
Appears in Applied Formal Methods|FM-Trends 98, Dieter Hutter, Werner Stephan,Paolo Traverso, and Markus Ullman Eds., Springer Verlag Leture Notes inComputer Siene Vol. 1641, pp. 338{345, Boppard, Germany, Otober 1998.PVS: An Experiene Report?S. Owre, J. M. Rushby, N. Shankar, and D. W. J. Stringer-CalvertComputer Siene Laboratory, SRI International, Menlo Park CA 94025 USAfowre, rushby, shankar, dave sg�sl.sri.omURL: http://pvs.sl.sri.omAbstrat. PVS is a omprehensive interative tool for spei�ation andveri�ation ombining an expressive spei�ation language with an inte-grated suite of tools for theorem proving and model heking. PVS hasmany aademi and industrial users and has been applied to a wide rangeof veri�ation tasks. In this note, we summarize some of its appliations.1 Introdution to PVSPVS (Prototype Veri�ation System) is an environment for onstruting learand preise spei�ations and for eÆient mehanized veri�ation. It is designedto exploit the synergies between language and dedution, automation and in-teration, and theorem proving and model heking. The PVS spei�ation lan-guage is a typed higher-order logi with a rihly expressive type system withprediate subtypes and dependent types. Typeheking in this language requiresthe servies of a theorem prover to disharge proof obligations orresponding tosubtyping onstraints.The development of PVS began in 1990, and it was �rst made publily avail-able in 1993. Subsequent releases have inreased its robustness and speed, andadded a host of new apabilities. The essential features of PVS have alreadybeen desribed in prior publiations [30, 32, 40℄, and omprehensive details anbe found in the system manuals that are available from the PVS web site athttp://pvs.sl.sri.om. In this note, we indiate the apabilities of the sys-tem through a survey of some of the appliations for whih it has been used. Dueto spae onstraints, this is only a small sampling of the appliations that havebeen performed using PVS, and even those that are mentioned are often givenwithout full itations (we generally ite only the most aessible and the mostreent works). We apologize to all PVS users whose work is omitted or men-tioned without itation, and refer all readers to the online PVS Bibliography fora omprehensive list of itations to work onerning PVS [38℄.We divide PVS ativities and appliations into a few broad subjet areas:library development, requirements analysis, hardware veri�ation, fault-tolerantalgorithms, distributed algorithms, semanti embeddings/bakend support, real-time and hybrid systems, seurity and safety, and ompiler orretness.? The development of PVS was funded by SRI International through Internal R&Dfunds. Various appliations and ustomizations have been funded by NSF GrantsCCR-930044 and CCR-9509931, and by ontrats F49620-95-C0044 from AFOSR,NAS1-20334 from NASA, and N00015-92-C-2177 from NRL.1



2 PVS Library DevelopmentAmajor ost in undertaking formal spei�ation and veri�ation is that of devel-oping formalizations for all the \bakground knowledge" that is required. PVSlibraries help redue this ost by providing formalizations for many ommonmathematial domains. Good libraries are hallenging to develop: not only mustthey provide foundational de�nitions and axiomatizations that are orret, to-gether with a body of derived onstrutions and lemmata that are rih enoughto support development of lean, suint, and readable spei�ations, but theymust express these in a way that allows the PVS theorem prover to make e�etiveuse of them.The \prelude" library built in to PVS provides many useful de�nitions andtheorems overing basi mathematial onepts suh as sets, bags, funtions,relations, and orderings, together with properties of real and integer arithmetioutside the domain of the PVS deision proedures (prinipally those involvingnonlinear arithmeti).External PVS libraries provide �nite sets, oor and div/mod, bitvetors, oal-gebras, real analysis, graphs, quaternions, �-alulus, and linear and branhingtime temporal logis. Development of libraries is very muh a ommunity e�ortin whih sharing, modi�ation, and extension has allowed the PVS libraries togrow into e�etive, robust and reusable assets. For example, the library for undi-reted graphs was developed by NASA Langley to support a proof of Menger'stheorem [7℄. This was extended to direted graphs by the University of Utah tosupport analysis of PCI bus transations [28℄, and subsequently re-adopted andgeneralized by NASA.3 RequirementsThere is extensive evidene that requirements apture is the most error-pronestage in the software engineering lifeyle, and that detetion and removal ofthose errors at later stages is very ostly. Requirements provide a fruitful appli-ation area for formal methods beause relatively \lightweight" tehniques haveproved e�etive in deteting numerous and serious errors. PVS supports theseativities by providing diret support for onsisteny and ompleteness hekingof tabular spei�ations [31℄, and through the proess of \formal hallenges" [39℄where expeted properties are stated of a spei�ation and examined by theoremproving or model heking.PVS has been used by multiple NASA enters to analyze requirements forthe Cassini Spaeraft [13℄ and for the Spae Shuttle [9℄, and by the SafeFMprojet (University of London) in the analysis of requirements for avionis ontrolsystems [12℄.4 Hardware Veri�ationAppliations of PVS to hardware veri�ation fall into two broad lasses. Onelass is onerned with veri�ation of the omplete miroarhiteture against2



the instrution set arhiteture seen by mahine ode programmers. While thepresene of pipelining and other optimizations introdues omplexities, the basiapproah to this lass of veri�ations depends on eÆient symboli simulationand equality reasoning, whih in PVS are ahieved by its tight integration ofooperating deision proedures with rewriting, ombined with BDD-based sim-pli�ation. PVS has been used for the full or partial veri�ation of miroodedavionis and Java proessors developed by Rokwell Collins [18℄, as well as fora number of smaller DLX-like proessors with omplex pipelines.The other lass of hardware appliations onerns the omplex iruits, algo-rithms, and protools that are the building bloks of modern proessors; theseappliations are suÆiently diÆult that suess depends on �nding an e�etivemethodology. Examples inlude veri�ation of SRT dividers and other arithmetiiruits at NASA [27℄ and SRI, out-of-order exeution at the University of Utahand SRI [23℄ and the Weizmann Institute [36℄, and ahe-oherene at StanfordUniversity [33℄. Some appliations are best handled using a ombination of tools;PVS was used in this way by Fujitsu for the validation of the high-level designof an ATM swith [37℄.5 Fault-Tolerant AlgorithmsMehanisms for fault tolerane are a signi�ant omponent of many safety-ritial systems: they an aount for half the software in a typial ight-ontrolsystem, and are suÆiently ompliated that they an beome its primary soureof failure! Veri�ations of pratial fault-tolerant designs are quite diÆult andare often ahieved inrementally, as more real-world omplexities are layered onto a basi algorithm. The parameterized theories and strit dependeny hekingof PVS help in these inremental onstrutions.For example, formal analysis of Byzantine fault tolerant lok synhroniza-tion has been elaborated over nearly a deade, with ontributions from SRI andNASA Langley (using a predeessor to PVS) and the University of Ulm, ulmi-nating in veri�ation of the algorithm used in a ommerial system for safety-ritial automobile ontrol [35℄. Comparable developments at SRI, NASA, AlliedSignal, and Ulm have veri�ed pratial algorithms for onsensus, diagnosis, andgroup membership, together with overall arhitetures for state mahine repli-ation and time-triggered exeution of synhronous algorithms.6 Distributed AlgorithmsThe fault tolerane appliations desribed above employ synhronous algorithms.Other distributed algorithms are often asynhronous and are generally modeledas transition relations. Safety properties are traditionally veri�ed by invarianearguments, and generation of suitably strong invariants is the major method-ologial hallenge. More reent approahes employ abstration to a �nite-state(or other tratable) system that an be model heked. PVS has a model hekerintegrated with its theorem prover, so that it is able to perform all the stages of3



suh approahes. Examples inlude ommuniations protools [19℄ and garbageolletion algorithms, parallel simulation algorithms [44℄ and parallelizing teh-niques [8℄, and operating system bu�er-ahe management [34℄.Current researh fousses on methods for automating the generation of ab-strations and invariants [1,5,41℄.7 Semanti Embeddings and Bakend SupportFor some appliations it is onvenient to use a ustomized logi for both spe-i�ation and reasoning. Suh logis an be enoded in the higher-order logi ofPVS using either shallow or deep semanti embeddings. Examples inlude theDuration Calulus [42℄, DisCo [26℄, the B method [29℄, and oalgebrai treat-ments of Java lasses [25℄. An advantage of these embeddings over dediatedveri�ation support is that the full expressiveness and power of PVS is availablefor all the auxiliary onepts and data types that are required.An API for semanti embeddings of other logis is urrently under develop-ment; this will allow spei�ations and proofs to be presented diretly in thenotation of the embedded logi.An alternative to semanti embedding is to use PVS to disharge proof obli-gations generated by the support tool for another language. This route has beenexplored at Mihigan State [20℄ and Bremen [6℄ universities.8 Real-Time and Hybrid SystemsFormal treatments of real-time systems often employ speial temporal or Hoarelogis. Some of these have been supported by semanti embedding in PVS, asdesribed above; others inlude timed automata [4℄, the language Trio [2℄, andthe ompositional method of Hooman [22℄. Appliations inlude several standardtest-piees, suh as the Fisher's mutual exlusion algorithm, the GeneralizedRailroad Crossing, and the Steam Boiler, as well as some realisti protools.A real-time kernel for supporting Ada95 appliations on a uniproessor em-bedded system has also been developed in PVS at the University of York [14℄.9 Seurity and SafetyStrong protetion of data belonging to di�erent proesses is required for bothseurity and safety in several appliations. A formulation of this property interms of \noninterferene" forms one of the PVS tutorial examples. More elab-orate and realisti treatments based on the same idea have been developed forseurity at Seure Computing Corporation [21℄, and for safe \partitioning" inavionis at NASA [45℄ and Rokwell Collins [49℄.Ongoing work at SRI is developing an eÆient approah for the veri�ationof ryptographi protools, while the speial seurity problems arising in ativenetworks have been formalized at the University of Cininnati [11℄.4



10 Compiler CorretnessIn most system developments, orretness of the translation from soure ode toobjet ode is not a soure of major onern. Testing is performed on objet ode,whih is fortuitously e�etive in �nding errors introdued during ompilation,assembly and linking. For ritial developments, however, further assurane maybe required.PVS has been used to perform the veri�ation of a ompiler for a smallsafety ritial language [43℄, and to reason about objet ode in terms ofow graphs [47℄. The Veri�x projet (http://i44s11.info.uni-karlsruhe.de/~verifix/) at the Universities of Karlsruhe, Kiel, and Ulm has veri�ed sev-eral ompilation and optimization algorithms (inluding some expressed as ab-strat state mahines, ASMs, where errors were found) and has also developeda olletion of PVS theories for reasoning about operational and denotationalsemantis in this ontext. Another appliation related to programming languageimplementation is the seurity of Java style dynami linking [10℄.11 SummaryThe appliations skethed above give an idea of the range of projets for whihPVS has been used and also provide a resoure for those undertaking similarwork. Additional desriptions an be found in the PVS Bibliography, whihprovides over 250 itations [38℄.The development of PVS has been strongly inuened by pratial applia-tions and by feedbak from users, and we expet this to ontinue. Enhanementsurrently in progress inlude diret and very fast exeution for a substantial sub-set of the PVS language (this supports omputational reetion [46℄, as well asimproved validation of spei�ations [16℄), and faster and more automated the-orem proving. Those planned for the near future inlude support for re�nementand a more open system arhiteture.Referenes1. Parosh Aziz Abdulla, Aurore Annihini, Saddek Bensalem, Ahmed Bouajjani, Pe-ter Habermehl, and Yassine Lakhneh. Veri�ation of in�nite-state systems byombining abstration and reahability analysis. In Halbwahs and Peled [17℄,pages 146{159.2. Andren Alborghetti, Angelo Gargantini, and Angelo Morzenti. Providing auto-mated support to dedutive analysis of time ritial systems. In Mehdi Jazayeri andHelmut Shauer, editors, Software Engineering|ESEC/FSE '97: Sixth EuropeanSoftware Engineering Conferene and Fifth ACM SIGSOFT Symposium on theFoundations of Software Engineering, volume 1301 of Leture Notes in ComputerSiene, pages 211{226, Zurih, Switzerland, September 1997. Springer-Verlag.3. Rajeev Alur and Thomas A. Henzinger, editors. Computer-Aided Veri�ation,CAV '96, volume 1102 of Leture Notes in Computer Siene, New Brunswik, NJ,July/August 1996. Springer-Verlag.4. Myla Arher and Constane Heitmeyer. Mehanial veri�ation of timed au-tomata: A ase study. In IEEE Real-Time Tehnology and Appliations Symposium(RTAS'96), pages 192{203, Brookline, MA, June 1996. IEEE Computer Soiety.5



5. Saddek Bensalem, Yassine Lakhneh, and Hassen Sa��di. Powerful tehniques forthe automati generation of invariants. In Alur and Henzinger [3℄, pages 323{335.6. Bettina Buth. PAMELA + PVS. In Mihael Johnson, editor, Algebrai Methodol-ogy and Software Tehnology, AMAST'97, volume 1349 of Leture Notes in Com-puter Siene, pages 560{562, Sydney, Australia, Deember 1997. Springer-Verlag.7. Riky W. Butler and Jon A. Sjogren. A PVS graph theory library. NASA Teh-nial Memorandum 1998-206923, NASA Langley Researh Center, Hampton, VA,February 1998.8. Rapha�el Couturier and Dominique M�ery. An experiment in parallelizing an appli-ation using formal methods. In Hu and Vardi [24℄, pages 345{356.9. Judith Crow and Ben L. Di Vito. Formalizing Spae Shuttle software requirements:Four ase studies. ACM Transations on Software Engineering and Methodology,7(3):296{332, July 1998.10. Drew Dean. Stati typing with dynami linking. In Fourth ACM Conferene onComputer and Communiations Seurity, pages 18{27, Zurih, Switzerland, April1997. Assoiation for Computing Mahinery.11. Darryl Diekman, Perry Alexander, and Philip A. Wilsey. AtiveSPEC: A frame-work for the spei�ation and veri�ation of ative network servies and seuritypoliies. In Nevin Heintze and Jeannette Wing, editors, Workshop on FormalMethods and Seurity Protools, Indianapolis, IN, June 1998. Informal proeedingsavailable at http://www.s.bell-labs.om/who/nh/fmsp/program.html.12. Bruno Dutertre and Vitoria Stavridou. Formal requirements analysis of an avion-is ontrol system. IEEE Transations on Software Engineering, 23(5):267{278,May 1997.13. Steve Easterbrook, Robyn Lutz, Rihard Covington, John Kelly, Yoko Ampo, andDavid Hamilton. Experienes using lightweight formal methods for requirementsmodeling. IEEE Transations on Software Engineering, 24(1):4{14, January 1998.14. Simon Fowler and Andy Wellings. Formal development of a real-time kernel. InReal Time Systems Symposium, pages 220{229, San Franiso, CA, Deember 1997.IEEE Computer Soiety.15. Ganesh Gopalakrishnan and Phillip Windley, editors. Formal Methods inComputer-Aided Design (FMCAD '98), volume 1522 of Leture Notes in Com-puter Siene, Palo Alto, CA, November 1998. Springer-Verlag.16. David Greve. Symboli simulation of the JEM1 miroproessor. In Gopalakrishnanand Windley [15℄, pages 321{333.17. Niolas Halbwahs and Doron Peled, editors. Computer-Aided Veri�ation, CAV'99, volume 1633 of Leture Notes in Computer Siene, Trento, Italy, July 1999.Springer-Verlag.18. David Hardin, Matthew Wilding, and David Greve. Transforming the theoremprover into a digital design tool: From onept ar to o�-road vehile. In Hu andVardi [24℄, pages 39{44.19. Klaus Havelund and N. Shankar. Experiments in theorem proving and modelheking for protool veri�ation. In Formal Methods Europe FME '96, volume1051 of Leture Notes in Computer Siene, pages 662{681, Oxford, UK, Marh1996. Springer-Verlag.20. Mats P. E. Heimdahl and Barbara J. Czerny. Using PVS to analyze hierarhi-al state-based requirements for ompleteness and onsisteny. In IEEE High-Assurane Systems Engineering Workshop (HASE '96), pages 252{262, Niagaraon the Lake, Canada, Otober 1996.21. John Ho�man and Charlie Payne. A formal experiene at Seure ComputingCorporation. In Hu and Vardi [24℄, pages 49{56.6



22. Jozef Hooman. Compositional veri�ation of real-time appliations. In Willem-Paul de Roever, Hans Langmaak, and Amir Pnueli, editors, Compositionality:The Signi�ant Di�erene (Revised letures from International Symposium COM-POS'97), volume 1536 of Leture Notes in Computer Siene, pages 276{300, BadMalente, Germany, September 1997. Springer-Verlag.23. Ravi Hosabettu, Mandayam Srivas, and Ganesh Gopalakrishnan. Proof of orret-ness of a proessor with reorder bu�er using the ompletion funtions approah.In Halbwahs and Peled [17℄, pages 47{59.24. Alan J. Hu and Moshe Y. Vardi, editors. Computer-Aided Veri�ation, CAV '98,volume 1427 of Leture Notes in Computer Siene,Vanouver, Canada, June 1998.Springer-Verlag.25. Bart Jaobs, Joahim van den Berg, Marieke Huisman, Martijn van Berkum, UlrihHensel, and Hendrik Tews. Reasoning about Java lasses. In Proeedings, Objet-Oriented Programming Systems, Languages and Appliations (OOPSLA'98), pages329{340, Vanouver, Canada, Otober 1998. Assoiation for Computing Mahinery.Proeedings issued as ACM SIGPLAN Noties Vol. 33, No. 10, Otober 1998.26. Pertti Kellom�aki. Veri�ation of reative systems using DisCo and PVS. In FormalMethods Europe FME '97, volume 1313 of Leture Notes in Computer Siene,pages 589{604, Graz, Austria, September 1997. Springer-Verlag.27. Paul S. Miner and James F. Leathrum, Jr. Veri�ation of IEEE ompliant sub-trative division algorithms. In Mandayam Srivas and Albert Camilleri, editors,Formal Methods in Computer-Aided Design (FMCAD '96), volume 1166 of Le-ture Notes in Computer Siene, pages 64{78, Palo Alto, CA, November 1996.Springer-Verlag.28. Abdel Mokkedem, Ravi Hosabettu, and Ganesh Gopalakrishnan. Formalizationand proof of a solution to the PCI 2.1 bus transation ordering problem. InGopalakrishnan and Windley [15℄, pages 237{254.29. C�esar Mu~noz. PBS: Support for the B-method in PVS. Tehnial Report SRI-CSL-99-1, Computer Siene Laboratory, SRI International, Menlo Park, CA, February1999.30. S. Owre, S. Rajan, J.M. Rushby, N. Shankar, and M.K. Srivas. PVS: Combiningspei�ation, proof heking, and model heking. In Alur and Henzinger [3℄, pages411{414.31. Sam Owre, John Rushby, and N. Shankar. Integration in PVS: Tables, types, andmodel heking. In Ed Brinksma, editor, Tools and Algorithms for the Construtionand Analysis of Systems (TACAS '97), volume 1217 of Leture Notes in ComputerSiene, pages 366{383, Enshede, The Netherlands, April 1997. Springer-Verlag.32. Sam Owre, John Rushby, Natarajan Shankar, and Friedrih von Henke. Formalveri�ation for fault-tolerant arhitetures: Prolegomena to the design of PVS.IEEE Transations on Software Engineering, 21(2):107{125, February 1995.33. Seungjoon Park and David L. Dill. Veri�ation of ahe oherene protools byaggregation of distributed transations. Theory of Computing Systems, 31(4):355{376, 1998.34. N.S. Pendharkar and K. Gopinath. Formal veri�ation of an O.S. submodule. InV. Arvind and R. Ramanujin, editors, 18th Conferene on the Foundations of Soft-ware Tehnology and Theoretial Computer Siene, volume 1530 of Leture Notesin Computer Siene, pages 197{208, Madras, India, Deember 1998. Springer-Verlag.35. Holger Pfeifer, Detlef Shwier, and Friedrih W. von Henke. Formal veri�ationfor time-triggered lok synhronization. In Weinstok and Rushby [48℄, pages207{226. 7



36. Amir Pnueli and Tamara Arons. Veri�ation of data-insensitive iruits: An in-order-retirement ase study. In Gopalakrishnan and Windley [15℄, pages 351{368.37. S. P. Rajan, M. Fujita, K. Yuan, and M. T-C. Lee. ATM swith design by highlevel modeling, formal veri�ation, and high level synthesis. ACM Transationson Design Automation of Eletroni Systems (TODAES), 3(4):554{562, Otober1998.38. John Rushby. PVS bibliography. Tehnial report, Computer Siene Laboratory,SRI International, Menlo Park, CA. Constantly updated; available at http://www.sl.sri.om/pvs-bib.html.39. John Rushby. Formal methods and their role in the erti�ation of ritial systems.In Roger Shaw, editor, Safety and Reliability of Software Based Systems (TwelfthAnnual CSR Workshop), pages 1{42, Bruges, Belgium, September 1995. Springer.Also to be issued as part of the FAA Digital Systems Validation Handbook (theguide for airraft erti�ation).40. John Rushby, Sam Owre, and N. Shankar. Subtypes for spei�ations: Prediatesubtyping in PVS. IEEE Transations on Software Engineering, 24(9):709{720,September 1998.41. Hassen Sa��di and N. Shankar. Abstrat and model hek while you prove. InHalbwahs and Peled [17℄, pages 443{454.42. Jens U. Skakkeb�k and N. Shankar. Towards a Duration Calulus proof assistantin PVS. In H. Langmaak, W.-P. de Roever, and J. Vytopil, editors, Formal Teh-niques in Real-Time and Fault-Tolerant Systems, volume 863 of Leture Notes inComputer Siene, pages 660{679, L�ubek, Germany, Sept. 1994. Springer-Verlag.43. David W. J. Stringer-Calvert. Mehanial Veri�ation of Compiler Corretness.PhD thesis, University of York, Department of Computer Siene, York, England,Marh 1998. Available at http://www.sl.sri.om/~dave_s/papers/thesis.html.44. Kothanda Umamageswaran, Krishnan Subramani, Philip A. Wilsey, and PerryAlexander. Formal veri�ation and empirial analysis of rollbak relaxation. Jour-nal of Systems Arhiteture (formerly published as Miroproessing and Miropro-gramming: the Euromiro Journal), 44(6{7):473{495, Marh 1998.45. Ben L. Di Vito. A model of ooperative noninterferene for integrated modularavionis. In Weinstok and Rushby [48℄, pages 269{286.46. Friedrih von Henke, Stephan Pfab, Holger Pfeifer, and Harald Rue�. Case stud-ies in meta-level theorem proving. In Jim Grundy and Malolm Newey, editors,Theorem Proving in Higher Order Logis: 11th International Conferene, TPHOLs'98, volume 1479 of Leture Notes in Computer Siene, pages 461{478, Canberra,Australia, September 1998. Springer-Verlag.47. M. Wahab. Veri�ation and abstration of ow-graph programs with pointersand omputed jumps. Researh Report CS-RR-354, Department of ComputerSiene, University of Warwik, Coventry, UK, November 1998. Available at http://www.ds.warwik.a.uk/pub/reports/rr/354.html.48. Charles B. Weinstok and John Rushby, editors. Dependable Computing for CritialAppliations|7, volume 12 of Dependable Computing and Fault Tolerant Systems,San Jose, CA, January 1999. IEEE Computer Soiety.49. Matthew M. Wilding, David S. Hardin, and David A. Greve. Invariant perfor-mane: A statement of task isolation useful for embedded appliation integration.In Weinstok and Rushby [48℄, pages 287{300.The views and onlusions ontained herein are those of the author and should not be interpretedas neessarily representing the oÆial poliies or endorsements, either expressed or implied, of theAir Fore OÆe of Sienti� Researh or the U.S. Government.8


