
[12] Sam Owre, John Rushby, Natarajan Shankar, and Friedrich von Henke. Formalveri�cation for fault-tolerant architectures: Some lessons learned. In J. C. P.Woodcock and P. G. Larsen, editors, FME '93: Industrial-Strength FormalMethods, pages 482{500, Odense, Denmark, April 1993. Volume 670 of LectureNotes in Computer Science, Springer-Verlag.[13] David Lorge Parnas. Predicate logic for software engineering. IEEE Transac-tions on Software Engineering, 19(9):856{862, September 1993.[14] David Lorge Parnas. Some theorems we should prove. In Je�rey J. Joyceand Carl-Johan H. Seger, editors, Higher Order Logic Theorem Proving and itsApplications (6th International Workshop, HUG '93), pages 155{162, Vancou-ver, Canada, August 1993. Number 780 in Lecture Notes in Computer Science,Springer-Verlag.[15] Robert E. Shostak. On the SUP-INF method for proving Presburger formulas.Journal of the ACM, 24(4):529{543, October 1977.[16] Robert E. Shostak. An algorithm for reasoning about equality. Communicationsof the ACM, 21(7):583{585, July 1978.[17] Robert E. Shostak. A practical decision procedure for arithmetic with functionsymbols. Journal of the ACM, 26(2):351{360, April 1979.[18] Robert E. Shostak. Deciding combinations of theories. Journal of the ACM,31(1):1{12, January 1984.[19] A. S. Troelstra and D. van Dalen. Constructivism in Mathematics: An Intro-duction, volume 121 and volume 123 of Studies in Logic and the Foundationsof Mathematics. North-Holland, Amsterdam, Holland, 1988. In two volumes.
13

References[1] Michael J. Beeson. Foundations of Constructive Mathematics. Ergebnisse derMathematik und ihrer Grenzgebiete; 3. Folge � Band 6. Springer-Verlag, 1985.[2] Michael J. Beeson. Proving programs and programming proofs. In InternationalCongress on Logic, Methodology and Philosophy of Science VII, pages 51{82,Amsterdam, 1986. North-Holland. Proceedings of a meeting held at Salzburg,Austria, in July, 1983.[3] Michael J. Beeson. Towards a computation system based on set theory. Theo-retical Computer Science, 60:297{340, 1988.[4] Ermanno Bencivenga. Free logics. In Dov M. Gabbay and Franz Guenthner,editors, Handbook of Philosophical Logic{Volume III: Alternatives to ClassicalLogic, volume 166 of Synthese Library, chapter III.6, pages 373{426. D. ReidelPublishing Company, Dordrecht, Holland, 1985.[5] William M. Farmer. A partial functions version of Church's simple theory oftypes. Journal of Symbolic Logic, 55(3):1269{1291, September 1990.[6] William M. Farmer, Joshua D. Guttman, and F. Javier Thayer. IMPS: An inter-active mathematical proof system. Journal of Automated Reasoning, 11(2):213{248, October 1993.[7] Raymond D. Gumb. Programming Logics: An Introduction to Veri�cation andSemantics. John Wiley and Sons, New York, NY, 1989.[8] Susumu Hayashi and Hiroshi Nakano. PX: A Computational Logic. Foundationsof Computing. MIT Press, Cambridge, MA, 1988.[9] C. L. Heitmeyer and B. G. Labaw. Consistency checks for SCR-style require-ments speci�cations. Technical report, US Naval Research Laboratory, Wash-ington DC, August 1993. In press.[10] C. A. Middelburg and G. R. Renardel de Lavalette. LPF and MPL!|a log-ical comparison of VDM SL and COLD-K. In S. Prehn and W. J. Toetenel,editors, VDM '91: Formal Software Development Methods, pages 279{308, No-ordwijkerhout, The Netherlands, October 1991. Volume 551 of Lecture Notesin Computer Science, Springer-Verlag. Volume 1: Conference Contributions.[11] S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype veri�cation system.In Deepak Kapur, editor, 11th International Conference on Automated Deduc-tion (CADE), pages 748{752, Saratoga, NY, June 1992. Volume 607 of LectureNotes in Arti�cial Intelligence, Springer-Verlag.12

that the automated reasoning required to solve these examples is really quite el-ementary. For example, the truth of many of the theorems is independent of theinterpretation of the functions and predicates that appear within them (the exam-ples of Figures 4, 5, 11 and 13 are like this), and they can therefore be proved byessentially propositional reasoning. Simple automated reasoning techniques are usede�ectively in a tool described by Heitmeyer and Labaw [9]; the tool discovered anumber of signi�cant errors in a substantial set of tables that had already been sub-jected to extensive human review. Clearly, there is no point in using a full theoremprover when simple techniques su�ce. However, if simple techniques prove inade-quate on some applications (and Heitmeyer and Labaw report that their tool didgenerate some \false positives"), then we suggest that employing a system such asPVS may prove more economical in the long run than stretching simple techniquesbeyond their limits. And, of course, if we want to establish application-level prop-erties of the speci�cation (such as that it achieves some intended function), ratherthan simply establish local forms of consistency for a tabular representation, then afull theorem prover designed for veri�cation-type problems is likely to be essential.Finally, although the purpose of this note has been to demonstrate theoremproving, we hope the reader may also �nd something of value and interest in styleof speci�cation supported by PVS. In particular, we believe that predicate anddependent subtyping (and the attendant obligation to prove theorems in order todecide type-correctness) provide very e�ective solutions to issues (such as partialfunctions) that pose considerable di�culties in other speci�cation languages withmechanized support. Also, although we can appreciate some of the attractions of thetabular approach to speci�cation, we suggest that those who practice this approachshould also consider whether direct expression in a traditional logic such as that ofPVS might not be advantageous in some circumstances. Tables are an e�ective wayto present control-dominated constructions, but simple functions and algorithmsmay be more perspicuous when presented in traditional logic.AcknowledgmentsWe have had stimulating discussions with David Parnas on the content of this note.We are grateful to Je� Joyce and to Paul Miner for bringing Parnas' paper to ourattention, and for the support and encouragement of Connie Heitmeyer of the USNaval Research Laboratory.
11

floor 1 1 fnlfloor #1 nrfloorg/ key 1 fndivgThe result of LaTEX-printing the de�nition of palindrome? is shown below.palindrome?(l; (n j l + n � N + 1); A) : bool= (8 (i : nat) : i < bn � 2c) A(l + i) = A(l + n � 1 � i))3 ConclusionsWe appreciate this opportunity to demonstrate the e�ectiveness of a modern theo-rem prover on problems representative of those that arise in the software engineer-ing and veri�cation methodology developed by David Parnas. All but one of thetheorems posed by Parnas were proved automatically by the tcc strategy of PVS.The entire development (transcription of the theorems into PVS and their proof)took about an hour|essentially the time required to interpret the theorems andtype them in. We speculate that proof of somewhat harder theorems could also belargely automated: it has been our experience that any given development tends togenerate many similar theorems. An expert could therefore develop an appropri-ate PVS strategy for the class of theorems generated by a particular development.However, we do not consider it productive to attempt the construction of automaticproof procedures for genuinely hard theorems|our experience is that it is betterand faster for a skilled and knowledgeable user to guide the proof than to attemptheroic automation.One issue not raised by the theorems examined here is what to do when anautomated proof attempt fails. This can happen for two reasons: the theorem maybe true but the automated procedures are inadequate to prove it, or the theoremmay be false. In our experience, it requires some skill to distinguish between thesecases, and it may not be easy to develop that skill when relying on automated proofprocedures.Parnas [14] writes that the theorems considered here are \more di�cult thanthe majority of the theorems that arose in the documentation and inspection of theDarlington Nuclear Plant Shutdown Systems," and that that activity \resulted inabout 40 kg. of such trivial tables" (as those that generated the theorems consideredhere, not including the palindrome example). He continues \if these theorems canbe proven automatically by today's theorem proving programs, we should be usingthose programs." We hope to have demonstrated that those with problems similarto those described by Parnas should consider using modern theorem proving systemssuch as PVS.Some may argue that using a full veri�cation system such as PVS to prove thesesimple theorems is like using a sledgehammer to crack a walnut, and will observe10

palindrome?(l, (n | l+n <= N+1), A): bool =(FORALL (i: nat): i < floor(n/2) => A(l+i) = A(l+n-1-i))Notice that the type of the second argument is now restricted to the range 1: : :N+1-l. With this adjustment, the tcc becomespalindrome?_TCC1:OBLIGATION (FORALL (i: nat), l, (n: posnat | l + n <= N + 1):i < floor(n / 2) IMPLIES l + i > 0 AND l + i <= N)which is (easily) provable. With more precise type constraints on the predicatepalindrome?, we need to adjust the statements of fig13 and fig15 so that theyremain type-correct:fig13: THEOREM (EXISTS l, (n|l+n<=N+1): palindrome?(l, n, A))=> nonempty?(fl | (EXISTS (n|l+n<=N+1): palindrome?(l, n, A))g)fig15: THEOREM nonempty?(fn|(EXISTS (l|l+n<=N+1): palindrome?(l, n, A))g)This correction to the speci�cation has no e�ect on the proofs of these theorems (itjust makes their statements valid in the logic of PVS).It might seem that Parnas' partial term logic has avoided this complication in-volving dependent types. In one sense it has: his speci�cation has a meaning evenif accesses can occur outside the domain of the array. However, when we cometo prove a theorem such as fig15 it is not enough to know that the expressionpalindrome?(l, n, A) has some meaning|we need to evaluate its actual mean-ing in order to decide the truth of the theorem. That will require evaluating theexpression A(l+i) = A(l+n-1-i) for all combinations of the variables concerned. Inorder to consider the truth of this equality, we need to know whether the expressionson either side are de�ned or not. Thus, in formally evaluating this expression as itappears in fig15, a theorem prover based on a partial term logic would probablypose de�nedness lemmas identical to the tcc shown earlier. Whereas a mechaniza-tion of a partial term logic would encounter such de�nedness obligations (possiblyseveral times) at proof time, PVS encounters them at typecheck time. This pro-vides earlier error detection, requires each de�nedness obligation to be dischargedonly once, and allows more information to be provided in the types.6There is one other feature of PVS we should mention before closing: PVS pro-vides a LaTEX-printer that can be customized by simple tables to recreate the pre-ferred notation of a particular application area. The following two-line incantationcauses it to employ the symbols used by Parnas for the oor and division functions.6It would be interesting to try this in a system such as IMPS that uses a partial term logic.9

The de�nition is given in terms of Hilbert's " (choice) operator and is followed by alemma which states that the floor of a real number x is the largest integer less thanor equal to x. The de�nition and lemma come from the PVS prelude; we do notexplain the de�nition or the proof of the lemma here, since their level of di�cultyis out of keeping with the rest of this note; the general PVS user needs only tounderstand the property stated in floorprop.The tcc-strategy built-in to PVS is unable to prove the theorem fig15 automat-ically. It is necessary for the user to supply some \insight": namely, that the reasonthis theorem is true is that palindromes of length 1 occur at every position. Thus,to �nish the proof after the tcc-strategy has done its work, it is necessary for theuser to suggest two instantiations (one for the length n and another for the startingposition l) and to invoke floorprop.4Although it looks as though we have completed the assignment suggested byParnas, a few loose ends remain. Typechecking a PVS speci�cation can lead tothe generation of proof obligations called tccs that must be discharged before thespeci�cation is considered type-correct. In the present case, most of the tccs aretrivial5 and are discharged automatically by the tcc-strategy that also disposes ofthe main theorems suggested by Parnas. However, the declaration of palindrome?generates some tccs that inspection shows to be unprovable (in fact, false)|forexample:palindrome?_TCC1:OBLIGATION (FORALL (i: nat), l, n:i < floor(n / 2) IMPLIES l + i > 0 AND l + i <= N)The issue here is that the de�nition of palindrome? requires accessing thevalues of the array A at index positions between l+i and l+n-1-i where l is knownto be of type index, n is a posnat, and 0 <= i < floor(n/2). Because PVSis a logic of total functions, it requires us to prove that all accesses to A will bewithin its domain|this is the content of the tcc palindrome TCC1 shown above.Unfortunately, it is easy to see that some of these accesses could actually be outsidethe domain of A and that the tcc is consequently false. The way to repair thisde�ciency is to realize that once we have chosen a value for l (the starting positionof the putative palindrome), the length of the longest palindrome that can lie withinthe array is restricted to N+1-l. Thus not all combinations of l and n are validarguments to palindrome? and we need to restrict its domain appropriately. Thisis done by means of a dependent type declaration|a type that depends on thevalue of some term appearing earlier in the speci�cation. Here the appropriatespeci�cation is the following.4Notice that this theorem remains true (and becomes stronger) if the existential quanti�er isreplaced by a universal one. This variant also has an easier proof, since the starting position l isskolemized and we do not need to supply an instantiation for it.5For example, the declaration of the type index requires that we show 0 < 1 and 1 � N .8

A: VAR [index -> T]n: VAR posnatl: VAR indexpalindrome?(l, n, A): boolfig13: THEOREM (EXISTS l: palindrome?(l, n, A))=> nonempty?(fl | palindrome?(l, n, A)g)Notice that we have given a signature, but no interpretation for the predicatepalindrome?. This is because the truth of the theorem fig13 is independent ofthe interpretation of this predicate (the theorem is essentially identical to that ofFig11). The theorem is proved in exactly the same way as the previous two.2.9 The Theorem of Figure 15This theorem was originally posed to us asn > 1) nonempty(fnj9l; (8i; 0� i < bn � 2c) A[l+ i] = A[l+ n � 1� i])g):This formula contains both a free occurrence of n and a bound occurrence andwe could make no sense of the free occurrence. The label given to the theorem byParnas suggested that it was intended to assert that the set of lengths of palindromesin the nonempty array A is nonempty. This indicates that the antecedent to theimplication should be N > 0 rather than n > 1.With this interpretation, we can state the theorem in PVS asfig15: THEOREM nonempty?(fn | (EXISTS l: palindrome?(l, n, A))g)We have con�rmed with David Parnas that this is the intended form and that theoriginal was a typographical error. Notice that we do not need to explicitly imposethe condition N > 0 because this is embedded in the type (posnat) speci�ed for N.In order to evaluate this theorem, we do need to give an interpretation to thepredicate palindrome?:palindrome?(l, n, A): bool =(FORALL (i: nat): i < floor(n/2) => A(l+i) = A(l+n-1-i))This in turn requires a de�nition for the function floor:floor(q: real): int = epsilon(fn: int | n <= qAND (FORALL (m: int): m <= q => m <= n)g)floorprop: LEMMA floor(x) <= xAND (FORALL (m: int): m <= x IMPLIES m <= floor(x))7

2.7 The Theorem of Figure 11Here we are required to prove(9i; B[i] = x)) nonempty(fj 0jB[j 0] = xg):The PVS version is an almost exact transliteration:fig11: THEOREM (EXISTS (i: index): B(i) = x)=> nonempty?(fj: index | B(j) = xg)Sets are identi�ed with predicates in PVS,3 and the set-valued expressionfj: index | B(j) = xg is simply a syntactic variation on the predicate de�nition(LAMBDA (j: index): B(j)=x). The function nonempty? is from the PVS prelude(i.e., built-in) theory called sets, which supplies de�nitions for various set-theoreticconstructs. We excerpt the ones relevant here:sets [T: TYPE] : THEORYBEGINmember(x:T, a:set): bool = a(x)empty?(a:set): bool = (FORALL (x:T) : NOT member(x,a))nonempty?(a:set): bool = NOT empty?(a)END setsThe proof of fig11 is obtained by automatically expanding the de�nitions ofnonempty?, empty?, and member, followed by skolemization, propositional simpli-�cation, and heuristic instantiation.2.8 The Theorem of Figure 13Here we are required to prove(9l; (8i; 0� i < bn � 2c) A[l+ i] = A[l + n� 1� i])))nonempty(fl0j(8i; 0 � i < bn � 2c) A[l0 + i] = A[l0 + n� 1� l])g)The idea is that the array A (indexed by 1 : : :N) has a palindrome of length nstarting at position l if A[l + i] = A[l + n � 1 � i] for all i from 0 up to (but notincluding) bn� 2c. The theorem states that if there exists such an l, then the set ofsuch ls is not empty.We could transcribe this directly as written into PVS, but to save some typingand to provide a clearer speci�cation, we prefer to de�ne an auxiliary predicate:palindrome?(l, n, A) will be true when there is a palindrome starting at positionl, of length n in the array A. Then we have:3PVS is a simply-typed higher-order logic, so the axiom of comprehension (identifying sets withpredicates) is sound. 6

2.5 The Theorem of Figure 7Here we are required to prove, for any array B indexed by the integers 1 : : :N ,(9i; B[i] = x)_ (8i; ((1� i � N)) B[i] 6= x)):N is presumably some �xed constant, but it is not clear whether B is intended to bean arbitrary constant or a variable. Since skolemization will reduce the latter to theformer, it doesn't matter which we choose here, so we have used a constant. Parnastreats B as a partial function with domain 1 : : :N , whose value is not de�ned forother indices. In PVS, we de�ne 1 : : :N as a subtype (called index) of the integersand introduce B as a total function on this domain. The range type of B is notspeci�ed by Parnas, so we introduce an uninterpreted type T to serve this purpose.N: posnatindex: TYPE = fi: int | 1<= i & i <= Ng CONTAINING 1T: TYPEB: [index -> T]We can then state the required theorem as:x: VAR Tfig7: THEOREM (EXISTS (i: index): B(i) = x)OR (FORALL (i: index): B(i) /= x)Notice that we have overloaded x to be both a variable of type T and one of typereal (de�ned earlier). The PVS typechecker disambiguates these names in contextby virtue of their types. Because we specify the quanti�ed variables i to be of typeindex, we do not need to explicitly mention the range quali�cation used in Parnas'form of the theorem (it is embedded in the de�nition of the index type).The proof of this theorem follows by skolemization, propositional simpli�cation,and heuristic instantiation.2.6 The Theorem of Figure 8This is a trivial variant on the previous example (it follows by De Morgan's rule).:((9i; B[i] = x)^ (8i; ((1� i � N)) B[i] 6= x))):The PVS version is obviousfig8: THEOREM NOT ((EXISTS (i: index): B(i) = x)AND (FORALL (i: index): B(i) /= x))and its proof is the same as the previous one.We do not discuss the proofs of Figures 9 and 10 since they are merely simpli�edinstances of the previous two. 5

nonneg_real?(x: real): bool = (x >= 0)nonneg_real: TYPE = (nonneg_real?) CONTAINING 0sqrt: [nonneg_real -> nonneg_real] % (could return a pair if required)The clause CONTAINING 0 is provided in order to discharge the tcc that will requirethe nonemptiness of this subtype to be demonstrated.PVS does not provide domain or intype? constructions (though it would beeasy to incorporate them), so we have to interpret the theorem stated by Parnas asfollows:x: VAR realfig4: THEOREM x < 0 => nonneg_real?(-x)Unlike the earlier theorems that used local bindings for x and explicit quanti�cation,here we have used a global declaration and implicit quanti�cation (all formulas inPVS are automatically closed by universally quantifying their free variables). This ispurely a syntactic convenience and has no semantic consequences. The proof followsby skolemizing, expanding the de�nition of nonneg real, and ground arithmeticreasoning.Notice that another way to generate the theorem of interest would be to proposeany expression involving sqrt(-x) in a context where x is known to be negative.For example:variant: THEOREM x<0 => sqrt(-x) = sqrt(-x)The typechecker will then automatically generate a theorem identical to fig4 aboveas a tcc necessary to ensure type-correctness of the expression sqrt(-x).2.4 The Theorem of Figure 5This is a trivial variation on the previous example:x > 0) domain(px):The PVS speci�cation isfig5: THEOREM x > 0 => nonneg_real?(x)and the proof proceeds just as before. 4

2.2 The Theorem of Figure 3Here the requirement is to prove(8x;:((x < 0^ x = 0) _ (x < 0^ x > 0) _ (x > 0^ x = 0))):In PVS, this becomesfig3: THEOREMFORALL (x: real): NOT ((x < 0 AND x = 0)OR (x < 0 AND x > 0)OR (x > 0 AND x = 0))and again the proof follows directly from skolemization and ground arithmetic.2.3 The Theorem of Figure 4Here we are required to provex < 0) domain(p�x):Parnas employs a partial term logic [13] in order to accommodate partial func-tions such as square root,1 whereas PVS uses classical logic and total functions.However, PVS provides predicate and dependent types that can be used to con-strain the domains of what would otherwise be partial functions. Thus, for example,division is a total function on the domain that excludes 0 in its second argumentposition.Here, we de�ne the predicate nonneg real? to be true of just the non-negativereals. Given a predicate p in PVS, the parenthesized construction (p) is a type-expression that denotes the subtype of the domain of p that satis�es p. Thus,in particular, (nonneg real?) denotes the subtype of the reals consisting of justthe non-negative reals. We then introduce nonneg real as a synonym for thissubtype. Next, we specify the square root function sqrt to be a function that takesa nonneg real as its argument and returns one as its value.2 We do not supply aninterpretation for the sqrt function since none is needed for the proofs consideredhere.1The logic used is similar to that of Beeson [2] (more accessible references to Beeson's workare [1, Chapter 6, Section 1] and [3, Section 5]). For a general account of \free logics" (of whichBeeson's is an example) see [4], and for a brief discussion of their application to partial term logicssee [19, volume I, chapter 2, section 2]. PX [8] is a computational logic based on these ideas, whilea (higher-order) logic of this kind is mechanized in the IMPS system [5,6], and variants have beenproposed for other speci�cation languages [10]. Gumb [7, Chapter 5] uses a free logic to expressfacts about execution-time errors in programs.2Alternatively, by a trivial modi�cation, we could specify it to return a pair consisting of anonneg real and a nonpos real. 3

PVS proof steps can be composed into larger steps that we call \strategies" (theseare akin to the \tacticals" of LCF-like systems) that can deal automatically with var-ious classes of elementary theorems. One such strategy is the \tcc-strategy" built-into PVS for the purpose of automatically discharging many of the \type-correctnessconditions" (tcc's) that arise during typechecking. This strategy skolemizes, itera-tively expands explicit de�nitions, performs simple heuristic instantiation, and thenapplies decision procedures for propositional calculus and ground (i.e., variable free)arithmetic. It is able to prove all but one of the theorems posed by Parnas. Theone that it fails to prove requires something close to \insight" and can be completedwith just a couple of additional user-supplied steps.Implicit in Parnas' \challenge" to prove these theorems automatically is theexpectation that the theorem and supporting speci�cation text submitted to theprover should be in a form close to that employed by Parnas. In the followingsection, we describe the speci�cation text submitted to PVS and also explain thetheorem proving mechanisms used to prove each theorem.2 The Theorems and Their ProofsThe theorems suggested by Parnas appear as �gures in [14]; not all the �guresappearing there are theorems, however|some are speci�cations (expressed as tables)whose various well-formedness constraints give rise to the theorems. In this sectionwe describe each of the theorems in a separate subsection, labeling each with the�gure number from [14] of the corresponding theorem.2.1 The Theorem of Figure 2For real number x, prove that(8x; (x < 0_ x = 0 _ x > 0)):In PVS this is represented asfig2: THEOREM FORALL (x: real): x < 0 OR x = 0 OR x > 0The proof follows by skolemization and ground arithmetic.The PVS prover includes decision procedures for linear arithmetic over bothintegers and reals [15{18]. That means it can decide any true ground formulaof arithmetic involving the propositional connectives, equality over uninterpretedfunctions symbols, the arithmetic relations <;>;�;�, and the operators of addition,subtraction, multiplication and division, but with the latter two restricted to thelinear case (i.e., one argument must be a literal constant). Theorem provers that lackautomation of arithmetic can be tedious to use, since even ostensibly nonnumericalspeci�cations often generate numerous proof obligations concerning (usually trivial)arithmetic facts. 2

Using PVS to Prove Some Theorems ofDavid Parnas�Reprint from Higher Order Logic Theorem Proving and its Applications (6th InternationalWorkshop, HUG '93), Vancouver, Canada, August, 1993.Springer-Verlag LNCS 780, pp. 163{173.John Rushby and Mandayam SrivasComputer Science LaboratorySRI InternationalMenlo Park CA 94025 USAAbstractDavid Parnas [14] describes some theorems representative of those encoun-tered in support of certi�cation of software for the Darlington nuclear reactor.We describe the veri�cation of these theorems using PVS.1 IntroductionDavid Parnas [14] describes some theorems representative of those encountered insupport of certi�cation of software for the Darlington nuclear reactor. After notingthat these illustrative theorems \will appear trivial to mathematicians," Parnas [14]writes \if these theorems can be proven automatically by today's theorem provingprograms, we should be using those programs. If these theorems still require humanintervention, perhaps the developers of theorem proving programs would like to turntheir attention to this type of theorem." In this note, we describe the transcriptionof these theorems into the language of PVS and their mechanized veri�cation usingthe PVS proof checker [11].PVS is not an automatic theorem prover; it is primarily intended for the proof ofhard theorems such as those that arise in veri�cation of interesting algorithms [12].Consequently, PVS provides rather powerful automation of the lower levels of de-duction (for example, decision procedures for ground arithmetic), but is generallyguided by a human operator. We �nd this arrangement to be the most productivefor kinds of theorems that arise in the problem domains we have studied. However,�This work was supported by the US Naval Research Laboratory contract N00015-92-C-21771

