
Invited paper presented at the second IEEE International Conference on Formal Engineering Methods (ICFEM ’98), pp. 176–178
Brisbane, Australia, December, 1998.

Ubiquitous Abstraction:
A New Approach for Mechanized Formal Verification�

Extended Abstract

John Rushby
Computer Science Laboratory

SRI International
Menlo Park CA 94025 USA

Formal methods can provide many benefits but, to my
mind, the chief benefit of specificallyformalmethods is that
they allow some properties of a computational system to be
deduced from its design by a process oflogical calculation,
in much the same way that computational fluid dynamics
allow properties of aerofoils to be examined by numerical
calculation.

Originally, “computational system” meantcomputer
program, and the main property of interest was correct-
ness of the program with respect to its specification. More
recently, however, these notions have widened to include
almost any level of system description (e.g., hardware, al-
gorithms, software architecture, requirements), properties
short of full “correctness” (e.g., various notions of internal
and external consistency), and refutation (i.e., bug finding)
as much as verification. Mechanized formal verification
uses the techniques of automated deduction—that is theo-
rem proving and model checking—to perform the “logical
calculations” that enable such properties to be checked for
such system descriptions. The most successful verification
systems combine an interactive theorem prover with pow-
erful automation such as decision procedures for equality
and arithmetic, and rewriting: the user directs the overall
process, while the automation takes care of the details.

With the aid of a modern verification system, routine
formal analyses are, well, routine. By this I mean that if
the property of interest follows fairly directly from the sys-
tem description by reasoning in some previously formalized
mathematical domains, then mechanized formal verification
is unlikely to be more difficult or to take longer—and may
be considerably easier, as well as less error-prone—than a
comparably detailed informal examination. Much worth-
while analysis can be accomplished economically and re-
liably in this way (see, for example, [4], which describes
analysis of tables and other requirements specifications for�This work was supported by Darpa through USAF Rome Laboratory
Contract No. F30602-96-C-0204, and by the National ScienceFoundation
under contract CCR-9509931.

some recent Space Shuttle software), but there is much else
that can be accomplished only with great difficulty and ef-
fort.

These more challenging problems often involve concur-
rency, as in protocols and distributed algorithms, and the
difficulties are not so much in theorem proving as in ancil-
lary tasks, such as the invention of suitably strong invari-
ants, and diagnosing whether an intractable subgoal indi-
cates an error in the design, an inadequate invariant, or a
mistaken proof step. To establish that a concurrent sys-
tem (typically specified as a transition relation) maintains
a desired invariant (expressing some safety property, for ex-
ample), the basic deductive method is to show that the in-
variant is implied by the initial system state(s), and that it
is preserved by all transitions. Usually, the desired prop-
erty isnot preserved in this simple manner, and it is neces-
sary to strengthen it with additional conjuncts to character-
ize the reachable states (since preservation is required only
for states that can be reached from the initial states). These
conjuncts can often be found—one at a time—by inspecting
a failed proof, extracting a plausible conjunct, and repeat-
ing the process until the proof succeeds. In one well-known
example, 57 iterations of this kind were required to verify
a relatively simple communications protocol known as the
“bounded retransmission protocol” [5].

Model checking is an attractive alternative to theorem
proving in circumstances such as these. Model checking
is largely automatic, but it is applicable only to finite state
systems (and to some infinite state systems having spe-
cial forms); consequently, most system descriptions must
be “downscaled” (i.e., aggressively simplified) before they
can be subjected to model checking. Unless there is a suit-
able abstraction (i.e., simulation) relationship between the
original system description and the downscaled one, model
checking may be unsound or incomplete with respect to the
original system: that is, it may fail to detect an error (be-
cause it is not present in the downscaled system), or may
falsely report errors (that are present in the downscaled sys-

1



tem but not in the original). The latter is not much of a
problem when refuation is the goal: model checkers gener-
ally produce a counterexample in the form of an execution
trace that manifests the error in the abstracted system, and
it is usually straightforward to check whether a correspond-
ing trace leads to an error in the original system. This may
be adequate for refutation, but for verification we need to
know that the model checker’s inability to find errors in the
downscaled system implies satisfaction of the desired prop-
erty by the original system. For this, it is necessary to es-
tablish a suitable abstraction relationship between the orig-
inal and the downscaled system descriptions—and doing so
by traditional means can be almost as hard as proving the
property directly. For the example of the bounded retrans-
mission protocol, justification of an abstraction for model
checking required 45 of the 57 conjuncts used in the direct
proof.

Recently, several researchers, including my colleagues
at SRI, have been exploring ways to combine theorem
proving, abstraction, model checking, and other techniques
more aggressively than before in order to avoid some of the
difficulties and costs described above.

One idea is tocalculatean abstracted system descrip-
tion, so that it is correct by construction, rather than to jus-
tify a downscaled description constructed by hand. Given
an abstraction function relating the original and abstracted
state spaces, a verification condition can be generated for
each pair of abstract states that specifies the conditions un-
der which no transition is required between those states in
the abstracted system description (the condition is that there
is no transition between any pair of original states that map
to those abstract states). If the verification condition can be
proved (using automatic proof procedures), then the transi-
tion can be omitted from the abstracted system description;
if not, then it is conservative to include the transition. For
the bounded retransmission protocol, this approach is able
to compute automatically an abstracted system description
suitable for model checking [1]. More sophisticated treat-
ments allow the desired invariant to be used in construction
of the abstracted system, and can use information from a
failed model check to refine the abstraction.

Calculation of abstracted system descriptions often re-
quires, and is usually made easier, if known invariants can
be supplied to the process. Some useful invariants can be
calculated by static analysis [3], but others can be extracted
from model checking. As part of its computation, a model
checker will almost certainly calculate the set of reachable
states of the system description presented to it. Now, the
reachable states of a system characterize its strongest in-
variant, so a concretization of the reachable states of an
abstracted system is certainly an invariant, and possibly a

strong one, for the original system.1 This suggests a new
way to calculate invariants that may help in the construc-
tion of abstracted system descriptions: construct some sim-
pler abstraction (one for which already known invariants are
adequate for its construction), and use a concretization of its
reachable states as a new invariant. A practical difficulty in
this approach is that the reachable state set calculated by
a model checker is not usually made available externally
and, in any case, it is usually represented by a data structure
(a BDD) that is not directly suitable for input to a theorem
prover. This difficulty has been overcome in the current ver-
sion of the SMV model checker, where aprint function,
implemented by Sergey Berezin, provides external access
to the reachable states.

The techniques described so far allow calculation of in-
variants and of abstracted systems, but they require the user
to supply suitable abstraction functions. Some guidance in
doing this can be obtained by inspecting the predicates that
appear in the original, concrete, system description (partic-
ularly those in the guards on transitions): if a predicate such
asx = y + 1 ^ x 6= z appears in the concrete system
description, then an abstraction can be constructed having
a boolean state variable that records the truth or falsity of
this predicate [8]. Even with the aid of heuristics such as
this, however, it can still require great insight to design a
tractable abstraction that preserves the property of interest.

An alternative approach does not seek to construct an
abstraction that directly preserves the property of interest:
instead, this approach uses theorem proving as its top-level
technique, and employs abstraction and model checking to
help discharge the subgoals that are generated [7]. The at-
traction here is that theorem proving will have performed
some case analysis in generating the subgoals, so that they
will be simpler than the original problem. Therefore the ab-
straction needed to help discharge a given subgoal can be
much simpler than one that discharges the whole problem;
furthermore the predicates that appear in the formulas of the
subgoal provide useful hints for the construction of a suit-
able abstraction.

In summary, “ubiquitous abstraction”—that is construct-
ing many different abstracted system descriptions at many
different points in an analysis, and for several different
purposes—has great promise as a way to ease difficulties
and increase productivity and automation in the formal anal-
ysis of concurrent systems. The approach also provides
a new way to combine different tools, such as theorem
provers and model checkers, though full exploitation of this
opportunity requires modification to the tools so that they
can exchange symbolic values (e.g., the reachable state set,

1“Concretization” is the inverse of abstraction; the inverse of the ab-
straction function is not a function, in general, so some approximation is
required to find a set of concrete states who image under the abstraction
function includes all the reachable abstract states.

2



or a counterexample) rather than merely report the success
or failure of their own local analysis. Some of the capa-
bilities I have described are already integrated in a system
called InVeSt [2] and initial experiments with this and other
prototypes developed as part of our “Symbolic Analysis
Laboratory” (SAL) are quite promising. Our current plans
are to evaluate the approach on more challenging examples.

Acknowledgements

The ideas outlined here, and the systems that imple-
ment them, are the work of my colleagues Saddek Ben-
salem, Sergey Berezin, Yassine Lakhnech, Sam Owre, Has-
sen Saı̈di, and Natarajan Shankar.

References

Papers by SRI authors can generally be found athttp:
//www.csl.sri.com/fm.html .

[1] S. Bensalem, Y. Lakhnech, and S. Owre. Computing abstrac-
tions of infinite state systems compositionally and automati-
cally. In Hu and Vardi [6], pages 319–331.

[2] S. Bensalem, Y. Lakhnech, and S. Owre. InVeSt: A tool for
the verification of invariants. In Hu and Vardi [6], pages 505–
510.

[3] S. Bensalem, Y. Lakhnech, and H. Saı̈di. Powerful tech-
niques for the automatic generation of invariants. In R. Alur
and T. A. Henzinger, editors,Computer-Aided Verification,
CAV ’96, volume 1102 ofLecture Notes in Computer Sci-
ence, pages 323–335, New Brunswick, NJ, July/Aug. 1996.
Springer-Verlag.

[4] J. Crow and B. L. Di Vito. Formalizing Space Shuttle soft-
ware requirements: Four case studies.ACM Transactions on
Software Engineering and Methodology, 7(3):296–332, July
1998.

[5] K. Havelund and N. Shankar. Experiments in theorem prov-
ing and model checking for protocol verification. InFormal
Methods Europe FME ’96, volume 1051 ofLecture Notes in
Computer Science, pages 662–681, Oxford, UK, Mar. 1996.
Springer-Verlag.

[6] A. J. Hu and M. Y. Vardi, editors.Computer-Aided Verifi-
cation, CAV ’98, volume 1427 ofLecture Notes in Computer
Science, Vancouver, Canada, June 1998. Springer-Verlag.

[7] V. Rusu and E. Singerman. On proving safety proper-
ties by integrating static analysis, theorem proving and
abstraction. Submitted for publication, Sept. 1998. Avail-
able at http://www.csl.sri.com/˜singermn/
integration.html .

[8] H. Saı̈di and S. Graf. Construction of abstract state graphs
with PVS. In O. Grumberg, editor,Computer-Aided Verifica-
tion, CAV ’97, volume 1254 ofLecture Notes in Computer
Science, pages 72–83, Haifa, Israel, June 1997. Springer-
Verlag.

3


