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Abstract. Specification languages are best used in environments that
provide effective theorem proving. Having such support available, it is
feasible to contemplate forms of typechecking that can use the services of
a theorem prover. This allows interesting extensions to the type systems
provided for specification languages. | describe one such extension called
“predicate subtyping” and illustrate its utility as mechanized in PVS.

1 Introduction

For programming languages, type systems and their associated typecheckers are
intended to ensure the absence of certain undesirable behaviors during program
execution [4]. The undesired behaviors generally include untrapped errors such
as adding a boolean to an integer, and may (e.g., in Java) encompass security
violations. If the language is “type safe,” then all programs that can exhibit
these undesired behaviors will be rejected during typechecking.

Execution is not a primary concern for specification languages, but type-
checking can still serve to reject specifications that are erroneous or undesirable
in other ways. A minimal expectation for specifications is that they should be
consistent: an inconsistent specification is one from which some statement and
its negation can both be derived; such a specification necessarily allows any
property to be derived and thus fails to say anything useful at all. The first
systematic type system (now known as the “Ramified Theory of Types”) was
developed by Russell [23] to avoid the inconsistencies in naive set theory, and
a simplified form of this system (the “Simple Theory of Types,” due to Ram-
sey [20] and Church [6]) provides the foundation for most specification languages
based on higher-order logic. If a specification uses no axioms (beyond those of
the logic itself), then typechecking with respect to such a type system guarantees
consistency. The consistency of specifications (such as [2] on page 5) that include
extra-logical axioms cannot be checked algorithmically in general, so the best
that a typechecker can do in the presence of axiomsis to guarantee “conservative
extension” of the other parts of the specification (i.e., roughly speaking, that it
does not introduce any new inconsistencies).
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Since their presence weakens the guarantees provided by typechecking, it is
desirable to limit the use of axioms and to prefer those parts of the specification
language for which typechecking ensures conservative extension. Unfortunately,
those parts are usually severely limited in expressiveness and convenience, often
being restricted to quantifier-free (though possibly recursive) definitions that
have a strongly constructive flavor; such specifications may resemble implemen-
tations rather than statements of required properties, and proofs about them
may require induction rather than ordinary quantifier reasoning. Thus, a very
worthwhile endeavor in the design of type systems for specification languages is
to increase the expressiveness and convenience of those constructions for which
typechecking can guarantee conservative extension, so that the drawbacks to a
definitional style are reduced and resort to axioms is needed less often.

In developing type systems for specification languages, we can consider some
design choices that are not available for programming languages. In particular,
a specification language will usually be part of an environment that includes an
effective theorem prover, so it is feasible to contemplate that typechecking can
rely on general theorem proving, and not be restricted to the trivially decidable
properties that are appropriate for programming languages.

“Predicate subtypes” are one example of the opportunities that become avail-
able when typechecking can use theorem proving.? I am an enthusiastic user of
predicate subtypes—I consider them the most useful innovation I have encoun-
tered in type systems for specification languages—and the purpose of this paper
is to share my enthusiasm. I will do so using simple examples to explain what
predicate subtypes are, and to demonstrate their utility in a variety of situations.

2 Predicate Subtypes

Types in specification languages are often interpreted as sets of values, and this
leads to a natural association of subtype with subset: one type is a subtype of
another if the set interpreting the first is a subset of that interpreting the second.
In this treatment (found, for example, in Mizar [21]) the natural numbers are a
subtype of the integers, but there is nothing bound to the subtyping relation that
characterizes those integers that are natural numbers. Predicate subtypes provide
such a tightly bound characterization by associating a predicate or property
with the subtype. For example, the natural numbers are the subtype of the
integers characterized by the predicate “greater than or equal to zero.” Predicate
subtypes can help make specifications more succinct by allowing information to
be moved into the types, rather than stated repeatedly in conditional formulas.
For example, instead of

‘ V(i, j:int):i > 0 and j > 0 D it+j > i ‘

Wwe can say

‘ V(i, j:mat):i+j > i ‘

2 Another is consistency checking for tabular specifications [17].



because 1 > 0 and j > 0 are recorded in the type nat for i and j.

Theorem proving can be required in typechecking some constructions involv-
ing predicate subtypes. For example, if half is a function that requires an even
number (defined as one equal to twice some integer) as its argument, then the
formula

| ¥(i:int):half (i+i+2) = i+l

is well-typed only if we can prove that the integer expression i+i+2 satisfies the
predicate for the subtype even—that is, if we can discharge the following proof
obligation.

V(i:int):3(j: int) : i+i+2 = 2xj 1]

Predicate subtypes seem a natural idea and often appear, in inchoate form,
in informal mathematics. Similar ideas are also seen in formalized specification
notations where, for example, the datatype invariants of VDM [12, Chapter 5]
have much in common with predicate subtypes. However, datatype invariants
are part of VDM’s mechanisms for specifying operations in terms of pre- and
post-conditions on a state, rather than part of the type system for its logic. To
my knowledge, predicate subtypes are fully supported as part of a specification
logic only by the Nuprl [7] and PVS [18] verification systems. Predicate subtypes
arose independently in these two systems (in PVS they came from its predecessor,
EHDM, whence they were introduced from the ANNA notation [15] by Friedrich
von Henke, who was involved in the design of both), and there are differences
in their uses and mechanization. In Nuprl, all typechecking relies on theorem
proving, whereas in PVS, there is a firm distinction between conventional type-
checking (which is performed algorithmically), and the proof obligations (they
are called Typecheck Correctness Conditions, or TCCs) engendered by certain
uses of predicate subtyping.

The circumstances in which proof obligations are generated, and other prop-
erties of predicate subtypes are described in the remainder of this paper. The
examples use PVS notation, which is briefly introduced in the following section.

PVS and its Notation for Predicate Subtypes

PVS is a higher-order logic in which the simple theory of types is augmented by
dependent types and predicate subtypes. Built-in types include Boolean (bool),
and various numeric types, such as real, integer (int) etc. Type constructors
include functions, tuples, records, and abstract data types (freely generated re-
cursive types) such as trees and lists. A large collection of standard theories is
provided in libraries and in the PVS “prelude” (which is a built-in library). The
PVS system includes an interactive theorem prover that can be customized with
user-written “strategies” (similar to tactics and tacticals in LCF-style provers),
and that provides rather powerful automation in the form of decision procedures
(e.g., for ground equality and linear arithmetic over both integers and reals) inte-
grated with a rewriter [16,22]. As noted, some constructions involving predicate



subtypes generate TCCs (proof obligations); often, these can be discharged au-
tomatically using strategies provided for that purpose but, in other cases, the
user must develop suitable proofs interactively. Proof of TCCs can be postponed,
but the system keeps track of all undischarged proof obligations and the affected
theories and theorems are marked as incomplete.

Functions (and predicates, which are simply functions with range type bool)
can be defined using A-notation, so that the predicate that recognizes even in-
tegers can be written as follows (it is a PVS convention that predicates have
names ending in “?7).3

‘ even?: [int—bool] = A(i:int):3I(j:int): i = 2xj ‘

However, the following “applicative” form is exactly equivalent and is generally
preferred.

‘ even?(i:int):bool = I(j:int):1i = 2xj ‘

The discipline of types ensures that the principle of comprehension 1s sound in
higher-order logic: that is, predicates and sets can be regarded as essentially
equivalent.* PVS therefore also allows set notation for predicates, so that the
following definition is equivalent to the previous two.

even?: [int—bool]l = {i:int | I(j:int):i = 2xj}

Viewed as a predicate, the test that an integer x 1s even is written even?(x);
viewed as a set it is written x € even?. These are notational conveniences;
semantically, the two forms are equivalent.

Predicates induce a subtype over their domain type; this subtype can be
specified using set notation (overloading the previously introduced use of set
notation to specify predicates), or by enclosing a predicate in parentheses. Thus,
the following are all equivalent, and denote the type of even integers.

even: TYPE = {i:int | J(j:int):i=2xj}
even: TYPE = (even?)

even: TYPE = (A(i:int):3(j:int):i=2xj)
even: TYPE = ({i:int | 3(j:int):i=2xj})

3 Discovering Errors with Predicate Subtypes

PVS makes no a prior: assumptions about the cardinality of the sets that inter-
pret its types: they may be empty, finite, or countably or uncountably infinite.
When an uninterpreted constant is declared, however, we need to be sure that its

? For ease of reading, I am using the typeset rendition of PVS here; PVS can generate
this automatically using its ETEX-printer. PVS uses the Gnu Emacs editor as a front
end and its actual input is presented in ASCII.

* All members of a set are of the same type in higher-order logic; this notion of “set”
differs from that used in set theory where {a, {a}}, for example, is a valid set.



type is not empty (otherwise we have a contradiction). This cannot be checked
algorithmically when the type is a predicate subtype, so an “existence TCC” is
generated that obliges the user to prove the fact.®> Thus the constant declaration

| c:even |

generates the following proof obligation, which requires nonemptiness of the even
type to be demonstrated.

‘ c_TCC1:0BLIGATION (3(x: even):TRUE); ‘

The existence TCC is a potent detector of erroneous specifications when higher
(i.e., function and predicate) types are involved, as the following example illus-
trates.

Suppose we wish to specify a function that returns the minimum of a set of
natural numbers presented as its argument. Definitional specifications for this
function are likely to be rather unattractive—certainly involving a recursive def-
inition and possibly some concrete choice about how sets are to be represented.
An axiomatic specification, on the other hand, seems very straightforward: we
simply state that the minimum is a member of the given set, and no larger than
any other member of the set. In PVS this could be written as follows.

min(s: setof[nat]) : nat IL

gimple_ax: AXIOM V(s:setof[nat]) :min(s) € s
A V(n:nat):n € ¢ D min(s) < n

Here, the first declaration gives the “signature” of the function, stating that it
takes a set of natural numbers as its argument and returns a natural number as
its value. The axiom simple_ax then formalizes the informal specification in the
obvious way, and seems innocuous enough. However, as many readers will have
noticed, this axiom harbors an inconsistency: it states that the function returns
a member of its argument s—but what if s i1s empty?

How could predicate subtypes alert us to this inconsistency? Well, as noted
earlier, sets and predicates are equivalent in higher-order logic, so that a set
s of natural numbers is also a predicate on the natural numbers, and thereby
induces the predicate subtype (s) comprising those natural numbers that satisfy
(or, viewed as a set, are members of) s. Thus we can modify the signature of
our min function to specify that it returns, not just a natural number, but one
that is a member of the set supplied as its argument.

‘ nin(s: setof[nat]): (s)® ‘

5 If the constant is interpreted (e.g., c: even = 2), then the proof obligation is to show
that its value satisfies the corresponding predicate (e.g., 3 (j: int): 2 = 2xj).

6 This is an example of a “dependent” type: it is dependent because the type of one
element (here, the range of the function) depends on the wvalue of another (here, the
argument supplied to the function). Dependent typing is essential to derive the full
utility of predicate subtyping.



Now this declaration is asserting the existence of a function having the given
signature and, in higher-order logic, functions are just constants of “higher”
type. Because we have asserted the existence of a constant, we need to ensure
that its type is nonempty, so PVS generates the following TCC.

min_TCC1:0BLIGATION J(x: [s: setof[nat] — (s)]):TRUE

Inspection, or fruitless experimentation with the theorem prover, should convince
us that this TCC is unprovable and, in fact, false.” We are thereby led to the
realization that our original specification is unsound, and the min function must
not be required to return a member of the set supplied as its argument when
that set is empty.

We have a choice at this point: we could either return to the original signa-
ture for the min function in [2] and weaken i1ts axiom appropriately, or we could
strengthen the signature still further so that the function simply cannot be ap-
plied to empty sets. The latter choice best exploits the capabilities of predicate
subtyping, so that is the one I will use. The predicate that tests a set of natural
numbers for nonemptiness is written nonempty?[nat] in PVS, so the type of
nonempty sets of natural numbers is written (nonempty?[nat]), and the strict
signature for a min function can be specified as follows.

‘ nin(s: (nonempty?[nat])): (s) ‘

This declaration generates the following TCC

‘ min_TCC1:0BLIGATION d(x: [s: (nonempty?[nat]) — (s)]):TRUE ‘

which can be discharged by instantiating x with the choice function for nonempty
types that is built-in to PVS.®

With its signature taken care of, we can now return to the axiom that specifies
the essential property of the min function. First, notice that the first conjunct
in the axiom simple_ax shown in [2] is unnecessary now that this constraint is
enforced in the range type of the function. Next, notice that the implication in
the second conjunct can be eliminated by changing the quantification so that n
ranges over only members of s, rather than over all natural numbers. This leads
to the following more compact axiom.

min_ax: AXIOM V(s: (nonempty?[nat])), (n: (s)): min(s) < n

Satisfied that this specification is correct (as indeed it is), we might be
tempted to make the “obvious” next step and define a max function dually.

7 A function type is nonempty if its range type is nonempty, or if both its domain and
range types are empty. Here the domain type is nonempty (be careful not to confuse
emptiness of the domain type, setof [nat], with emptiness of the argument s), so we
need to be sure that the range type, (s), is also nonempty—which it is not, when s
is empty.

We need to demonstrate the existence of a function that takes a nonempty set of
natural numbers as its argument and returns a member of that set as its value.
Choice functions, which are discussed in Section 4, have exactly this property.



max (s: (nonempty?[nat])): (s)
max_ax: AXIOM V(s: (nonempty?[nat])), (n: (8)): max(s) > n

This apparently small extension introduces another inconsistency: for what if
the set s 1s infinite? Infinite sets of natural numbers have a minimum element,
but not a maximum. Let us see how predicate subtypes could help us avoid this
pitfall.

Using predicate subtyping, we can eliminate the axiom max_ax and add the
property that it expresses to the range type of the max function as follows.

max(s: (nonempty?[nat])):{ x: () | V(n:(s)):x > n } Ii‘

This causes PVS to generate the following TCC to ensure nonemptiness of the
function type specified for max.

max_TCC1:0BLIGATION
I(x1: [s: (nonempty?[nat]) — {x:(s) | V(n: (s)):x > n}1): TRUE

Observe that by moving what was formerly specified by an axiom into the spec-
ification of the range type, we are using PVS’s predicate subtyping and TCC-
generation mechanisms to mechanize generation of proof-obligations for the ax-
iom satisfaction problem.

We begin the proof of this TCC by instantiating x1 with the (built-in) choice
function choose, applied to the predicate {x: (s) | V(n: (s)):x > n} that
appears as the range type.

(INST + "A(s: (nonempty?[nat])):choose({x:(s) | V(n: (s)):x > n}P™)

PVS proof commands are given in Lisp syntax; the first term identifies the
command (here “INST” for instantiate), the second generally indicates those
formulas in the sequent (see below) to which the command should be applied (+
means “any formula in the conclusion part of the sequent”), and any required
PVS text is enclosed in quotes. The next two proof commands

(GRIND :IF-MATCH NIL)
(REWRITE "forall_not")

then reduce the TCC to the following proof goal. (s!1 and x!1 are the Skolem
constants corresponding to the quantified variables s and x in the original for-
mula).

[-11  x!'1 > 0 [ 4 ]

[-2] s!1(x'1)

{1} J(x: (s'1)):V(@m: (s!'1)):x > n

This is a “sequent,” which is the manner in which PVS presents the inter-
mediate stages in a proof. In general, there will be a collection of “antecedent”
formulas (here two) above the sequent line (|------- ), and a collection (here,



only one) of “conclusions” below; the sequent is true if the conjunction of for-
mulas above the line implies the disjunction of formulas below (if there are no
formulas below the line then we need a contradiction among those above). PVS
proof commands transform the current sequent to one or more simpler (we hope)
sequents whose truth implies the original one. The three proof commands shown
earlier respectively instantiate an existentially quantified variable (INST), per-
form Skolemization, definition expansion, and invoke decision procedures (GRIND;
the annotation : IF-MATCH NIL instructs the prover not to attempt instantiation
of variables), and apply a rewrite rule (REWRITE)—the rule concerned comes from
the PVS prelude and changes a V...NOT... above the line into an 3... below
the line, which makes it easier to read. Once again, inspection, or fruitless ex-
perimentation with the theorem prover, should persuade us that the goal [4] is
unprovable (it is asking us to prove that any nonempty set of natural numbers
has a largest element) and thereby reveals the flaw in our specification.

The flaw revealed in max might cause us to examine a specification for min
given in the same form as [3] to check that it does not have the same problem.
This min specification generates a TCC that reduces to a goal similar to [4] (with
< substituted for > in the conclusion) but, unlike the max case, this goal is true,
and can be proved by appealing to the well-foundedness of the less-than ordering
on natural numbers.

With the significance of well-foundedness now revealed to us, we might at-
tempt to specify a generic min function: one that is defined over any type, with
respect to a well-founded ordering on that type.

minspec[T:TYPE, <: (well_founded?[T1)]:THEORY [5 |
BEGIN
IMPORTING equalities[T]

min((s: (nonempty?[T1))):{ x: (s) | V(i:(s)):x < iV x=1i}
END minspec

This specification introduces a general min function in the context of a theory
parameterized by an arbitrary (and possibly empty) type T, and a well-founded
ordering < over that type. Notice how predicate subtyping i1s used in the for-
mal parameter list of this theory to specify that < must be well-founded (the
predicate well founded? is defined in the PVS prelude). A proof obligation to
check satisfaction of this requirement will be generated whenever the theory is
instantiated. Observe that the specification has been adjusted a little to sepa-
rate the < and = cases that were combined into < for the special case of natural
numbers.

Typechecking this specification results in the following TCC, requiring us to
demonstrate that the function type asserted for min is nonempty.

min_TCC1: OBLIGATION Lji_‘
I(x1: [s: (nonempty?[T]) — {x:(s) | V(i:(s)):x < i V x = i}]): TRUE




As before, we begin the proof of this TCC by instantiating it with the choice
function choose, applied to the predicate {xz: (s) | V(i: (8)):x<i V x=i}
that appears as the range type.

(INST + "A(s: (nonempty?[T])):choose({x: (s) | V(i: (8)):x<i V x=i})")

This discharges the original proof obligation, but choose requires its argument
to be nonempty, so the prover generates a new TCC subgoal to establish this
fact.

min_TCC1 (TCC) : [ 7 ]

{1} V(s: (nonempty?[T])):
nonempty?[(s)]({x: () | V(i: (s)):x < 1 V x = i})

This is asking us to demonstrate the existence of a minimal element for any
nonempty set s (more precisely, it is asking us to demonstrate the nonemptiness
of the set of all such minimal elements). Now the type specified for < requires it to
be a well-founded ordering, and we can introduce this knowledge into the proof by
the command (TYPEPRED "<"). The command (GRIND :IF-MATCH NIL) then
instructs the prover to expand definitions and perform other simplifications, and
to Skolemize quantifiers of universal force but not to attempt to instantiate those
of existential force. This produces the following simplified sequent.

{-1} s!1(x!1)
{-2} V(p: predl[T]):
(F(y:T): ply))
D (F(y: (p)): (V(x: (p)): (NOT x < y)))
{-3} Vi(x: (s!1)):NOT V(i: (s'1)):x < iV x =1

Here, the formula {-2} is expressing the well-foundedness of <; instantiating the
variable p with s!1 and giving a few more interactive commands, we arrive at
the following sequent (this is one of two subgoals generated; the other is trivial).

{1} i1 <y
{2} y'1 < i
{3} yr1 =i

For the specialized min function on natural numbers, the decision procedures
completed the proof at this point, but here we recognize that this goal i1s not
true in general, and we need the additional assumption that the relation < be tri-
chotomous (which it is on the natural numbers). Once again, predicate subtypes
have led us to discover an error in our specification. We can exit the prover,
modify the specification to stipulate that the theory parameter < must be



of type well ordered?[T] (a well-ordering is one that is well-founded and tri-
chotomous) and rerun the proof of the TCC. This time we are successful.

Given the generic theory, we can recover min on the natural numbers by the
instantiation min[nat, <J. Because of the subtype constraint specified for the
second formal parameter to the theory, PVS generates a TCC requiring us to
establish that < on the natural numbers is a well-ordering. This is easily done,
but minlnat, >] correctly generates a false TCC (this theory instantiation is
equivalent to our previous attempt to specify a max function on the naturals).
However, the TCC for min[{ i: int | i < 0 }, >] (i.e., the max function on
the negative integers) is true and provable.

The examples in this section illustrate how a uniform check for nonemptiness
of the type declared for a constant leads to the discovery of several quite subtle
errors in the formulation of an apparently simple specification. I have found the
same benefit to accrue in larger specifications.

4 Automating Proofs with Predicate Subtypes

A couple of the proofs in the previous section used the “choice function” choose.
PVS actually has two choice functions defined in its prelude. The first, epsilon,
is simply Hilbert’s € operator.

epsilonsg [T: NONEMPTY_TYPE]: THEORY
BEGIN
p: VAR setof[T]

epsilon(p): T

epsilon_ax: AXIOM (dx:x € p) D epsilon(p) € p
END epsilons

Given a set p over a nonempty type T, epsilon(p) is some member of p, if any
such exist, otherwise it is just some value of type T. (The VAR declaration for p
simply allows us to omit its type from the declarations where it is used; PVS
formulas are implicitly universally quantified over their free variables.)

If p is constrained to be nonempty, then we can give the following specifica-
tion for an epsilon_alt function, which is simply epsilon specialized to this
situation (note that T does not need to be specified as NONEMPTY_TYPE in this
case).

choice [T:TYPE]: THEORY
p: VAR (nonempty?[T])

epsilon_alt(p):T

epsilon_alt_ax: AXIOM epsilon_alt(p) € p
END choice

10



The new choice function epsilon_alt is similar to the built-in function
choose, but if we return to the proof of min_TCC1 (recall [6]) but use epsilon_alt
in place of choose, we find that in addition to the subgoal [7], we are presented
with the following.

— 5]
{1} V(s: (nonempty?[T])):V(i: (s)):
epsilon_alt[(s)]1({x: (s) | V(i: (s)):x < iV x=1i}) <
V epsilon_alt[(s)]1({x:(s) | V(i:(s)):x < i V x = 1i})

T

i

This subgoal is requiring us to prove that the value of epsilon_alt satisfies
the predicate supplied as its argument; it can be discharged by appealing to
epsilon_alt_ax, but the proof takes several steps and generates a further sub-
goal that is similar to [7] (and proved in the same way). How is it that the choice
function choose avoids all this work that epsilon_alt seems to require?

The explanation is found in the definition of choose.

p: VAR (nonempty?[T])

choose(p): (p)

This very economical definition uses a predicate subtype to specify the property
previously stated in epsilon_alt_ax: namely, that the value of choose(p) is
a member of p.” But because the fact is stated in a subtype and is directly
bound to the range type of choose, it is immediately available to the theorem
prover—which is therefore able to discharge the equivalent to [8] internally.

Whereas the previous section demonstrated the utility of predicate subtypes
in detecting errors in specifications, this example demonstrates their utility in
improving the automation of proofs. When properties are specified axiomatically,
it can be quite difficult to automate selection and instantiation of the appropriate
axioms during a proof (unless they have special forms, such as rewrite rules).
Properties expressed as predicate subtypes on the type of a function are, however,
intimately bound to that function, and it is therefore relatively easy for a theorem
prover to locate and instantiate the property automatically.

5 Enforcing Invariants with Predicate Subtypes

Consider a specification for a city phone book. Given a name, the phone book
should return the set of phone numbers associated with that name; there should
also be functions for adding, changing, and deleting phone numbers. Here is the
beginning of a suitable specification in PVS, giving only the basic types, and a
function for adding a phone number p to those recorded for name n in phone

book B.

® The full definition is actually choose (p): (p) = epsilon(p);this additionally spec-
ifies that choose (p) returns the same value as epsilon(p), which is useful in speci-
fications that use both epsilon and choose.

11



names, phone_numbers:TYPE

phone_book: TYPE = [names — setof [phone_numbers]]
B: VAR phone_book

n : VAR names

p: VAR phone_numbers

add_number (B, n, p):phone_book = B WITH [(n) := B(n)U{p}]

Here, the WITH construction is PVS notation for function overriding: B WITH
[(n) := B(n)U{p}] is a function that has the same values as B, except that
at n it has the value B(n)U{p}.

Now suppose we wish to enforce a constraint that the sets of phone numbers
associated with different names should be disjoint. We can easily do this by in-
troducing the unused number predicate and modifying the add number function
as follows.

unused_number (B, p):bool = V(n:names):NOT p € B(n) IL

add_number (B, n, p):phone_book =
IF unused_number (B, p) THEN B WITH [(n) := B(n)U{p}] ELSE B ENDIF

If we had specified other functions for updating the phone book, they would
need to be modified similarly.

But where in this modified specification does it say explicitly that different
names must have disjoint sets of phone numbers? And how can we check that our
specifications of updating functions such as add_number preserve his property?
Both deficiencies are easily overcome with a predicate subtype: we simply change
the type phone_book to the following.

phone_book: TYPE ={ B: [ names — setof [phone_numbers]] | &
V(n, m:names):n # m D disjoint?(B(n),B(m)) }

This states exactly the property we require. Furthermore, typechecking the spec-
ification [9] now causes the following proof obligation to be generated.

add_number_TCC1: 0BLIGATION IL
V(B, n, p): unused_number (B, p)
D V(r, m:names):r # n

D disjoint?(B WITH [(n) :

B WITH [(n) :

B(n)uU{p}l(r),
B(n)uU{p}]l(m))

This requires us to prove that a phone_book B (having the disjointness property),
will satisfy the disjointness property after it has been updated by the add number
function. This proof obligation is discharged by three commands to the PVS
theorem prover.

Had there been other updating functions, similar proof obligations would
have been generated automatically for them, too. This kind of proof obliga-
tion arises for the same reason as the one in [1]: a value of the parent type has

12



been supplied where one of a subtype is required, so a proof obligation is gener-
ated to establish that the value satisfies the predicate of the subtype concerned.
Here, the body of the definition given for add number in [9] has type [names
— setof [phone numbers]], which is the parent type given for phone book
in [10], and so the proof obligation is generated to check that it satisfies the
appropriate predicate.

Observe how this uniform check on the satisfaction of predicate subtypes
automatically generates the proof obligations necessary to ensure that the func-
tions on a data type (here, phone_book) preserve an invariant. In the absence of
such automation, we would have to formulate the appropriate proof obligations
manually (a tedious and error-prone process), or construct a proof-obligation
generator for this one special purpose (the FDM system of the early 1980s had
such a proof-obligation generator as its core element [13]). In the following sec-
tion, I show how the same mechanism can alleviate difficulties caused by partial
functions.

6 Avoiding Partial Functions With Predicate Subtypes

Functions are primitive and total in higher-order logic, whereas in set theory
they are constructed as sets of pairs and are generally partial. There are strong
advantages in theorem proving from adopting the first approach: it allows use
of congruence closure as a decision procedure for equality over uninterpreted
function symbols, which is essential for effective automation [8]. On the other
hand, there are functions, such as division, that seem inherently partial and
cause difficulty to this approach. One way out of the difficulty is introduce some
artificial value for undefined terms such as /0, but this is clumsy and has to be
done carefully to avoid inconsistencies. Another approach introduces “undefined”
as a truth value [2]; more sophisticated approaches use “free logics” in which
quantifiers range only over defined terms (e.g., Beeson’s logic of partial terms
[3]; Parnas [19] and Farmer [10] have introduced logics similar to Beeson’s?).
Both approaches have the disadvantage of using nonstandard logics, with some
attendant difficulties. These problems have led some to argue that the discipline
of types can be too onerous in a specification language, and that untyped set
theory is a better choice [14].

Predicate subtypes offer another approach that I find preferable to the alter-
natives. Many partial functions become total if their domains are specified with
sufficient precision; applying a function outside its domain then becomes a type
error, rather than something that has to be dealt with in the logic. Predicate
subtypes provide the tool necessary to specify domains with suitable precision.

19 Farmer’s logic is used in the IMPS system [11]. IMPS generates proof obligations to
ensure definedness during proofs that are similar to PVS’s TCCs. However, because
the properties required to discharge these are not bound to the types, many similar
proof obligations can arise repeatedly during a single proof; IMPS mitigates this
problem using caching.
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For example, division is a total function if it is typed so that its second
argument must be nonzero. In PVS this can be specified as follows.

nonzero_real: TYPE = { x:real | x # 0 }
/: [ real, nonzero_real — real ]

Now consider the well-formedness of following formula.

test: THEOREM V(x, y:real):x # y D (x-y)/(y-x) = -1 IL‘

Subtraction is closed on the reals, so x-y and y-x are both reals. The second
argument to the division function is required to have type nonzero real; real is
its parent type, so we have the proof obligation (y-x) # 0, which is not true in
general. However, the antecedent to the implication in will be false when x =
y, rendering the theorem true independently of the value of the improperly typed
application of division. This leads to the idea that the proof obligation should
take account of the context in which the application occurs, and should require
only that the application is well-typed in circumstances where its value matters.
In this case, a suitable, and easily proved, proof obligation is the following.

test_TCC1l:0BLIGATION V(x, y:real):x # y D (y-x) # 0

This is, in fact, the TCC generated by PVS from the formula [12]. PVS imposes
a left-to-right interpretation on formulas, and generates TCCs that ensure well-
formedness under the logical context accumulated in that order. For example,
the requirements for well-formedness of an implication P O ) are that P be
well-formed, and that ) be well-formed under the assumption that P is true;
the rules for disjunctions PV @ and conjunctions P A () are similar, except that
for disjunctions ) must be shown well-formed under the assumption that P is
false. Thus, PVS generates the same TCC as above when the formula in is
reformulated as follows.

test: THEOREM V(x, y:real): x=y V (x-y)/(y-x) = -1 ‘

However, the accumulation of context in left-to-right order (which is sound, but
conservative) causes PVS to generate the unprovable TCC (y-x) # 0 for the
following, logically equivalent, reformulation.

test: THEOREM V(x, y:real): (x-y)/(y-x) =-1V x =y

Since most specifications are written to be read from left to right (for the con-
venience of human readers), this conservatism is seldom a problem in practice.

Another example of a partial function is the subp “challenge” from Cheng
and Jones [5]. This function on integers is given by

subp(i,j) =if ¢ = j then 0 else subp(i,j + 1) + 1 endif

and is undefined if ¢ < j (when ¢ > j, subp(Z,j) = i — 7).
The challenge is easily handled using dependent predicate subtyping to re-
quire that the second argument is no greater than the first.
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subp ((i:int), (j:int | j < i))'': RECURSIVE int =
IF i = j THEN 0 ELSE subp(i, j+1) + 1 ENDIF
MEASURE i-j

This generates the following proof obligation from the occurrence of j+1 in the
recursive call; it is discharged automatically by the PVS decision procedures.

subp_TCC2: 0BLIGATION
V(i:int), (j:int | j < 1):NOTi=3j D j+1<1i

Two other proof obligations are generated by this example: one to ensure that
i-j in the MEASURE satisfies the predicate for nat, and another to establish
termination using this measure. These are also discharged automatically by the
PVS decision procedures.

In my experience, use of predicate subtypes to render functions total is not
onerous, and contributes clarity and precision to a specification; it also provides
potent error detection. Regarding the latter; the Z/EVES system [24] provides
“domain checking” for Z specifications and has reportedly found errors in every
7Z specification examined in this way. (Domain checking is similar to the use of
predicate subtypes described in this section, but lacks the more general benefits
of predicate subtyping.)

7 Comparison with Subtypes in Programming Languages

I know of no programming language that provides predicate subtypes, although
the annotations provided for “extended static checking” (proving the absence
of runtime errors such as array bound violations) [9] have some similarities.
Bringing the benefits of predicate subtyping to programming languages seems
a worthwhile research endeavor that might generalize the benefits of extended
static checking, while also providing information that could be useful to an op-
timizing compiler.

Subtypes of a different, “structural,” kind are sometimes used in type sys-
tems for programming languages to account for issues arising in object-oriented
programs [4]. In particular, a record type A that contains fields in addition to
those of a record type B is regarded as a subtype of B. The intuition behind this
kind of subtyping is rather different than the “subtypes as subsets” intuition.
Here, the idea is that anywhere a value of a certain type is required, it should be
acceptable to supply a value of a subtype of that type (e.g., a function that re-
quires “points” should find a “colored point” acceptable). When this intuition is
extended to functions, it leads to the “normal” or covariant subtyping on range
types, but contravariant subtyping on domain types: that is, a function type 4
is regarded as a subtype of a function type B if the range type of A is a subtype
of that of B and if its domain type is a supertype of that of B.

' The traditional notation for the second bound variable is (j: { j: int | j <= i});
PVS also allows the less redundant form used here.
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I know of no specification language that provides structural subtyping, still
less combines it with predicate subtyping. There are some difficulties (e.g., pre-
serving a simple treatment of equality) when contravariant subtyping is present,
and integration of the two styles of subtyping presents an interesting research
challenge. PVS does extend subtyping covariantly over the range types of func-
tions (e.g., [nat — mnat] is a subtype of [nat — int]) and over the positive
parameters to abstract data types (e.g., list of nat is a subtype of list of int), but
requires equality on domain types. However, PVS also provides type “conver-
sions” that can automatically restrict, or (less automatically) expand the domain
of a function; these allow, for example, a set of int to be provided where a set of
nat is expected (or vice-versa). We do expect to add some structural subtyping
(e.g., for records) to PVS in future.

8 Conclusion

I have illustrated a few circumstances where predicate subtypes contribute to
the clarity and precision of a specification, to the identification of errors, and to
the automation provided in analysis of specifications and in theorem proving.
There are many more circumstances where predicate subtypes provide benefit
(for example, going higher-order, the injections and surjections are subtypes of
the functions with the same arity; declaring a function as an injection in PVS
will therefore generate the proof obligation to show that it is one-to-one), and
they have been used to excellent effect by several users of PVS. I hope that
the examples provided here will have persuaded you of the utility of predicate
subtyping and may lead you to adopt a language that provides them, or to
incorporate them in your own favorite language.
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