we ould make a rule sayingthat anyone who relays a erti�ate should put the reipient on a depender list. That is,if A sends a erti�ate to B, then B would request to be on A's depender list for thaterti�ate and A would agree to the request, regardless of whose erti�ate it is or where itame from. However, this simple sheme has the diÆulty that it depends on the orretand prompt operation of partiipants, and that a partiipant who distributes a erti�ateto many users will also be bound to distribute revoations to them. Furthermore, it is evenmore vulnerable to failures than the entralized root entity sheme sine there is generallyonly one path by whih a revoation notie an be forwarded and the failure of any nodeon that path prevents all later nodes from reeiving revoations.In order to provide tolerane of up to k � 1 rashed, slow, or misbehaving partiipants(or the network links onneting them), we require partiipants to register as dependerswith at least k other partiipants. This straightforward idea, whih we will elaborate on inthe remainder of the paper, has several desirable properties:� It is workable for individuals.� It is \server-light," so that massive institutional failities are not required.� It is deentralized.� It is survivable in the event of typial omputer and network failures.� It supports prompt revoation, even if some (up to k) omponents exhibit extraordi-nary delays.� It requires only a realisti workload for those using the system.� The workload is alloated in proportion to the self-interest of users.� It makes it pratial to distribute revoation information immediately, rather thandelaying for a periodi CRL publiation shedule.Although we fous on using depender graphs to distribute revoations, they an also beused to distribute frequent short-lived erti�ates or other kinds of erti�ate updates.In order to join a depender graph, a partiipant needs to �nd k other partiipants todepend on. We present joining protools that are load-balaned, in that no partiipantneed have too many dependers, and loalized, in that no global state is maintained andpartiipants need only maintain information about a few other partiipants. We also give aloalized protool for restruturing the graph in the event of permanent failures.We de�ne depender graphs and prove their fault tolerane properties in Setion 2. Wepresent depender graph onstrution protools in Setion 3. In Setion 4, we present proto-ols to reon�gure the graph around permanent failures. We disuss some additional aspetsof depender graphs in Setion 5 and onlude in Setion 6.
3

2 Depender GraphsFor a given erti�ate, we view erti�ate-holding partiipants in a network as nodes in adireted graph, alled a depender graph, where there is an edge from A to B if B is onA's depender list for that erti�ate. In that ase we say that B depends on A, and thatA is a parent of B. We will always onstrut depender graphs to be ayli and rootedgraphs, and we say B is below A in a depender graph if there is a path from A to B.The root of the depender graph|usually the erti�ate subjet or some kind of erti�ateserver|is the soure of revoation or update information about the erti�ate. When theroot initiates a erti�ate revoation or update notie, it sends the notie to its dependers,alled root-dependers . In turn, eah node reeiving the notie forwards it to its dependers.In general, di�erent erti�ates will have di�erent depender graphs, though these graphsmay share some ommon subgraphs. In pratie, multiple depender graphs might havesigni�ant overlap, and some operations on them ould be ombined for eÆieny. We donot disuss suh optimizations further in this paper.In order to avoid spurious revoations, revoation noties are typially authentiated bymeans of a digital signature. Sine revoations are disarded if the authentiation of thesignature fails for any reason, maliious or arbitrary failures have the same e�et as rashor omission failures, in whih messages are lost. In order for a node to obtain the properrevoation information, it is suÆient that it reeive one opy of the signed notie, regardlessof whether other opies have orret information, inorret information, or have been lost.In our setting, the simplest method for signing revoation noties is that revoationnoties of an individual's publi key are signed by the orresponding private key; forwardedrevoation noties maintain the initial signature. An advantage of this method is that sinethe key used to verify the revoation notie is the same as the key that is being revoked,a user will always be able to hek the signature on revoation noties for erti�ates shehas. Furthermore, a orret signature implies that the revoation notie either ame fromthe owner of the private key and should therefore be trusted, or the revoation notie amefrom someone else who knows the private key or knows how to forge its signatures, in whihase the key is by de�nition ompromised and should be revoked.If a publi key is being revoked beause the private key has been lost, or if the key isbeing revoked by an authority other than the owner of the private key, then it is not possiblefor the private key to sign the revoation. In this ase, one possibility is for the user to �rstobtain a new set of keys and then use these to authentiate the revoation message, butthis has the disadvantage of requiring the new key to be disseminated before the old keyan be revoked. In the ase that another authority is intended to be able to revoke thekey, it is important that the dependers know the publi key of that authority. This an beguaranteed, for example, by inluding the revoking authority's publi key as an extensionin the user's erti�ate. This is not neessary in the ase that the revoking authority is thesame as the erti�ate authority that originally signed the erti�ate.We would like depender graphs to be fault-tolerant. Obviously, we annot expet infor-mation from the root to be sent if the root has failed. However, the temporary or permanentfailure of fewer than k non-root nodes should not prevent a revoation notie sent by theroot from reahing any non-failed erti�ate holder in a timely fashion. Sine revoationsare digitally signed by a key known to all the dependers, it suÆes to guarantee that eahdepender will reeive at least one orret revoation notie in a timely fashion, independentof the timing or orretness of any other opies reeived. To guarantee that at least one or-ret revoation notie is reeived quikly, we onsider the following k-redundany property:4

a rooted direted ayli graph is k-redundant if even after the removal of any set of k � 1non-root nodes, there is a path from the root to every remaining node. (In Setion 5.2, weaddress methods for making the root itself fault-tolerant if desired.)We show below that the global property of k-redundany an be ahieved by ensuringa loal property|that every node exept for the root and its dependers has k parents inthe graph; this is alled the k-parent property. We refer to a rooted, direted, ayli graphwith the k-parent property as a k-rdag .As mentioned above, sine revoations are signed, we an essentially ignore maliiousfaults. However, if desired for other appliations, depender graphs ould be extended totolerate maliious behavior during the distribution of information: i.e. non-root-dependernodes in a (2k + 1)-rdag an tolerate up to k Byzantine failures using voting.In order to prove the fault tolerane properties of k-rdags, we need some basi graphtheoreti de�nitions, slightly modi�ed to take into aount the rooted nature of our dependergraphs. A set of nodes is root-avoiding if it does not ontain the root. A ut set is a root-avoiding set of nodes whose removal disonnets some remaining node from the root. Twoor more paths from A to B are pairwise internally node-disjoint if no two of the paths haveany nodes in ommon exept A and B. In any rooted, �nite, ayli graph, it is possible tode�ne a rank funtion on nodes suh that every edge goes to a node of greater rank thanthe one it is from (so edges are rank-inreasing). For example, the rank of a node an bethe length of the longest path from the root to that node.Theorem 1 Let G be a k-rdag. Then G is k-redundant.Proof: Let G be a k-rdag and let C be a ut set of G. Note that if every ut set ontains atleast k nodes, then any set of k�1 or fewer non-root nodes is not a ut set, so all remainingnodes are onneted to the root, and the graph is k-redundant. Hene, it suÆes to showthat C has at least k nodes. Let x be a node that is disonneted from the root in G� C,and de�ne the neighborhood of x to be the set of nodes y on paths from the root to x in Gsuh that no path from y to x has a node in C. These are the nodes between C and x.Note that sine C disonnets x from the root, x is not the root or a root-depender,and therefore x has k parents by assumption. If the neighborhood of x is empty, then everyparent of x must be in C, and hene C has at least k nodes, and we are done. Otherwise, �nda node y in the neighborhood of x of minimum rank. By the de�nition of a neighborhood,y also is not the root or a root-depender. Hene, by the k-parent property, y has k parents.Those parents must all be in C, for one that is not would be in the neighborhood of xand have rank less than y, a ontradition. Thus, C has at least k nodes, ompleting theproof.The following more expliit result will be helpful when we onsider the eÆieny ofrevoation distribution.Theorem 2 Every k-rdag has k pairwise interior node-disjoint paths from the root to anynode.Proof: Let G be a k-rdag. If the root and a root-depender are both ative, then there isalways a path between them (onsisting of the single edge that onnets them). Supposex is a not the root of G, and is not a root-depender in G. Then by the argument in theproof of Theorem 1, it follows that any ut set that disonnets x from the root is of size atleast k. By Menger's Theorem (f. [6℄), it further follows that there are k pairwise interiornode-disjoint paths from the root to x. 5

3 Depender Graph ConstrutionDepender graphs grow as new nodes join the graph. We envision that a new node will jointhe graph for a partiular erti�ate when it reeives the erti�ate from one of the nodesalready in the graph. In order to maintain the k-parent property, the joining node musteither depend on the root or �nd k nodes to depend on that are already in the graph.3.1 Neessary and SuÆient ConditionsWe �rst address the onditions neessary to ensure that there are always enough availableparents without overloading partiipants with too many dependers. Hene, a restrition onthe hoie of parents is a partiipating node is allowed to plae a limit on its number ofdepender slots, that is, the maximum number of dependers the node is willing to support. Itis lear that if nodes are not willing to have enough depender slots, then it will not alwaysbe possible to add new nodes to the graph, sine one the root's depender slots are full,eah new node requires k parents, eah of whih has an available depender slot, in order tojoin the graph. (A node has a depender slot available if the number of dependers that iturrently has is less than its maximum number.)We will show that it is enough for eah new node to have k depender slots. First, wede�ne a kernel as k nodes suh that if the nodes are ordered, from largest to smallest, by thenumber of available depender slots they have, and if di is the number of available dependerslots the ith node on this ordered list has, then di � i. That is, the nodes have at least k,. . . , 2, 1 slots available, respetively.Theorem 3 A k-rdag an be onstruted from any number of nodes that eah have k de-pender slots.Proof: Begin with the root and make the next k nodes root-dependers. Subsequent nodesneed to �nd k parents. We laim that when a kernel exists, another node with k dependerslots an always be added to the graph, and there will still be a kernel; that is, the existeneof a kernel is an invariant.Note �rst that just after the k root-dependers are added, eah of the k root-dependersstill has all its k slots available, more than satisfying the requirement for a kernel. (In fat,the root-dependers form a kernel even if the ith root-depender has only i slots.)For the proof of invariane, assume that a kernel exists. We an add a new node andgive it k parents by taking one parent from eah of the kernel nodes. This preserves theexistene of a kernel, sine the original kernel nodes now have at least 0, 1, ..., k � 1 slotsavailable and the new node an be added to the kernel with its k available slots.The kernel-based algorithm for adding nodes to a depender graph used in the proofabove is alled a triangular sheme. The result of adding eight nodes to a root using suha sheme is illustrated in Figure 1 for k = 3. To emphasize the regular onstrution of thegraph, the root-dependers are shown with additional root-depender parents, though thoseedges are not neessary.Note that a kernel may not be unique, and there may exist other nodes with additionalavailable slots, beause some nodes, suh as those designed to be key servers, may supportmore than the minimum assumed k dependers for eah erti�ate.The triangular sheme always has 1 + 2 + ::: + k = (k2 + k)=2 slots available one allthe root-dependers have been added. This may sound exessive, sine adding a node only6

Root

New Node
New KernelFigure 1: The k = 3 Triangular Shemerequires �nding k slots (in di�erent parents), but we an show that this number (k2 + k)=2is minimal.Theorem 4 In order to add k non-root-depender nodes, a k-rdag must have at least (k2 +k)=2 slots available.Proof: Consider adding a new set S of k nodes. The �rst node in S to be added mustdepend on k other nodes. So there must be at least one slot open in k other nodes at thebeginning of the proess of adding the S nodes. By the end of adding all nodes in S, a totalof k2 slots have been used. Eah of the k additions needs to depend on k nodes, some ofwhih may be in S. The maximum number of slots that may be used in the set S (withmembers of S depending on earlier members of S) is (k2 � k)=2. Sine k2 total slots areused in adding S, that means there must have been at least k2 � (k2 � k)=2 = (k2 + k)=2slots at the beginning of the proess of adding S.Hene, the triangular sheme is optimal in the sense of having the fewest sustainablenumber of available slots. Note that there may be other ways of ahieving the same optimalnumber of available slots if some nodes are willing to support more than k dependers.3.2 A Loalized Protool for Node AdditionOne motivation of forwarding erti�ates and reording dependers for later revoation is thatit is distributed and deentralized, so that it is not neessary for the root to ommuniatewith all the nodes holding its erti�ate. Adding nodes with a triangular sheme seemsto destroy this advantage by requiring partiipants to keep trak of whih nodes are inthe urrent kernel. In this setion, we show that it is not neessary to do so, beause the7

existene of a kernel an be maintained without knowing where it is, and we present aloalized protool that takes advantage of this.Spei�ally, if there is a kernel and the parents of a new node are taken to be any knodes with available slots, a kernel exists after the addition of the node. To see this, notethat where kernel nodes are taken, an argument as in the proof of Theorem 3 shows that thenew node plus all but one node from the old kernel form a new kernel. Where a non-kernelnode is taken, the kernel node that \should" have been taken is still available to �ll its rolein the new kernel. Hene, the existene of a kernel is preserved. This exibility in hoosingparents makes it possible to onsider optimization goals, suh as minimizing the averagepath length in the depender graph.Theorem 5 shows that if there is a kernel, then one an �nd k available depender slotsin k distint nodes by traing down in the graph from any initial \searh set" of k nodes.Theorem 5 If G is a k-rdag, then there is an available parent set below any set of k nodes.Proof: Let S be a set of k nodes in a k-rdag. Indut on the maximum length (i.e., thenumber of edges) of a path that begins in S and ends outside S. If the maximum is 0then the S nodes have no dependers outside S, so eah node in S an have at most k � 1dependers (all the other nodes in S), eah node in S has at least one available slot, and thusS an be the parent set.For the indution step, suppose the maximum suh path length is n. If every node inS has an available slot, the k nodes in S an serve as parents. Otherwise, some node hasno available slots, so it has a set S0 of k dependers. The set S0 has maximum path lengthsmaller than n, and is below the original set S, so by indution and transitivity of \below"there exists an available parent set below the given k nodes.Theorem 5 suggests a loalized protool for adding new nodes, for whih eah node inthe graph keeps trak only of its parents and its dependers. Given a new node, we begin byidentifying a single node already in the graph as a \starting node"; typially, the startingnode would be a partiipant from whom a new partiipant has just learned a erti�ate. Ifthe starting node does not have k parents, it must be the root or a root-depender. In thatase, either the new node an be a root-depender, or if there are already k root-dependers,take those k nodes as a searh set and apply Theorem 5. Otherwise, the starting node hask parents that an be taken as a searh set as in Theorem 5.It might be desired to hoose parents in suh a way that the path lengths from theroot to eah new node are minimized. The onstrution in Theorem 5 does not satisfy thatproperty. To minimize path length, one would instead traverse bak up the parent links andtake depender slots from the highest available nodes. However, this would either requirenodes to maintain more information about where in the graph the available slots are, orwould require a new partiipant to traverse more of the graph in the worst ase.4 Reon�guring After FailuresWhen a node wants to drop out of a depender graph, or is otherwise suspeted to havefailed permanently, we would like to be able to restruture the depender graph so that thek-redundany property is maintained on the new graph. If suh reon�gurations are done,the fault tolerane of our system over time an be muh more than k, as long as there arenot more than k � 1 failed nodes between reon�gurations. In this setion, we sketh a8

protool for reon�guring the graph if only rash failures an our. If maliious failuresan our, the reon�guration protool would need to be made robust in order to toleratethem.Note that we need not replae failed nodes that have no dependers, sine there are noother nodes a�eted by their failure. Similarly, sine we assume that the root is the solesoure of revoations, there is no use in replaing the root, sine there will be no revoationssent as long as the root is failed.In order to arry out a replaement, it is neessary that the loal topologial informationstored in the failed node (its parent and depender addresses) has not been lost. To thisend, we dupliate this information in one or more aretaker nodes. For the purposes of thisexposition, we assume that only one failure may our between reon�gurations. In ouronstrution, we use one aretaker for eah node that has one or more dependers. We allthis node the ward of its aretaker. The atual replaement for the ward will not generallybe the aretaker but rather some other node that does not have dependers at the time thereplaement needs to be arried out. The replaement protool desribed below will �ndan appropriate replaement node. One the replaement node is identi�ed, the neessaryinformation is sent to the replaement from the aretaker and the replaement takes on thedependers and any aretaking duties of the ward being replaed.Our protool works if every node with dependers has a aretaker and a node an bethe designated aretaker of at most one ward. This is initially true when a depender graphonsists only of the root. The join protool desribed below in Setion 4.1 ensures thataretakers are identi�ed as part of the proedure for adding new nodes, and does so in suha way as to preserve these properties.There are a number of ways that failures ould be deteted. Parents ould disover orsuspet failures of their dependers through an aknowledgement requirement in the revo-ation forwarding protool. Sine revoations may only be infrequent, it may be desirableto detet and repair failures before revoations are to be sent. In this ase, this ould beahieved by requiring \I'm awake" messages to be sent from wards to their aretakers. Ofourse, suh messages should not be sent too frequently, or their ost will outweigh thebene�ts of using depender graphs. If a node is replaed when it has not atually failed, butjust su�ered an unusually long delay, it an be reonneted when it reovers by treating itas a new node. An additional onsideration in this ase is that it may possess erti�atesthat it believes to be valid, but whih were revoked during the period in whih it was dison-neted. To avoid this problem, nodes should save revoations they reeive until the a�etederti�ate has expired; these revoations will be ommuniated to a reovering node as partof the reovery proedure.If instead of our above assumption that only one permanent failure ours betweenreon�gurations, we assume that ` permanent failures may our between reon�gurations,it would be neessary for eah node to store ` levels of topologial information.4.1 Sustainability of JoinOur reon�guration protool requires us to use a new join protool for adding new nodes tothe depender graph. A depender graph is proteted if every parent has a aretaker, and someadditional properties, stated below, are satis�ed. The join protool preserves the protetedstatus. The key idea is that if a node beomes a parent, it is onneted to the end of a hainof aretaker-ward pairs.We say a node is free if it has no dependers (i.e., it is not a parent). A node is available9

if it an aept another depender; otherwise it is full. A set of nodes is available if everynode in the set is available.As mentioned previously, a free node needs no aretaker as it has no dependers and willnot be replaed. Also, the root needs no aretaker beause the root is the soure of allrevoations, and so if it is not ative, no revoations will be initiated. If root authorityis distributed, as disussed in Setion 5.2, we would have to modify the aretaker shemeaordingly.Formally, we say a depender graph is proteted if1. every non-root parent has a aretaker,2. every aretaker has exatly one ward,3. every aretaker is a parent, and4. there are no yles in the graph of aretaker-to-ward edges.Part of the reason to avoid aretaker-ward yles is to inrease the number of simul-taneous failures that an be reovered from. An n-yle an reover from at most n � 1failures.Theorem 6 Suppose we are given a new node to be added to a proteted depender graph,and set of k available nodes. Then it is possible to add parent responsibilities and aretakerresponsibilities, if neessary, in suh a way that the resulting graph is proteted.Proof: Consider the aretaker needs of the nodes in the available set A. Tentatively adddepender edges from eah node in A to the new node; we may later hange one of theseedges. Nodes that were not free (i.e., already parents) prior to adding the new node mustalready have aretakers.If some nodes in the available set were free, say A0 � A, we must �nd aretakers forthese nodes. Choose a node in A0, and onsider one of its parents, p. If p is already aaretaker, follow the aretaker-ward hain from p to its non-aretaker terminus q (whih hasa aretaker beause we followed the path through its aretaker to arrive at q); otherwise letq = p (whih has a aretaker unless it is the root, beause it is a parent). Thus, we havefound a non-aretaker q that itself has a aretaker unless it is the root.Before we make q a aretaker, we have to make sure q is a parent. If it is not, we replaesome member r of A0 with q. That is, we replae the depender edge from r to the new nodewith a depender edge from q, leaving r as a free node. We assign A0 := (A0 n frg)[fqg, andnow proeed to assign aretakers for all nodes in A0.To do this, we extend the aretaker-ward hain from q through all nodes in A0. We ando this beause all nodes in A0 were not parents and therefore were not already aretakers.Sine all nodes in A now have the new node as a hild, all onditions for being protetedare satis�ed.Note that the above onstrution atually results in a single aretaker-ward hain startingat the root and traversing through all the parent nodes of the graph.Next we show how available sets are loated. When the depender graph is �rst reated, ithas a root. New nodes are added as root-dependers, requiring no onern about aretakersor k-redundany, until the root is full. One the root is full, a new node is added to adepender graph by asking some prior node to �nd k parents for the new one. The parents of10

the prior node serve as the �rst andidate set. The nodes in this set are either all available ornot. If so (skip this ase if the prior node is a root-depender), they beome the parents of thenew node. If not, there is a full parent, and k of its hildren beome the next andidate set.This iteration terminates beause the graph is �nite and ayli, as illustrated in Figure 2.Caretaker responsibilities are assigned in aordane with Theorem 6.
PRIOR NODE

NEW NODEFigure 2: Searhing for Parents4.2 The Replae ProtoolWhen a aretaker node deides that its ward must be replaed, it must loate a free node toserve as a replaement. To do so, it sends a \help" message to one or more of its dependers,ontaining its address. The depender passes the message down again until it reahes afree node. The free node replies to the aretaker node, and the aretaker node selets areplaement from among the replies (if there are more than one). The replaement reeivesa opy of the ward's bakup information from the ward. The replaement beomes the newward of the aretaker.As with the initial seletion of parents from di�erent available sets of parents, the sele-tion of whih depender should pass down the help request as well as the seletion amongpotential replaements that reply to the aretaker, ould be made arbitrarily or ould bemade aording to some strategy for seleting the best andidate.The updated free node, the old ward's replaement, tells the ward's parents (whoseidentities it now knows) to replae the old ward by itself as a depender. The new wardaepts the old ward's dependers as its own without having to tell them, but if the old wardwas the aretaker of another node, the new ward must ontat that node to obtain a bakupopy of its stored information.There is a problem if the the old ward had more than k dependers, sine new nodesare not required to support more than k dependers. To handle this, we assume that thehelp request spei�es the number of dependers. If a willing replaement is found, it anbe used, otherwise the replaement protool fails. This may be expeted to happen if thefailed node is a server with a very large number of dependers. It is not unreasonable toexpet that suh nodes are well maintained, and are unlikely to fail permanently withoutsome administrative solution in the event of failure.11

5 DisussionIn this setion, we briey disuss a number of issues and possible extensions where furtherresearh is alled for.5.1 Link/Transport onnetivityIf two paths are node-disjoint, then they are also edge-disjoint. Thus, our depender graphsare tolerant against the failure of k � 1 node or edge failures. However, in a real network,links between di�erent nodes are not independent. Often many links go through the sameswithing node in an underlying ommuniation infrastruture. Thus, the failure of oneswithing node may result in the failure of many edges in a depender graph.It would therefore be desirable to assure that links from a node to its k parents areindependent (so it takes k failures of lower-layer swithing nodes to break them all). If inaddition there are k independent paths from the root to its dependers, then an indutiveargument shows that it takes k failures of the underlying network omponents to ut allpaths to a node. A weaker version guarantees k-redundany for non-root-depender nodesso long as eah link from the root to a root-depender is independent of all other links in thegraph. We an still show by indution that it takes k failures to ut o� a non-root-depender.Cheking independene of transport paths an be done using network monitoring toolssuh as \traeroute." However, in pratie this information is rather dynami and may bediÆult to keep a handle on.5.2 Distributing root authorityIn some settings, it is desirable for the root authority to be distributed among multipleparties, so it takes the partiipation of at least t of these parties to send out a valid revoationnotie (and furthermore any t parties an do so). This an be ahieved by distributing thefuntionality of the root into multiple parties and using threshold signatures (.f. [3, 5℄)so that the orret partiipation of t parties is neessary and suÆient to reate a validrevoation. If this new \distributed root" onsists of at least k+ t�1 parties, then this alsoprovides rash fault tolerane for up to k � 1 of the root parties.In order for the threshold signatures to work, the root-dependers must now have at leastk + t � 1 of the root parties as parents; other nodes still need k parents as before. Whena revoation notie is sent, it is signed using the threshold signature sheme. Eah rootnode sends its partial signature to the root-dependers. The root-dependers reonstrut thesigned revoation notie, and if it is a valid signature, they proeed as before by forwardingthe signed revoation. Sine the resulting depender graph has its normal properties withrespet to this distributed root, it still enjoys the k-redundany property with respet to it.5.3 Reusing LinksIn some appliations it may be desirable to reuse all or part of the depender graph tosupport all-to-all revoation-like signaling. As desribed above, k-rdags must be onstrutedfor eah root node wishing to have a reliable revoation mehanism. However, one antake great advantage of sharing between multiple k-rdags to redue resoure usage in largeommunities. Further, if all links an be assumed to be used in both diretions, one ouldbuild a single k-rdag that supports reliable revoations or other ommuniation from any12

node in the network using a simple ooding protool. However, the details of this approahare beyond the sope of this paper.5.4 Global OptimizationsFor distribution of revoation noties, the k-redundany property an be exploited simplyby having eah node forward a notie to all its dependers. In the general ase, this is thebest that an be done. However, there are several situations in whih global informationabout the graph ould be used to redue or eliminate unneessary network traÆ while stillensuring revoations are distributed properly.For example, if the graph has more than k disjoint paths to some nodes, it might bepossible to remove or ignore some of the edges of the graph. Similarly, if not all nodes needto reeive eah update, then some edges an be removed. Given a partiular destinationnode, Theorem 2 says that there are k pairwise interior node-disjoint paths from the root tothat node, so that using only the edges in these paths would eliminate unneessary traÆwhile preserving k-redundany with respet to that one destination node. When only somesubset of nodes needs to reeive a revoation notie, the goal would be to �nd a minimalset of edges that inlude k disjoint paths to eah node in the subset. Finally, in the asethat something more is known about whih failure on�gurations an our than just thatany k�1 nodes might simultaneously fail, it might be possible to ensure that eah node hasalways at least one path from the root through no failed nodes without having k disjointpaths to eah node.6 ConlusionsDepender graphs provide a loally manageable, salable, eÆient, and fault-tolerant methodof erti�ate revoation in a publi-key infrastruture. The relationship between k-failureprotetion and the obligation of a partiipant to support k dependers meets the objetiveof having a fair and realisti workload, and we have shown how the system responds toboth temporary and permanent failures. Many pratial issues remain open, suh as how kshould be hosen to balane fault tolerane needs with eÆieny onsiderations.Due to their fault tolerane and loalized onstrution protools, k-rdags may �nd usefulappliations elsewhere. As desribed in this paper, they are most useful for environments inwhih only rash or delay failures our, or if the information to be sent is digitally signedor otherwise veri�able, as in our ase of erti�ate revoations. However, depender graphsan be extended to tolerate maliious behavior during the distribution of information: i.e.non-root-depender nodes in a (2k + 1)-rdag an tolerate up to k Byzantine failures usingvoting; additionally, the root-dependers must have some means for verifying informationreeived from the root, suh as voting among themselves.Other possible appliations that ould possibly bene�t from depender graphs inludefault-tolerant multiast bakbone (MBone) trees, distributing routing information in theInternet suh as reahability information exhanged by the BGP protool, and maintainingloation information for a mobile host as it moves from one base station to another.AknowledgmentsWe thank Andrea Linoln and Patrik MDaniel for helpful disussions.13

Referenes[1℄ C. Adams and R. Zuherato, \Internet X.509 Publi Key Infrastruture Data Certi�-ation Server Protools," Internet Draft, PKIX Working Group, 1998.[2℄ D. Cooper, \A Model of Certi�ate Revoation," Pro. 15th Annual Computer SeurityAppliations Conferene, 1999, 256{264.[3℄ Y. Desmedt and Y. Frankel, \Shared generation of authentiators and signatures,"In Advanes in Cryptology|CRYPTO '91, Leture Notes in Computer Siene 576,457{469, Springer-Verlag, 1992.[4℄ B. Fox and B. LaMahia, \Certi�ate Revoation: Mehanis and Meaning," Pro.Finanial Cryptography '98 , LNCS 1465, 1998, 158{164.[5℄ R. Gennaro, S. Jareki, H. Krawzyk, and T. Rabin, \Robust Threshold DSS Signa-tures," In Advanes in Cryptology|CRYPTO '96, Leture Notes in Computer Siene1070, 354{371, Springer-Verlag, 1996.[6℄ F. Harary, Graph Theory , Addison-Wesley, Reading, MA, 1969.[7℄ H. Kikuhi, K. Abe, and S. Nakanishi, \Performane Evaluation of Certi�ate Revoa-tion Using k-Valued Hash Tree," Pro. ISW'99, LNCS 1729, 1999, 103{117.[8℄ P. Koher, \On Certi�ate Revoation and Validation," Pro. Finanial Cryptography'98, LNCS 1465, 1998, 172{177.[9℄ P. MDaniel and S. Jamin, \Windowed Certi�ate Revoation," Pro. IEEE Infoom2000 , IEEE, 2000, 1406{1414.[10℄ P. MDaniel and A. Rubin, \A Response to `Can We Eliminate Certi�ate RevoationLists?' ", Pro. Finanial Cryptography 2000, February 2000.[11℄ M. Myers, \Revoation: Options and Challenges," Pro. Finanial Cryptography '98,LNCS 1465, 1998, 165-171.[12℄ M. Naor and K. Nissim, \Certi�ate Revoation and Certi�ate Update," Pro. 7thUSENIX Seurity Symposium, 1998, 217{228.[13℄ R. Rivest, \Can we eliminate erti�ate revoation lists?" Pro. Finanial Cryptography'98, LNCS 1465, 1998, 178-183.[14℄ \The Diretory-Authentiation Framework," CCITT Reommendation X.509.[15℄ P. Zimmermann, The OÆial PGP User's Guide, MIT Press, 1995.
14

