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Formal Methods and Calculation� Formal methods contribute useful mental frameworks,notations, and systematic methods to the design,documentation, and analysis of computer systems� But the primary bene�t from speci�cally formal methods isthat they allow certain questions about a design to beanswered by symbolic calculation(e.g., formal deduction, model checking)� These symbolic calculations can be used for debugging anddesign exploration as well as post-hoc veri�cation� Comparable to the way computational 
uid dynamics is usedin the design of airplanes and jet engines
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Corollaries� Tools are not the most important thing about formalmethods� They are the only important thing� Just like any other engineering calculations, it's tools thatmake formal calculations feasible and useful in practice� Speci�cation languages should be designed so that theysupport e�cient calculation (i.e., deduction)� E.g., based on higher-order logic, not set theory� The topic of another talk. . .� Speci�cation languages can also be designed to exploit thee�cient calculations provided by tools� E.g., to better detect errors in speci�cations� The topic of this talk
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Errors in Formal Speci�cations� Most formal speci�cations are full of errors� A speci�cation may fail to say what is intended� Must be examined by proving challenge theorems,\execution," and inspection� A speci�cation may fail to say anything at all� Because it is inconsistent� Can avoid inconsistencies using de�nitional styles ofspeci�cation that guarantee \conservative extension"� But these are often restrictive or inappropriate(too constructive)� So a worthwhile goal is to increase the expressiveness andconvenience of the part of the speci�cation language forwhich we can guarantee conservative extension
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Exploiting DeductionTo Increase the Power of Typechecking� Type systems for programming languages guarantee thatcertain errors will not occur during execution� We should expect the type system for a speci�cationlanguage also to guarantee absence of certain kinds of errors� E.g., inconsistency� Type systems for programming languages are traditionallyrestricted to those for which type correctness is triviallydecidable� But speci�cation languages should be used in environmentswhere powerful theorem proving is available, so supposetypechecking could use theorem proving. . .
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Subtypes� Subtypes can allow more concise and more precisespeci�cations� When types are interpreted as sets of values� There is a natural association of subtype with subset� E.g., natural is a subtype of integer� But how do we characterize those integers that are alsonaturals?� Could add an axiomnat_ax: AXIOM 8(n: nat): n � 0� But this is not tightly bound to the subtype: reduces theopportunity for automation, and may allow inconsistencies

J. Rushby FSE97: Subtypes for Speci�cations 6



Predicate Subtypes� Are those where a characterizing predicate is tightly boundto subtype de�nitions� For example (in the notation of PVS)nat: TYPE = f i: int | i � 0 g� Then we can writenat_prop: LEMMA 8(i, j: nat): i+j � i ^ i+j � jAnd the prover can easily establish this result because thenecessary information is recorded with the type for i and j� This is concise and e�cient� Now let's see where error detection comes in
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Nonemptiness Proof Obligations for Predicate Subtypes� Subtypes may be empty, so a constant declarationc: natWould introduce an inconsistency unless we ensure that itstype is nonempty� Generate a proof obligation called a type correctnesscondition (TCC) to do thisc_TCC1: OBLIGATION 9(x: nat): TRUE� Speci�cations are not considered typechecked until theirTCCs have been discharged
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Some PVS Notation� The examples use the notation of PVS� A veri�cation system freely available from SRI� Speci�cation language is a simply-typed higher-order logic� Augmented with dependent types and predicate subtypes� Sets and predicates are equivalent in higher-order logic� Predicates are functions of return type bool, written asnat?(i:int): bool = i � 0� Regarded as a predicate, membership is written nat?(x)� Regarded as a set, it is written x 2 nat?� A predicate in parentheses denotes the corresponding subtype� (nat?) is the same type as nat given earlier� PVS has theory-level parameterization� setof[nat] is the type of sets of natural numbers
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An Example: The Minimum of a Set of Naturals� We can specify the minimum a set axiomatically as a valuesatisfying two properties� It is a member of the given set� It is no greater than any other member� In PVS, this ismin(s: setof[nat]): natsimple_ax: AXIOM 8(s:setof[nat]): min(s) 2 s^ 8(n: nat): n 2 s � min(s) � n� Unfortunately, this speci�cation is inconsistent
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The Inconsistency� The problem is that the argument s to min could be anempty set� But the �rst conjunct to simple ax asserts that min(s) is amember of this set
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Detecting the Error With Predicate Subtypes� Using predicate subtypes, it is natural to factor the �rstconjunct into the return type for minmin(s: setof[nat]): (s)(Observe that this is a dependent type)� In higher-order logic, functions are just constants of \higher"type, so PVS forces us to prove that the corresponding typeis not emptymin_TCC1: OBLIGATION 9(x: [s: setof[nat] ! (s)]): TRUE� A (total) function type is nonempty if either� Its range type is nonempty, or� Both its domain and range types are emptyHere, domain type is nonempty, but the range type may be� So the TCC is false, and the inconsistency is revealed
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Fixing the Speci�cation� Must either weaken properties of the value returned by min� Or restrict its argument to be a nonempty set� The predicate that tests for nonemptiness is nonempty?[nat]� So the revised signature ismin(s: (nonempty?[nat])): (s)And the TCC becomesmin_TCC: OBLIGATION 9(x: [s: (nonempty?[nat]) ! (s)]): TRUEWhich is true and provable� The second conjunct of the de�ning axiom can also befactored into the typemin(s: (nonempty?[nat])): f x: (s) | 8(n: (s)): x � n g
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Extending the Example: from Minimum to Maximum� It might then seem natural to de�ne a max function duallymax(s: (nonempty?[nat])): f x: (s) | 8(n: (s)): x � n g� This generates the following TCCmax_TCC1: OBLIGATION9(x1: [s: (nonempty?[nat])! fx: (s) | 8(n: (s)): x � ng ]): TRUE� To which we can apply the following PVS proof commands(inst + "�(s:(nonempty?[nat])):choose( fx: (s) | 8(n: (s)): x � ng )")(grind :if-match nil)(rewrite "forall_not")� The PVS prover command grind does simpli�cation usingdecision procedures and rewriting
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Another Error is Revealed by Predicate Subtypes� These proof steps produce the following goal[-1] x!1 � 0[-2] s!1(x!1)|-------f1g 9(x: (s!1)): 8(n: (s!1)): x � nWhich is asking us to prove that any nonempty set of naturalnumbers has a largest member� Not true! We are alerted to the inconsistency in ourspeci�cation� By moving what was formerly speci�ed by an axiom into thespeci�cation of the range type, we are using PVS's predicatesubtyping to mechanize generation of proof-obligations forthe axiom satisfaction problem
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Why Doesn't Minimum Have the Same Problem?� The corresponding proof goal for min is[-1] x!1 � 0[-2] s!1(x!1)|-------f1g 9(x: (s!1)): 8(n: (s!1)): x � n� Which is true, and can be proved by appealing to thewell-foundedness of the naturalswell_founded?(<): bool =(8p: (9y: p(y))� (9(y:(p)): (8(x:(p)): (NOT x < y))))wf_nat: AXIOM well_founded?(� (i, j: nat): i < j)This is stated in the built-in \prelude" library of PVS
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A Generic Speci�cation for Minimum� Now we see the importance of well-foundedness, can write ageneric speci�cation for min over any well-founded orderminspec[T: TYPE, <: (well_founded?[T])]: THEORYBEGINmin((s: (nonempty?[T]))):f x: (s) | 8(i: (s)): x < i _ x = i gEND minspec� Notice that the constraint on < is stated as a predicatesubtype|we will be required to prove that any actualparameter satis�es the conditions for well-foundedness� The following nonemptiness TCC is generatedmin_TCC1: OBLIGATION9(x1: [s: (nonempty?[T])! fx: (s) | 8(i: (s)): x < i _ x = ig]): TRUE
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Discharging the TCC from the Generic Speci�cation� We can discharge the TCC by exhibiting the \choicefunction" choose(INST + "�(s:(nonempty?[T])):choose(fx: (s) | 8(i: (s)): x<i _ x=ig)")� Although this discharges the main goal, choose requires itsargument to be nonempty (we'll see why later) so we get asubsidiary TCC proof obligation from the instantiationmin_TCC1 (TCC):|-------f1g 8(s: (nonempty?[T])):nonempty?[(s)](fx: (s) | 8(i: (s)): x < i _ x = ig)
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And Another Error is Revealed by Predicate Subtyping� The subsidiary goal looks as though it should follow bywell-foundedness, so we introduce this fact as follows(typepred "<")(grind :if-match nil)� And obtain the following proof goal[-1] s!1(x!1)|-------f1g i!1 < y!1f2g y!1 < i!1f3g y!1 = i!1Which is not true in general!� We realize that well-foundedness is not enough� Need trichotomy as well� Must revise speci�cation to require that < is a well-ordering
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Automating Proofs With Predicate Subtypes� We have already seen choice functions a couple of times� The standard one is Hilbert's " functionepsilons [T: NONEMPTY_TYPE]: THEORYBEGINp: VAR setof[T]epsilon(p): Tepsilon_ax: AXIOM (9x: x 2 p) � epsilon(p) 2 pEND epsilons� epsilon(p) returns a value satisfying p if there are any,otherwise some value of type T� Notice the type T is required to be nonempty
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Another Choice Function� If p is constrained to be nonempty, can give the followingspecializationchoice [T: TYPE]: THEORYp: VAR (nonempty?[T])epsilon_alt(p): Tepsilon_alt_ax: AXIOM epsilon_alt(p) 2 pEND choice� epsilon alt is similar to the built-in choose, but if we use it inthe proof of min TCC1, we get an additional subgoal|-------f1g 8(s: (nonempty?[T])): 8(i: (s)):epsilon_alt[(s)](fx: (s) | 8(i: (s)): x<i _ x=ig) < i_ epsilon_alt[(s)](fx: (s) | 8(i: (s)): x<i _ x=ig) = i
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Making Information Available in the Types� The extra subgoal is asking us to prove that the value ofepsilon alt satis�es the predicate supplied as its argument� Follows from epsilon alt ax but has quite complicated proof� How did choose avoid this?� It did so because its speci�cation isp: VAR (nonempty?[T])choose(p): (p)Which records in its type the fact that choose(p) satis�es p� It is quite hard for a prover to locate and instantiateproperties stated in general axioms (unless they have specialforms such as rewrite rules), but predicate subtypes bindproperties to types, so the prover can locate them easily
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Another Proof Obligation for Predicate Subtypes� Suppose we introduce a new subtype for even integerseven: TYPE = fi:int | 9(j:int): i=2�jg� And a function half with signaturehalf: [ even ! int ]� And then pose the conjectureeven_prop: LEMMA 8(i: int): half(i+i+2) = i+1� The argument i+i+2 to half has type int, but is required tobe even� However, int is a supertype of even, so we can generate aTCC to check that the value satis�es the predicate for eveneven_prop_TCC1: OBLIGATION 8(i:int): 9(j: int): i+i+2 = 2�j� PVS provides \type judgments" that allow closure properties(e.g., the sum of two evens is even) to be stated and provedonce and for all
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Enforcing Invariants with Predicate Subtypes� Consider a speci�cation for a city phone book� Given a name, the phone book should return the set ofphone numbers associated with that name� There should also be functions for adding, changing, anddeleting phone numbers� Here is the beginning of a suitable speci�cationnames, phone_numbers: TYPEphone_book: TYPE = [names ! setof[phone_numbers]]B: VAR phone_bookn: VAR namesp: VAR phone_numbersadd_number(B, n, p): phone_book = B WITH [(n) := B(n)[fpg]...
J. Rushby FSE97: Subtypes for Speci�cations 24



Adding an Invariant� Suppose that di�erent names are required to have disjointsets of phone numbers� Introduce unused number predicate and modify add number asfollowsunused_number(B, p): bool = 8(n: names): NOT p 2 B(n)add_number(B, n, p): phone_book =IF unused_number(B, p) THEN B WITH [(n) := B(n)[fpg]ELSE B ENDIF� But where is the disjointness property stated explicitly?� And how do we know the the modi�ed add number functionpreserves it?
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Making the Invariant Explicit with a Predicate Subtype� Simply change the type for phone book as followsphone_book: TYPE =f B: [ names ! setof[phone_numbers]] |8(n, m: names): n 6= m � disjoint?(B(n), B(m)) g� This makes the invariant explicit� Furthermore, typechecking add number generates thefollowing TCCadd_number_TCC1: OBLIGATION8(B, n, p): unused_number(B, p)� 8(r, m: names): r 6= m� disjoint?(B WITH [(n) := B(n)[fpg](r),B WITH [(n) := B(n)[fpg](m))� Which requires us to prove that it really is invariant
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Predicate Subtypes and Partial FunctionsMany partial functions become total when their domains arespeci�ed more precisely� For example, division can be typed as followsnonzero real: TYPE = f r: real | r 6= 0 g/: [real, nonzero real ! real]� Then typecheckingdiv prop: LEMMA 8 (x, y: real):x 6= y � (x - y)/(y - x) = -1� Generates the following proof obligationdiv_prop_TCC1: OBLIGATION 8 (x, y: real):x 6= y � (y - x) 6= 0� Notice that the context of the subtype occurrence (under aleft-to-right reading) appears in the TCC� Discharged automatically by the PVS decision procedures
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The subp \Challenge"� Consider the function subp on the integers de�ned bysubp(i; j) = if i = j then 0 else subp(i; j + 1) + 1 endif� This function is unde�ned if j > i� When j � i; subp(i; j) = i� j� Often cited as demonstrating the need for partial functions� But is easily handled using dependent predicate subtypessubp((i:int), (j:int | j � i)): RECURSIVE int =IF i = j THEN 0 ELSE subp(i, j+1) + 1 ENDIFMEASURE i-jsubp_val: LEMMA 8 (i,j: int): j�i � subp(i,j) = i-j
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The subp \Challenge" (continued)� Speci�cation generates the following TCCs% Subtype TCC generated (line 6) for i - jsubp_TCC1: OBLIGATION 8(i: int), (j: int | j � i): i-j � 0% Subtype TCC generated (line 5) for j + 1subp_TCC2: OBLIGATION8(i: int), (j: int | j � i): NOT i = j � j+1 � i% Termination TCC generated (line 5) for subpsubp_TCC3: OBLIGATION8(i: int), (j: int | j � i): NOT i = j � i - (j+1) < i-j� All three proved automatically by PVS decision procedures

J. Rushby FSE97: Subtypes for Speci�cations 29



Higher-Order Predicate Subtypes� It often contributes clarity and precision to a speci�cation iffunctions are identi�ed as injections, surjections, etc.� But how to ensure a purported surjection really has theproperty?� Predicate subtypes! The surjections are a subtype of thefunctions associated with the following predicatefunction props[dom, rng: TYPE]: THEORYsurjective?(f): bool = 8 (r: rng): 9 (d: dom): f(d) = r� So thathalf alt: (surjective?[even, int]) = � (e: even): e/2� Generates the following proof obligationhalf_alt_TCC2: OBLIGATIONsurjective?[even, int](LAMBDA (e: even): e / 2)
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Higher-Order Predicate Subtypes (continued)The proof command (grind :if-match nil) reduces this to

half_alt_TCC2 :f-1g integer_pred(y!1)|-------f1g (9(x: even): x / 2 = y!1)Which is easily discharged
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Languages with Predicate Subtypes� The datatype invariants of VDM have some similarity topredicate subtypes (e.g., proof obligations in typechecking)� But are part of VDM's mechanisms for specifying operationsin terms of pre- and post-conditions on a state, rather thanpart of the type system for its logic� ACL2 has predicate \guards" on appl'ns of partial functions� And Z/Eves does \domain checking" for Z (and has found
aws thereby in every speci�cation checked)� Predicate subtypes are fully supported as part of aspeci�cation logic only by Nuprl and PVS (as far as I know)� In Nuprl, all typechecking requires theorem proving� PVS separates the algorithmic elements from those thatrequire TCCs
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Other Approaches to Subtyping� Some treatments of programming languages use \structural"subtypes to account for Object-Oriented features� Intuition is di�erent to \subtypes as subsets": value ofsubtype allowed anywhere one of the parent type is� Thus adding �elds to a record creates a subtype: functionthat operates on \points" should also operate on \coloredpoints"� Extension to function types leads to normal or covariantsubtyping on range types� [ nat ! nat] is a subtype of [ nat ! int]� But contravariant subtyping on domain types� [ int ! nat] is a subtype of [ nat ! nat]
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Combinations� Interesting research challenge to combine structural withpredicate subtyping (contravariance complicates equality)� PVS does extend subtyping covariantly over range types offunctions� And over the positive parameters to abstract data types� E.g., list[nat] is a subtype of list of list[int]� But requires equality on domain types� However, PVS also provides type \conversions" that canautomatically restrict, or (less automatically) expand thedomain of a function� E.g., allow setof[int] to be provided where setof[nat] isexpected (and vice-versa)
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Conclusion� Predicate subtypes in PVS due to Sam Owre and N. Shankar� Via earlier Ehdm system, where Friedrich von Henkeadopted them from ANNA� Formal semantics available on the PVS web site� I �nd them the most useful innovation I have seen inspeci�cation language design� Many users exploit them very e�ectively� I hope to have persuaded you of their value, too� But not everybody agrees: Lamport and Paulson make acase for untyped speci�cation languages (when used by hand)
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To Learn More About PVS� Browse general papers and technical reports athttp://www.csl.sri.com/fm.html� tse95.html is a good overview of PVS� pvs-bib.html links to a bibliography with over 140 entries� Detailed Information about PVS is available fromhttp://www.csl.sri.com/pvs.html� http://www.csl.sri.com/pvs/examples gets you to adirectory of tutorials and their supporting speci�cation�les� You can get PVS from ftp://ftp.csl.sri.com/pub/pvs� Allegro Lisp for SunOS, Solaris, IBM AIX, or Linux� Need 64M memory, 100M swap space, Sparc 20 or better(Best is 64MB 200 MHz P6, costs under $3,000 in USA)
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