
Foundations of Software Engineering/European SoftwareEngineering Conference, Zurich, Sep 97

Subtypes for Speci�cations

John Rushby

Computer Science LaboratorySRI InternationalMenlo Park, CA

J. Rushby FSE97: Subtypes for Speci�cations 1

Formal Methods and Calculation� Formal methods contribute useful mental frameworks,notations, and systematic methods to the design,documentation, and analysis of computer systems� But the primary bene�t from speci�cally formal methods isthat they allow certain questions about a design to beanswered by symbolic calculation(e.g., formal deduction, model checking)� These symbolic calculations can be used for debugging anddesign exploration as well as post-hoc veri�cation� Comparable to the way computational
uid dynamics is usedin the design of airplanes and jet engines

J. Rushby FSE97: Subtypes for Speci�cations 2

Corollaries� Tools are not the most important thing about formalmethods� They are the only important thing� Just like any other engineering calculations, it's tools thatmake formal calculations feasible and useful in practice� Speci�cation languages should be designed so that theysupport e�cient calculation (i.e., deduction)� E.g., based on higher-order logic, not set theory� The topic of another talk. . .� Speci�cation languages can also be designed to exploit thee�cient calculations provided by tools� E.g., to better detect errors in speci�cations� The topic of this talk

J. Rushby FSE97: Subtypes for Speci�cations 3

Errors in Formal Speci�cations� Most formal speci�cations are full of errors� A speci�cation may fail to say what is intended� Must be examined by proving challenge theorems,\execution," and inspection� A speci�cation may fail to say anything at all� Because it is inconsistent� Can avoid inconsistencies using de�nitional styles ofspeci�cation that guarantee \conservative extension"� But these are often restrictive or inappropriate(too constructive)� So a worthwhile goal is to increase the expressiveness andconvenience of the part of the speci�cation language forwhich we can guarantee conservative extension

J. Rushby FSE97: Subtypes for Speci�cations 4

Exploiting DeductionTo Increase the Power of Typechecking� Type systems for programming languages guarantee thatcertain errors will not occur during execution� We should expect the type system for a speci�cationlanguage also to guarantee absence of certain kinds of errors� E.g., inconsistency� Type systems for programming languages are traditionallyrestricted to those for which type correctness is triviallydecidable� But speci�cation languages should be used in environmentswhere powerful theorem proving is available, so supposetypechecking could use theorem proving. . .

J. Rushby FSE97: Subtypes for Speci�cations 5

Subtypes� Subtypes can allow more concise and more precisespeci�cations� When types are interpreted as sets of values� There is a natural association of subtype with subset� E.g., natural is a subtype of integer� But how do we characterize those integers that are alsonaturals?� Could add an axiomnat_ax: AXIOM 8(n: nat): n � 0� But this is not tightly bound to the subtype: reduces theopportunity for automation, and may allow inconsistencies

J. Rushby FSE97: Subtypes for Speci�cations 6

Predicate Subtypes� Are those where a characterizing predicate is tightly boundto subtype de�nitions� For example (in the notation of PVS)nat: TYPE = f i: int | i � 0 g� Then we can writenat_prop: LEMMA 8(i, j: nat): i+j � i ^ i+j � jAnd the prover can easily establish this result because thenecessary information is recorded with the type for i and j� This is concise and e�cient� Now let's see where error detection comes in

J. Rushby FSE97: Subtypes for Speci�cations 7

Nonemptiness Proof Obligations for Predicate Subtypes� Subtypes may be empty, so a constant declarationc: natWould introduce an inconsistency unless we ensure that itstype is nonempty� Generate a proof obligation called a type correctnesscondition (TCC) to do thisc_TCC1: OBLIGATION 9(x: nat): TRUE� Speci�cations are not considered typechecked until theirTCCs have been discharged

J. Rushby FSE97: Subtypes for Speci�cations 8

Some PVS Notation� The examples use the notation of PVS� A veri�cation system freely available from SRI� Speci�cation language is a simply-typed higher-order logic� Augmented with dependent types and predicate subtypes� Sets and predicates are equivalent in higher-order logic� Predicates are functions of return type bool, written asnat?(i:int): bool = i � 0� Regarded as a predicate, membership is written nat?(x)� Regarded as a set, it is written x 2 nat?� A predicate in parentheses denotes the corresponding subtype� (nat?) is the same type as nat given earlier� PVS has theory-level parameterization� setof[nat] is the type of sets of natural numbers

J. Rushby FSE97: Subtypes for Speci�cations 9

An Example: The Minimum of a Set of Naturals� We can specify the minimum a set axiomatically as a valuesatisfying two properties� It is a member of the given set� It is no greater than any other member� In PVS, this ismin(s: setof[nat]): natsimple_ax: AXIOM 8(s:setof[nat]): min(s) 2 s^ 8(n: nat): n 2 s � min(s) � n� Unfortunately, this speci�cation is inconsistent

J. Rushby FSE97: Subtypes for Speci�cations 10

The Inconsistency� The problem is that the argument s to min could be anempty set� But the �rst conjunct to simple ax asserts that min(s) is amember of this set

J. Rushby FSE97: Subtypes for Speci�cations 11

Detecting the Error With Predicate Subtypes� Using predicate subtypes, it is natural to factor the �rstconjunct into the return type for minmin(s: setof[nat]): (s)(Observe that this is a dependent type)� In higher-order logic, functions are just constants of \higher"type, so PVS forces us to prove that the corresponding typeis not emptymin_TCC1: OBLIGATION 9(x: [s: setof[nat] ! (s)]): TRUE� A (total) function type is nonempty if either� Its range type is nonempty, or� Both its domain and range types are emptyHere, domain type is nonempty, but the range type may be� So the TCC is false, and the inconsistency is revealed

J. Rushby FSE97: Subtypes for Speci�cations 12

Fixing the Speci�cation� Must either weaken properties of the value returned by min� Or restrict its argument to be a nonempty set� The predicate that tests for nonemptiness is nonempty?[nat]� So the revised signature ismin(s: (nonempty?[nat])): (s)And the TCC becomesmin_TCC: OBLIGATION 9(x: [s: (nonempty?[nat]) ! (s)]): TRUEWhich is true and provable� The second conjunct of the de�ning axiom can also befactored into the typemin(s: (nonempty?[nat])): f x: (s) | 8(n: (s)): x � n g

J. Rushby FSE97: Subtypes for Speci�cations 13

Extending the Example: from Minimum to Maximum� It might then seem natural to de�ne a max function duallymax(s: (nonempty?[nat])): f x: (s) | 8(n: (s)): x � n g� This generates the following TCCmax_TCC1: OBLIGATION9(x1: [s: (nonempty?[nat])! fx: (s) | 8(n: (s)): x � ng]): TRUE� To which we can apply the following PVS proof commands(inst + "�(s:(nonempty?[nat])):choose(fx: (s) | 8(n: (s)): x � ng)")(grind :if-match nil)(rewrite "forall_not")� The PVS prover command grind does simpli�cation usingdecision procedures and rewriting

J. Rushby FSE97: Subtypes for Speci�cations 14

Another Error is Revealed by Predicate Subtypes� These proof steps produce the following goal[-1] x!1 � 0[-2] s!1(x!1)|-------f1g 9(x: (s!1)): 8(n: (s!1)): x � nWhich is asking us to prove that any nonempty set of naturalnumbers has a largest member� Not true! We are alerted to the inconsistency in ourspeci�cation� By moving what was formerly speci�ed by an axiom into thespeci�cation of the range type, we are using PVS's predicatesubtyping to mechanize generation of proof-obligations forthe axiom satisfaction problem

J. Rushby FSE97: Subtypes for Speci�cations 15

Why Doesn't Minimum Have the Same Problem?� The corresponding proof goal for min is[-1] x!1 � 0[-2] s!1(x!1)|-------f1g 9(x: (s!1)): 8(n: (s!1)): x � n� Which is true, and can be proved by appealing to thewell-foundedness of the naturalswell_founded?(<): bool =(8p: (9y: p(y))� (9(y:(p)): (8(x:(p)): (NOT x < y))))wf_nat: AXIOM well_founded?(� (i, j: nat): i < j)This is stated in the built-in \prelude" library of PVS

J. Rushby FSE97: Subtypes for Speci�cations 16

A Generic Speci�cation for Minimum� Now we see the importance of well-foundedness, can write ageneric speci�cation for min over any well-founded orderminspec[T: TYPE, <: (well_founded?[T])]: THEORYBEGINmin((s: (nonempty?[T]))):f x: (s) | 8(i: (s)): x < i _ x = i gEND minspec� Notice that the constraint on < is stated as a predicatesubtype|we will be required to prove that any actualparameter satis�es the conditions for well-foundedness� The following nonemptiness TCC is generatedmin_TCC1: OBLIGATION9(x1: [s: (nonempty?[T])! fx: (s) | 8(i: (s)): x < i _ x = ig]): TRUE

J. Rushby FSE97: Subtypes for Speci�cations 17

Discharging the TCC from the Generic Speci�cation� We can discharge the TCC by exhibiting the \choicefunction" choose(INST + "�(s:(nonempty?[T])):choose(fx: (s) | 8(i: (s)): x<i _ x=ig)")� Although this discharges the main goal, choose requires itsargument to be nonempty (we'll see why later) so we get asubsidiary TCC proof obligation from the instantiationmin_TCC1 (TCC):|-------f1g 8(s: (nonempty?[T])):nonempty?[(s)](fx: (s) | 8(i: (s)): x < i _ x = ig)

J. Rushby FSE97: Subtypes for Speci�cations 18

And Another Error is Revealed by Predicate Subtyping� The subsidiary goal looks as though it should follow bywell-foundedness, so we introduce this fact as follows(typepred "<")(grind :if-match nil)� And obtain the following proof goal[-1] s!1(x!1)|-------f1g i!1 < y!1f2g y!1 < i!1f3g y!1 = i!1Which is not true in general!� We realize that well-foundedness is not enough� Need trichotomy as well� Must revise speci�cation to require that < is a well-ordering

J. Rushby FSE97: Subtypes for Speci�cations 19

Automating Proofs With Predicate Subtypes� We have already seen choice functions a couple of times� The standard one is Hilbert's " functionepsilons [T: NONEMPTY_TYPE]: THEORYBEGINp: VAR setof[T]epsilon(p): Tepsilon_ax: AXIOM (9x: x 2 p) � epsilon(p) 2 pEND epsilons� epsilon(p) returns a value satisfying p if there are any,otherwise some value of type T� Notice the type T is required to be nonempty

J. Rushby FSE97: Subtypes for Speci�cations 20

Another Choice Function� If p is constrained to be nonempty, can give the followingspecializationchoice [T: TYPE]: THEORYp: VAR (nonempty?[T])epsilon_alt(p): Tepsilon_alt_ax: AXIOM epsilon_alt(p) 2 pEND choice� epsilon alt is similar to the built-in choose, but if we use it inthe proof of min TCC1, we get an additional subgoal|-------f1g 8(s: (nonempty?[T])): 8(i: (s)):epsilon_alt[(s)](fx: (s) | 8(i: (s)): x<i _ x=ig) < i_ epsilon_alt[(s)](fx: (s) | 8(i: (s)): x<i _ x=ig) = i

J. Rushby FSE97: Subtypes for Speci�cations 21

Making Information Available in the Types� The extra subgoal is asking us to prove that the value ofepsilon alt satis�es the predicate supplied as its argument� Follows from epsilon alt ax but has quite complicated proof� How did choose avoid this?� It did so because its speci�cation isp: VAR (nonempty?[T])choose(p): (p)Which records in its type the fact that choose(p) satis�es p� It is quite hard for a prover to locate and instantiateproperties stated in general axioms (unless they have specialforms such as rewrite rules), but predicate subtypes bindproperties to types, so the prover can locate them easily

J. Rushby FSE97: Subtypes for Speci�cations 22

Another Proof Obligation for Predicate Subtypes� Suppose we introduce a new subtype for even integerseven: TYPE = fi:int | 9(j:int): i=2�jg� And a function half with signaturehalf: [even ! int]� And then pose the conjectureeven_prop: LEMMA 8(i: int): half(i+i+2) = i+1� The argument i+i+2 to half has type int, but is required tobe even� However, int is a supertype of even, so we can generate aTCC to check that the value satis�es the predicate for eveneven_prop_TCC1: OBLIGATION 8(i:int): 9(j: int): i+i+2 = 2�j� PVS provides \type judgments" that allow closure properties(e.g., the sum of two evens is even) to be stated and provedonce and for all

J. Rushby FSE97: Subtypes for Speci�cations 23

Enforcing Invariants with Predicate Subtypes� Consider a speci�cation for a city phone book� Given a name, the phone book should return the set ofphone numbers associated with that name� There should also be functions for adding, changing, anddeleting phone numbers� Here is the beginning of a suitable speci�cationnames, phone_numbers: TYPEphone_book: TYPE = [names ! setof[phone_numbers]]B: VAR phone_bookn: VAR namesp: VAR phone_numbersadd_number(B, n, p): phone_book = B WITH [(n) := B(n)[fpg]...
J. Rushby FSE97: Subtypes for Speci�cations 24

Adding an Invariant� Suppose that di�erent names are required to have disjointsets of phone numbers� Introduce unused number predicate and modify add number asfollowsunused_number(B, p): bool = 8(n: names): NOT p 2 B(n)add_number(B, n, p): phone_book =IF unused_number(B, p) THEN B WITH [(n) := B(n)[fpg]ELSE B ENDIF� But where is the disjointness property stated explicitly?� And how do we know the the modi�ed add number functionpreserves it?

J. Rushby FSE97: Subtypes for Speci�cations 25

Making the Invariant Explicit with a Predicate Subtype� Simply change the type for phone book as followsphone_book: TYPE =f B: [names ! setof[phone_numbers]] |8(n, m: names): n 6= m � disjoint?(B(n), B(m)) g� This makes the invariant explicit� Furthermore, typechecking add number generates thefollowing TCCadd_number_TCC1: OBLIGATION8(B, n, p): unused_number(B, p)� 8(r, m: names): r 6= m� disjoint?(B WITH [(n) := B(n)[fpg](r),B WITH [(n) := B(n)[fpg](m))� Which requires us to prove that it really is invariant

J. Rushby FSE97: Subtypes for Speci�cations 26

Predicate Subtypes and Partial FunctionsMany partial functions become total when their domains arespeci�ed more precisely� For example, division can be typed as followsnonzero real: TYPE = f r: real | r 6= 0 g/: [real, nonzero real ! real]� Then typecheckingdiv prop: LEMMA 8 (x, y: real):x 6= y � (x - y)/(y - x) = -1� Generates the following proof obligationdiv_prop_TCC1: OBLIGATION 8 (x, y: real):x 6= y � (y - x) 6= 0� Notice that the context of the subtype occurrence (under aleft-to-right reading) appears in the TCC� Discharged automatically by the PVS decision procedures

J. Rushby FSE97: Subtypes for Speci�cations 27

The subp \Challenge"� Consider the function subp on the integers de�ned bysubp(i; j) = if i = j then 0 else subp(i; j + 1) + 1 endif� This function is unde�ned if j > i� When j � i; subp(i; j) = i� j� Often cited as demonstrating the need for partial functions� But is easily handled using dependent predicate subtypessubp((i:int), (j:int | j � i)): RECURSIVE int =IF i = j THEN 0 ELSE subp(i, j+1) + 1 ENDIFMEASURE i-jsubp_val: LEMMA 8 (i,j: int): j�i � subp(i,j) = i-j

J. Rushby FSE97: Subtypes for Speci�cations 28

The subp \Challenge" (continued)� Speci�cation generates the following TCCs% Subtype TCC generated (line 6) for i - jsubp_TCC1: OBLIGATION 8(i: int), (j: int | j � i): i-j � 0% Subtype TCC generated (line 5) for j + 1subp_TCC2: OBLIGATION8(i: int), (j: int | j � i): NOT i = j � j+1 � i% Termination TCC generated (line 5) for subpsubp_TCC3: OBLIGATION8(i: int), (j: int | j � i): NOT i = j � i - (j+1) < i-j� All three proved automatically by PVS decision procedures

J. Rushby FSE97: Subtypes for Speci�cations 29

Higher-Order Predicate Subtypes� It often contributes clarity and precision to a speci�cation iffunctions are identi�ed as injections, surjections, etc.� But how to ensure a purported surjection really has theproperty?� Predicate subtypes! The surjections are a subtype of thefunctions associated with the following predicatefunction props[dom, rng: TYPE]: THEORYsurjective?(f): bool = 8 (r: rng): 9 (d: dom): f(d) = r� So thathalf alt: (surjective?[even, int]) = � (e: even): e/2� Generates the following proof obligationhalf_alt_TCC2: OBLIGATIONsurjective?[even, int](LAMBDA (e: even): e / 2)

J. Rushby FSE97: Subtypes for Speci�cations 30

Higher-Order Predicate Subtypes (continued)The proof command (grind :if-match nil) reduces this to

half_alt_TCC2 :f-1g integer_pred(y!1)|-------f1g (9(x: even): x / 2 = y!1)Which is easily discharged

J. Rushby FSE97: Subtypes for Speci�cations 31

Languages with Predicate Subtypes� The datatype invariants of VDM have some similarity topredicate subtypes (e.g., proof obligations in typechecking)� But are part of VDM's mechanisms for specifying operationsin terms of pre- and post-conditions on a state, rather thanpart of the type system for its logic� ACL2 has predicate \guards" on appl'ns of partial functions� And Z/Eves does \domain checking" for Z (and has found
aws thereby in every speci�cation checked)� Predicate subtypes are fully supported as part of aspeci�cation logic only by Nuprl and PVS (as far as I know)� In Nuprl, all typechecking requires theorem proving� PVS separates the algorithmic elements from those thatrequire TCCs

J. Rushby FSE97: Subtypes for Speci�cations 32

Other Approaches to Subtyping� Some treatments of programming languages use \structural"subtypes to account for Object-Oriented features� Intuition is di�erent to \subtypes as subsets": value ofsubtype allowed anywhere one of the parent type is� Thus adding �elds to a record creates a subtype: functionthat operates on \points" should also operate on \coloredpoints"� Extension to function types leads to normal or covariantsubtyping on range types� [nat ! nat] is a subtype of [nat ! int]� But contravariant subtyping on domain types� [int ! nat] is a subtype of [nat ! nat]

J. Rushby FSE97: Subtypes for Speci�cations 33

Combinations� Interesting research challenge to combine structural withpredicate subtyping (contravariance complicates equality)� PVS does extend subtyping covariantly over range types offunctions� And over the positive parameters to abstract data types� E.g., list[nat] is a subtype of list of list[int]� But requires equality on domain types� However, PVS also provides type \conversions" that canautomatically restrict, or (less automatically) expand thedomain of a function� E.g., allow setof[int] to be provided where setof[nat] isexpected (and vice-versa)

J. Rushby FSE97: Subtypes for Speci�cations 34

Conclusion� Predicate subtypes in PVS due to Sam Owre and N. Shankar� Via earlier Ehdm system, where Friedrich von Henkeadopted them from ANNA� Formal semantics available on the PVS web site� I �nd them the most useful innovation I have seen inspeci�cation language design� Many users exploit them very e�ectively� I hope to have persuaded you of their value, too� But not everybody agrees: Lamport and Paulson make acase for untyped speci�cation languages (when used by hand)

J. Rushby FSE97: Subtypes for Speci�cations 35

To Learn More About PVS� Browse general papers and technical reports athttp://www.csl.sri.com/fm.html� tse95.html is a good overview of PVS� pvs-bib.html links to a bibliography with over 140 entries� Detailed Information about PVS is available fromhttp://www.csl.sri.com/pvs.html� http://www.csl.sri.com/pvs/examples gets you to adirectory of tutorials and their supporting speci�cation�les� You can get PVS from ftp://ftp.csl.sri.com/pub/pvs� Allegro Lisp for SunOS, Solaris, IBM AIX, or Linux� Need 64M memory, 100M swap space, Sparc 20 or better(Best is 64MB 200 MHz P6, costs under $3,000 in USA)

J. Rushby FSE97: Subtypes for Speci�cations 36

