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Since their presence weakens the guarantees provided by typechecking, it isdesirable to limit the use of axioms and to prefer those parts of the speci�cationlanguage for which typechecking ensures conservative extension. Unfortunately,those parts are usually severely limited in expressiveness and convenience, oftenbeing restricted to quanti�er-free (though possibly recursive) de�nitions thathave a strongly constructive avor; such speci�cations may resemble implemen-tations rather than statements of required properties, and proofs about themmay require induction rather than ordinary quanti�er reasoning. Thus, a veryworthwhile endeavor in the design of type systems for speci�cation languages isto increase the expressiveness and convenience of those constructions for whichtypechecking can guarantee conservative extension, so that the drawbacks to ade�nitional style are reduced and resort to axioms is needed less often.In developing type systems for speci�cation languages, we can consider somedesign choices that are not available for programming languages. In particular,a speci�cation language will usually be part of an environment that includes ane�ective theorem prover, so it is feasible to contemplate that typechecking canrely on general theorem proving, and not be restricted to the trivially decidableproperties that are appropriate for programming languages.\Predicate subtypes" are one example of the opportunities that become avail-able when typechecking can use theorem proving.2 I am an enthusiastic user ofpredicate subtypes|I consider them the most useful innovation I have encoun-tered in type systems for speci�cation languages|and the purpose of this paperis to share my enthusiasm. I will do so using simple examples to explain whatpredicate subtypes are, and to demonstrate their utility in a variety of situations.2 Predicate SubtypesTypes in speci�cation languages are often interpreted as sets of values, and thisleads to a natural association of subtype with subset: one type is a subtype ofanother if the set interpreting the �rst is a subset of that interpreting the second.In this treatment (found, for example, in Mizar [21]) the natural numbers are asubtype of the integers, but there is nothing bound to the subtyping relation thatcharacterizes those integers that are natural numbers. Predicate subtypes providesuch a tightly bound characterization by associating a predicate or propertywith the subtype. For example, the natural numbers are the subtype of theintegers characterized by the predicate \greater than or equal to zero." Predicatesubtypes can help make speci�cations more succinct by allowing information tobe moved into the types, rather than stated repeatedly in conditional formulas.For example, instead of8(i, j:int):i � 0 and j � 0 � i+j � iwe can say8(i, j:nat):i+j � i2 Another is consistency checking for tabular speci�cations [17].2



because i � 0 and j � 0 are recorded in the type nat for i and j.Theorem proving can be required in typechecking some constructions involv-ing predicate subtypes. For example, if half is a function that requires an evennumber (de�ned as one equal to twice some integer) as its argument, then theformula8(i:int):half(i+i+2) = i+1is well-typed only if we can prove that the integer expression i+i+2 satis�es thepredicate for the subtype even|that is, if we can discharge the following proofobligation. 18(i:int):9(j:int):i+i+2 = 2�jPredicate subtypes seem a natural idea and often appear, in inchoate form,in informal mathematics. Similar ideas are also seen in formalized speci�cationnotations where, for example, the datatype invariants of VDM [12, Chapter 5]have much in common with predicate subtypes. However, datatype invariantsare part of VDM's mechanisms for specifying operations in terms of pre- andpost-conditions on a state, rather than part of the type system for its logic. Tomy knowledge, predicate subtypes are fully supported as part of a speci�cationlogic only by the Nuprl [7] and PVS [18] veri�cation systems. Predicate subtypesarose independently in these two systems (in PVS they came from its predecessor,Ehdm, whence they were introduced from the ANNA notation [15] by Friedrichvon Henke, who was involved in the design of both), and there are di�erencesin their uses and mechanization. In Nuprl, all typechecking relies on theoremproving, whereas in PVS, there is a �rm distinction between conventional type-checking (which is performed algorithmically), and the proof obligations (theyare called Typecheck Correctness Conditions, or TCCs) engendered by certainuses of predicate subtyping.The circumstances in which proof obligations are generated, and other prop-erties of predicate subtypes are described in the remainder of this paper. Theexamples use PVS notation, which is briey introduced in the following section.PVS and its Notation for Predicate SubtypesPVS is a higher-order logic in which the simple theory of types is augmented bydependent types and predicate subtypes. Built-in types include Boolean (bool),and various numeric types, such as real, integer (int) etc. Type constructorsinclude functions, tuples, records, and abstract data types (freely generated re-cursive types) such as trees and lists. A large collection of standard theories isprovided in libraries and in the PVS \prelude" (which is a built-in library). ThePVS system includes an interactive theorem prover that can be customized withuser-written \strategies" (similar to tactics and tacticals in LCF-style provers),and that provides rather powerful automation in the form of decision procedures(e.g., for ground equality and linear arithmetic over both integers and reals) inte-grated with a rewriter [16,22]. As noted, some constructions involving predicate3



subtypes generate TCCs (proof obligations); often, these can be discharged au-tomatically using strategies provided for that purpose but, in other cases, theuser must develop suitable proofs interactively. Proof of TCCs can be postponed,but the system keeps track of all undischarged proof obligations and the a�ectedtheories and theorems are marked as incomplete.Functions (and predicates, which are simply functions with range type bool)can be de�ned using �-notation, so that the predicate that recognizes even in-tegers can be written as follows (it is a PVS convention that predicates havenames ending in \?").3even?:[int!bool] = �(i:int):9(j:int):i = 2�jHowever, the following \applicative" form is exactly equivalent and is generallypreferred.even?(i:int):bool = 9(j:int):i = 2�jThe discipline of types ensures that the principle of comprehension is sound inhigher-order logic: that is, predicates and sets can be regarded as essentiallyequivalent.4 PVS therefore also allows set notation for predicates, so that thefollowing de�nition is equivalent to the previous two.even?:[int!bool] = fi:int | 9(j:int):i = 2�jgViewed as a predicate, the test that an integer x is even is written even?(x);viewed as a set it is written x 2 even?. These are notational conveniences;semantically, the two forms are equivalent.Predicates induce a subtype over their domain type; this subtype can bespeci�ed using set notation (overloading the previously introduced use of setnotation to specify predicates), or by enclosing a predicate in parentheses. Thus,the following are all equivalent, and denote the type of even integers.even:TYPE = fi:int | 9(j:int):i=2�jgeven:TYPE = (even?)even:TYPE = (�(i:int):9(j:int):i=2�j)even:TYPE = (fi:int | 9(j:int):i=2�jg)3 Discovering Errors with Predicate SubtypesPVS makes no �a priori assumptions about the cardinality of the sets that inter-pret its types: they may be empty, �nite, or countably or uncountably in�nite.When an uninterpreted constant is declared, however, we need to be sure that its3 For ease of reading, I am using the typeset rendition of PVS here; PVS can generatethis automatically using its LATEX-printer. PVS uses the Gnu Emacs editor as a frontend and its actual input is presented in ASCII.4 All members of a set are of the same type in higher-order logic; this notion of \set"di�ers from that used in set theory where fa; fagg, for example, is a valid set.4



type is not empty (otherwise we have a contradiction). This cannot be checkedalgorithmically when the type is a predicate subtype, so an \existence TCC" isgenerated that obliges the user to prove the fact.5 Thus the constant declarationc:evengenerates the following proof obligation, which requires nonemptiness of the eventype to be demonstrated.c_TCC1:OBLIGATION (9(x:even):TRUE);The existence TCC is a potent detector of erroneous speci�cations when higher(i.e., function and predicate) types are involved, as the following example illus-trates.Suppose we wish to specify a function that returns the minimum of a set ofnatural numbers presented as its argument. De�nitional speci�cations for thisfunction are likely to be rather unattractive|certainly involving a recursive def-inition and possibly some concrete choice about how sets are to be represented.An axiomatic speci�cation, on the other hand, seems very straightforward: wesimply state that the minimum is a member of the given set, and no larger thanany other member of the set. In PVS this could be written as follows. 2min(s:setof[nat]):natsimple_ax:AXIOM 8(s:setof[nat]):min(s) 2 s^ 8(n:nat):n 2 s � min(s) � nHere, the �rst declaration gives the \signature" of the function, stating that ittakes a set of natural numbers as its argument and returns a natural number asits value. The axiom simple ax then formalizes the informal speci�cation in theobvious way, and seems innocuous enough. However, as many readers will havenoticed, this axiom harbors an inconsistency: it states that the function returnsa member of its argument s|but what if s is empty?How could predicate subtypes alert us to this inconsistency? Well, as notedearlier, sets and predicates are equivalent in higher-order logic, so that a sets of natural numbers is also a predicate on the natural numbers, and therebyinduces the predicate subtype (s) comprising those natural numbers that satisfy(or, viewed as a set, are members of) s. Thus we can modify the signature ofour min function to specify that it returns, not just a natural number, but onethat is a member of the set supplied as its argument.min(s:setof[nat]):(s)65 If the constant is interpreted (e.g., c: even = 2), then the proof obligation is to showthat its value satis�es the corresponding predicate (e.g., 9 (j: int): 2 = 2�j).6 This is an example of a \dependent" type: it is dependent because the type of oneelement (here, the range of the function) depends on the value of another (here, theargument supplied to the function). Dependent typing is essential to derive the fullutility of predicate subtyping. 5



Now this declaration is asserting the existence of a function having the givensignature and, in higher-order logic, functions are just constants of \higher"type. Because we have asserted the existence of a constant, we need to ensurethat its type is nonempty, so PVS generates the following TCC.min_TCC1:OBLIGATION 9(x:[s:setof[nat] ! (s)]):TRUEInspection, or fruitless experimentation with the theorem prover, should convinceus that this TCC is unprovable and, in fact, false.7 We are thereby led to therealization that our original speci�cation is unsound, and the min function mustnot be required to return a member of the set supplied as its argument whenthat set is empty.We have a choice at this point: we could either return to the original signa-ture for the min function in 2 and weaken its axiom appropriately, or we couldstrengthen the signature still further so that the function simply cannot be ap-plied to empty sets. The latter choice best exploits the capabilities of predicatesubtyping, so that is the one I will use. The predicate that tests a set of naturalnumbers for nonemptiness is written nonempty?[nat] in PVS, so the type ofnonempty sets of natural numbers is written (nonempty?[nat]), and the strictsignature for a min function can be speci�ed as follows.min(s:(nonempty?[nat])):(s)This declaration generates the following TCCmin_TCC1:OBLIGATION 9(x:[s:(nonempty?[nat]) ! (s)]):TRUEwhich can be discharged by instantiating x with the choice function for nonemptytypes that is built-in to PVS.8With its signature taken care of, we can now return to the axiom that speci�esthe essential property of the min function. First, notice that the �rst conjunctin the axiom simple ax shown in 2 is unnecessary now that this constraint isenforced in the range type of the function. Next, notice that the implication inthe second conjunct can be eliminated by changing the quanti�cation so that nranges over only members of s, rather than over all natural numbers. This leadsto the following more compact axiom.min_ax:AXIOM 8(s:(nonempty?[nat])),(n:(s)): min(s) � nSatis�ed that this speci�cation is correct (as indeed it is), we might betempted to make the \obvious" next step and de�ne a max function dually.7 A function type is nonempty if its range type is nonempty, or if both its domain andrange types are empty. Here the domain type is nonempty (be careful not to confuseemptiness of the domain type, setof[nat], with emptiness of the argument s), so weneed to be sure that the range type, (s), is also nonempty|which it is not, when sis empty.8 We need to demonstrate the existence of a function that takes a nonempty set ofnatural numbers as its argument and returns a member of that set as its value.Choice functions, which are discussed in Section 4, have exactly this property.6



max(s:(nonempty?[nat])):(s)max_ax:AXIOM 8(s:(nonempty?[nat])),(n:(s)): max(s) � nThis apparently small extension introduces another inconsistency: for what ifthe set s is in�nite? In�nite sets of natural numbers have a minimum element,but not a maximum. Let us see how predicate subtypes could help us avoid thispitfall.Using predicate subtyping, we can eliminate the axiom max ax and add theproperty that it expresses to the range type of the max function as follows. 3max(s:(nonempty?[nat])):f x:(s) | 8(n:(s)):x � n gThis causes PVS to generate the following TCC to ensure nonemptiness of thefunction type speci�ed for max.max_TCC1:OBLIGATION9(x1:[s:(nonempty?[nat]) ! fx:(s) | 8(n:(s)):x � ng]):TRUEObserve that by moving what was formerly speci�ed by an axiom into the spec-i�cation of the range type, we are using PVS's predicate subtyping and TCC-generation mechanisms to mechanize generation of proof-obligations for the ax-iom satisfaction problem.We begin the proof of this TCC by instantiating x1 with the (built-in) choicefunction choose, applied to the predicate fx: (s) | 8(n:(s)): x � ng thatappears as the range type.(INST + "�(s:(nonempty?[nat])):choose(fx:(s) | 8(n:(s)):x � ng)")PVS proof commands are given in Lisp syntax; the �rst term identi�es thecommand (here \INST" for instantiate), the second generally indicates thoseformulas in the sequent (see below) to which the command should be applied (+means \any formula in the conclusion part of the sequent"), and any requiredPVS text is enclosed in quotes. The next two proof commands(GRIND :IF-MATCH NIL)(REWRITE "forall_not")then reduce the TCC to the following proof goal. (s!1 and x!1 are the Skolemconstants corresponding to the quanti�ed variables s and x in the original for-mula). 4[-1] x!1 � 0[-2] s!1(x!1)|-------f1g 9(x:(s!1)):8(n:(s!1)):x � nThis is a \sequent," which is the manner in which PVS presents the inter-mediate stages in a proof. In general, there will be a collection of \antecedent"formulas (here two) above the sequent line (|-------), and a collection (here,7



only one) of \conclusions" below; the sequent is true if the conjunction of for-mulas above the line implies the disjunction of formulas below (if there are noformulas below the line then we need a contradiction among those above). PVSproof commands transform the current sequent to one or more simpler (we hope)sequents whose truth implies the original one. The three proof commands shownearlier respectively instantiate an existentially quanti�ed variable (INST), per-form Skolemization, de�nition expansion, and invoke decision procedures (GRIND;the annotation :IF-MATCH NIL instructs the prover not to attempt instantiationof variables), and apply a rewrite rule (REWRITE)|the rule concerned comes fromthe PVS prelude and changes a 8 : : :NOT : : : above the line into an 9 : : : belowthe line, which makes it easier to read. Once again, inspection, or fruitless ex-perimentation with the theorem prover, should persuade us that the goal 4 isunprovable (it is asking us to prove that any nonempty set of natural numbershas a largest element) and thereby reveals the aw in our speci�cation.The aw revealed in max might cause us to examine a speci�cation for mingiven in the same form as 3 to check that it does not have the same problem.This min speci�cation generates a TCC that reduces to a goal similar to 4 (with� substituted for � in the conclusion) but, unlike the max case, this goal is true,and can be proved by appealing to the well-foundedness of the less-than orderingon natural numbers.With the signi�cance of well-foundedness now revealed to us, we might at-tempt to specify a generic min function: one that is de�ned over any type, withrespect to a well-founded ordering on that type. 5minspec[T:TYPE, <:(well_founded?[T])]:THEORYBEGINIMPORTING equalities[T]min((s:(nonempty?[T]))):f x:(s) | 8(i:(s)):x < i _ x = i gEND minspecThis speci�cation introduces a general min function in the context of a theoryparameterized by an arbitrary (and possibly empty) type T, and a well-foundedordering < over that type. Notice how predicate subtyping is used in the for-mal parameter list of this theory to specify that < must be well-founded (thepredicate well founded? is de�ned in the PVS prelude). A proof obligation tocheck satisfaction of this requirement will be generated whenever the theory isinstantiated. Observe that the speci�cation has been adjusted a little to sepa-rate the < and = cases that were combined into � for the special case of naturalnumbers.Typechecking this speci�cation results in the following TCC, requiring us todemonstrate that the function type asserted for min is nonempty. 6min_TCC1:OBLIGATION9(x1:[s:(nonempty?[T]) ! fx:(s) | 8(i:(s)):x < i _ x = ig]):TRUE8



As before, we begin the proof of this TCC by instantiating it with the choicefunction choose, applied to the predicate fx: (s) | 8(i: (s)):x<i _ x=igthat appears as the range type.(INST + "�(s:(nonempty?[T])):choose(fx:(s) | 8(i:(s)):x<i _ x=ig)")This discharges the original proof obligation, but choose requires its argumentto be nonempty, so the prover generates a new TCC subgoal to establish thisfact. 7min_TCC1 (TCC):|-------f1g 8(s:(nonempty?[T])):nonempty?[(s)](fx:(s) | 8(i:(s)):x < i _ x = ig)This is asking us to demonstrate the existence of a minimal element for anynonempty set s (more precisely, it is asking us to demonstrate the nonemptinessof the set of all such minimal elements). Now the type speci�ed for < requires it tobe a well-founded ordering, and we can introduce this knowledge into the proof bythe command (TYPEPRED "<"). The command (GRIND :IF-MATCH NIL) theninstructs the prover to expand de�nitions and perform other simpli�cations, andto Skolemize quanti�ers of universal force but not to attempt to instantiate thoseof existential force. This produces the following simpli�ed sequent.f-1g s!1(x!1)f-2g 8(p:pred[T]):(9(y:T):p(y))� (9(y:(p)):(8(x:(p)):(NOT x < y)))f-3g 8(x:(s!1)):NOT 8(i:(s!1)):x < i _ x = i|-------Here, the formula f-2g is expressing the well-foundedness of <; instantiating thevariable p with s!1 and giving a few more interactive commands, we arrive atthe following sequent (this is one of two subgoals generated; the other is trivial).[-1] s!1(x!1)|-------f1g i!1 < y!1f2g y!1 < i!1f3g y!1 = i!1For the specialized min function on natural numbers, the decision procedurescompleted the proof at this point, but here we recognize that this goal is nottrue in general, and we need the additional assumption that the relation < be tri-chotomous (which it is on the natural numbers). Once again, predicate subtypeshave led us to discover an error in our speci�cation. We can exit the prover,modify the speci�cation 5 to stipulate that the theory parameter < must be9



of type well ordered?[T] (a well-ordering is one that is well-founded and tri-chotomous) and rerun the proof of the TCC. This time we are successful.Given the generic theory, we can recover min on the natural numbers by theinstantiation min[nat, <]. Because of the subtype constraint speci�ed for thesecond formal parameter to the theory, PVS generates a TCC requiring us toestablish that < on the natural numbers is a well-ordering. This is easily done,but min[nat, >] correctly generates a false TCC (this theory instantiation isequivalent to our previous attempt to specify a max function on the naturals).However, the TCC for min[f i: int | i < 0 g, >] (i.e., the max function onthe negative integers) is true and provable.The examples in this section illustrate how a uniform check for nonemptinessof the type declared for a constant leads to the discovery of several quite subtleerrors in the formulation of an apparently simple speci�cation. I have found thesame bene�t to accrue in larger speci�cations.4 Automating Proofs with Predicate SubtypesA couple of the proofs in the previous section used the \choice function" choose.PVS actually has two choice functions de�ned in its prelude. The �rst, epsilon,is simply Hilbert's " operator.epsilons [T:NONEMPTY_TYPE]:THEORYBEGINp:VAR setof[T]epsilon(p):Tepsilon_ax:AXIOM (9x:x 2 p) � epsilon(p) 2 pEND epsilonsGiven a set p over a nonempty type T, epsilon(p) is some member of p, if anysuch exist, otherwise it is just some value of type T. (The VAR declaration for psimply allows us to omit its type from the declarations where it is used; PVSformulas are implicitly universally quanti�ed over their free variables.)If p is constrained to be nonempty, then we can give the following speci�ca-tion for an epsilon alt function, which is simply epsilon specialized to thissituation (note that T does not need to be speci�ed as NONEMPTY TYPE in thiscase).choice [T:TYPE]:THEORYp:VAR (nonempty?[T])epsilon_alt(p):Tepsilon_alt_ax:AXIOM epsilon_alt(p) 2 pEND choice 10



The new choice function epsilon alt is similar to the built-in functionchoose, but if we return to the proof of min TCC1 (recall 6 ) but use epsilon altin place of choose, we �nd that in addition to the subgoal 7 , we are presentedwith the following. 8|-------f1g 8(s:(nonempty?[T])):8(i:(s)):epsilon_alt[(s)](fx:(s) | 8(i:(s)):x < i _ x = ig) < i_ epsilon_alt[(s)](fx:(s) | 8(i:(s)):x < i _ x = ig) = iThis subgoal is requiring us to prove that the value of epsilon alt satis�esthe predicate supplied as its argument; it can be discharged by appealing toepsilon alt ax, but the proof takes several steps and generates a further sub-goal that is similar to 7 (and proved in the same way). How is it that the choicefunction choose avoids all this work that epsilon alt seems to require?The explanation is found in the de�nition of choose.p:VAR (nonempty?[T])choose(p):(p)This very economical de�nition uses a predicate subtype to specify the propertypreviously stated in epsilon alt ax: namely, that the value of choose(p) isa member of p.9 But because the fact is stated in a subtype and is directlybound to the range type of choose, it is immediately available to the theoremprover|which is therefore able to discharge the equivalent to 8 internally.Whereas the previous section demonstrated the utility of predicate subtypesin detecting errors in speci�cations, this example demonstrates their utility inimproving the automation of proofs. When properties are speci�ed axiomatically,it can be quite di�cult to automate selection and instantiation of the appropriateaxioms during a proof (unless they have special forms, such as rewrite rules).Properties expressed as predicate subtypes on the type of a function are, however,intimately bound to that function, and it is therefore relatively easy for a theoremprover to locate and instantiate the property automatically.5 Enforcing Invariants with Predicate SubtypesConsider a speci�cation for a city phone book. Given a name, the phone bookshould return the set of phone numbers associated with that name; there shouldalso be functions for adding, changing, and deleting phone numbers. Here is thebeginning of a suitable speci�cation in PVS, giving only the basic types, and afunction for adding a phone number p to those recorded for name n in phonebook B.9 The full de�nition is actually choose(p): (p) = epsilon(p); this additionally spec-i�es that choose(p) returns the same value as epsilon(p), which is useful in speci-�cations that use both epsilon and choose.11



names, phone_numbers:TYPEphone_book:TYPE = [names ! setof[phone_numbers]]B:VAR phone_bookn :VAR namesp:VAR phone_numbersadd_number(B, n, p):phone_book = B WITH [(n) := B(n)[fpg]...Here, the WITH construction is PVS notation for function overriding: B WITH[(n) := B(n)[fpg] is a function that has the same values as B, except thatat n it has the value B(n)[fpg.Now suppose we wish to enforce a constraint that the sets of phone numbersassociated with di�erent names should be disjoint. We can easily do this by in-troducing the unused number predicate and modifying the add number functionas follows. 9unused_number(B, p):bool = 8(n:names):NOT p 2 B(n)add_number(B, n, p):phone_book =IF unused_number(B, p) THEN B WITH [(n) := B(n)[fpg] ELSE B ENDIFIf we had speci�ed other functions for updating the phone book, they wouldneed to be modi�ed similarly.But where in this modi�ed speci�cation does it say explicitly that di�erentnames must have disjoint sets of phone numbers? And how can we check that ourspeci�cations of updating functions such as add number preserve his property?Both de�ciencies are easily overcome with a predicate subtype: we simply changethe type phone book to the following. 10phone_book:TYPE =f B:[ names ! setof[phone_numbers]] |8(n, m:names):n 6= m � disjoint?(B(n),B(m)) gThis states exactly the property we require. Furthermore, typechecking the spec-i�cation 9 now causes the following proof obligation to be generated. 11add_number_TCC1:OBLIGATION8(B, n, p): unused_number(B, p)� 8(r, m:names):r 6= m� disjoint?(B WITH [(n) := B(n)[fpg](r),B WITH [(n) := B(n)[fpg](m))This requires us to prove that a phone book B (having the disjointness property),will satisfy the disjointness property after it has been updated by the add numberfunction. This proof obligation is discharged by three commands to the PVStheorem prover.Had there been other updating functions, similar proof obligations wouldhave been generated automatically for them, too. This kind of proof obliga-tion arises for the same reason as the one in 1 : a value of the parent type has12



been supplied where one of a subtype is required, so a proof obligation is gener-ated to establish that the value satis�es the predicate of the subtype concerned.Here, the body of the de�nition given for add number in 9 has type [names! setof[phone numbers]], which is the parent type given for phone bookin 10 , and so the proof obligation 11 is generated to check that it satis�es theappropriate predicate.Observe how this uniform check on the satisfaction of predicate subtypesautomatically generates the proof obligations necessary to ensure that the func-tions on a data type (here, phone book) preserve an invariant. In the absence ofsuch automation, we would have to formulate the appropriate proof obligationsmanually (a tedious and error-prone process), or construct a proof-obligationgenerator for this one special purpose (the FDM system of the early 1980s hadsuch a proof-obligation generator as its core element [13]). In the following sec-tion, I show how the same mechanism can alleviate di�culties caused by partialfunctions.6 Avoiding Partial Functions With Predicate SubtypesFunctions are primitive and total in higher-order logic, whereas in set theorythey are constructed as sets of pairs and are generally partial. There are strongadvantages in theorem proving from adopting the �rst approach: it allows useof congruence closure as a decision procedure for equality over uninterpretedfunction symbols, which is essential for e�ective automation [8]. On the otherhand, there are functions, such as division, that seem inherently partial andcause di�culty to this approach. One way out of the di�culty is introduce somearti�cial value for unde�ned terms such as x=0, but this is clumsy and has to bedone carefully to avoid inconsistencies. Another approach introduces \unde�ned"as a truth value [2]; more sophisticated approaches use \free logics" in whichquanti�ers range only over de�ned terms (e.g., Beeson's logic of partial terms[3]; Parnas [19] and Farmer [10] have introduced logics similar to Beeson's10).Both approaches have the disadvantage of using nonstandard logics, with someattendant di�culties. These problems have led some to argue that the disciplineof types can be too onerous in a speci�cation language, and that untyped settheory is a better choice [14].Predicate subtypes o�er another approach that I �nd preferable to the alter-natives. Many partial functions become total if their domains are speci�ed withsu�cient precision; applying a function outside its domain then becomes a typeerror, rather than something that has to be dealt with in the logic. Predicatesubtypes provide the tool necessary to specify domains with suitable precision.10 Farmer's logic is used in the IMPS system [11]. IMPS generates proof obligations toensure de�nedness during proofs that are similar to PVS's TCCs. However, becausethe properties required to discharge these are not bound to the types, many similarproof obligations can arise repeatedly during a single proof; IMPS mitigates thisproblem using caching. 13



For example, division is a total function if it is typed so that its secondargument must be nonzero. In PVS this can be speci�ed as follows.nonzero_real:TYPE = f x:real | x 6= 0 g/:[ real, nonzero_real ! real ]Now consider the well-formedness of following formula. 12test:THEOREM 8(x, y:real):x 6= y � (x-y)/(y-x) = -1Subtraction is closed on the reals, so x-y and y-x are both reals. The secondargument to the division function is required to have type nonzero real; real isits parent type, so we have the proof obligation (y-x) 6= 0, which is not true ingeneral. However, the antecedent to the implication in 12 will be false when x =y, rendering the theorem true independently of the value of the improperly typedapplication of division. This leads to the idea that the proof obligation shouldtake account of the context in which the application occurs, and should requireonly that the application is well-typed in circumstances where its value matters.In this case, a suitable, and easily proved, proof obligation is the following.test_TCC1:OBLIGATION 8(x, y:real):x 6= y � (y-x) 6= 0This is, in fact, the TCC generated by PVS from the formula 12 . PVS imposesa left-to-right interpretation on formulas, and generates TCCs that ensure well-formedness under the logical context accumulated in that order. For example,the requirements for well-formedness of an implication P � Q are that P bewell-formed, and that Q be well-formed under the assumption that P is true;the rules for disjunctions P _Q and conjunctions P ^Q are similar, except thatfor disjunctions Q must be shown well-formed under the assumption that P isfalse. Thus, PVS generates the same TCC as above when the formula in 12 isreformulated as follows.test:THEOREM 8(x, y:real): x=y _ (x-y)/(y-x) = -1However, the accumulation of context in left-to-right order (which is sound, butconservative) causes PVS to generate the unprovable TCC (y-x) 6= 0 for thefollowing, logically equivalent, reformulation.test:THEOREM 8(x, y:real): (x-y)/(y-x) = -1 _ x = ySince most speci�cations are written to be read from left to right (for the con-venience of human readers), this conservatism is seldom a problem in practice.Another example of a partial function is the subp \challenge" from Chengand Jones [5]. This function on integers is given bysubp(i; j) = if i = j then 0 else subp(i; j + 1) + 1 endifand is unde�ned if i < j (when i � j; subp(i; j) = i� j).The challenge is easily handled using dependent predicate subtyping to re-quire that the second argument is no greater than the �rst.14



subp((i:int),(j:int | j � i))11: RECURSIVE int =IF i = j THEN 0 ELSE subp(i, j+1) + 1 ENDIFMEASURE i-jThis generates the following proof obligation from the occurrence of j+1 in therecursive call; it is discharged automatically by the PVS decision procedures.subp_TCC2:OBLIGATION8(i:int),(j:int | j � i):NOT i = j � j + 1 � iTwo other proof obligations are generated by this example: one to ensure thati-j in the MEASURE satis�es the predicate for nat, and another to establishtermination using this measure. These are also discharged automatically by thePVS decision procedures.In my experience, use of predicate subtypes to render functions total is notonerous, and contributes clarity and precision to a speci�cation; it also providespotent error detection. Regarding the latter, the Z/EVES system [24] provides\domain checking" for Z speci�cations and has reportedly found errors in everyZ speci�cation examined in this way. (Domain checking is similar to the use ofpredicate subtypes described in this section, but lacks the more general bene�tsof predicate subtyping.)7 Comparison with Subtypes in Programming LanguagesI know of no programming language that provides predicate subtypes, althoughthe annotations provided for \extended static checking" (proving the absenceof runtime errors such as array bound violations) [9] have some similarities.Bringing the bene�ts of predicate subtyping to programming languages seemsa worthwhile research endeavor that might generalize the bene�ts of extendedstatic checking, while also providing information that could be useful to an op-timizing compiler.Subtypes of a di�erent, \structural," kind are sometimes used in type sys-tems for programming languages to account for issues arising in object-orientedprograms [4]. In particular, a record type A that contains �elds in addition tothose of a record type B is regarded as a subtype of B. The intuition behind thiskind of subtyping is rather di�erent than the \subtypes as subsets" intuition.Here, the idea is that anywhere a value of a certain type is required, it should beacceptable to supply a value of a subtype of that type (e.g., a function that re-quires \points" should �nd a \colored point" acceptable). When this intuition isextended to functions, it leads to the \normal" or covariant subtyping on rangetypes, but contravariant subtyping on domain types: that is, a function type Ais regarded as a subtype of a function type B if the range type of A is a subtypeof that of B and if its domain type is a supertype of that of B.11 The traditional notation for the second bound variable is (j: f j: int | j <= ig);PVS also allows the less redundant form used here.15



I know of no speci�cation language that provides structural subtyping, stillless combines it with predicate subtyping. There are some di�culties (e.g., pre-serving a simple treatment of equality) when contravariant subtyping is present,and integration of the two styles of subtyping presents an interesting researchchallenge. PVS does extend subtyping covariantly over the range types of func-tions (e.g., [nat ! nat] is a subtype of [nat ! int]) and over the positiveparameters to abstract data types (e.g., list of nat is a subtype of list of int), butrequires equality on domain types. However, PVS also provides type \conver-sions" that can automatically restrict, or (less automatically) expand the domainof a function; these allow, for example, a set of int to be provided where a set ofnat is expected (or vice-versa). We do expect to add some structural subtyping(e.g., for records) to PVS in future.8 ConclusionI have illustrated a few circumstances where predicate subtypes contribute tothe clarity and precision of a speci�cation, to the identi�cation of errors, and tothe automation provided in analysis of speci�cations and in theorem proving.There are many more circumstances where predicate subtypes provide bene�t(for example, going higher-order, the injections and surjections are subtypes ofthe functions with the same arity; declaring a function as an injection in PVSwill therefore generate the proof obligation to show that it is one-to-one), andthey have been used to excellent e�ect by several users of PVS. I hope thatthe examples provided here will have persuaded you of the utility of predicatesubtyping and may lead you to adopt a language that provides them, or toincorporate them in your own favorite language.AcknowledgmentsPVS and its mechanisms for predicate subtyping were developed by Sam Owreand Natarajan Shankar; I am merely an enthusiastic and grateful user of thesystem. This paper draws freely on their knowledge and insights. Paul Jacksonprovided many suggestions that have improved the presentation.ReferencesPapers by SRI authors are generally available from http://www.csl.sri.com/fm.html.[1] Rajeev Alur and Thomas A. Henzinger, editors. Computer-Aided Veri�cation,CAV '96, volume 1102 of Lecture Notes in Computer Science, New Brunswick,NJ, July/August 1996. Springer-Verlag.[2] H. Barringer, J. H. Cheng, and C. B. Jones. A logic covering unde�nedness inprogram proofs. Acta Informatica, 21:251{269, 1984.[3] Michael J. Beeson. Foundations of Constructive Mathematics. Ergebnisse derMathematik und ihrer Grenzgebiete; 3. Folge � Band 6. Springer-Verlag, 1985.16
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