
[42] Mandayam Srivas and Mark Bickford. Veri�cation of the FtCayuga fault-tolerant mi-croprocessor system, volume 1: A case-study in theorem prover-based veri�cation.Contractor Report 4381, NASA Langley Research Center, Hampton, VA, July 1991.(Work performed by ORA Corporation).[43] Philip Thambidurai and You-Keun Park. Interactive consistency with multiple failuremodes. In 7th Symposium on Reliable Distributed Systems, pages 93{100, Columbus,OH, October 1988. IEEE Computer Society.[44] J. Vytopil, editor. Formal Techniques in Real-Time and Fault-Tolerant Systems, volume571 of Lecture Notes in Computer Science, Nijmegen, The Netherlands, January 1992.Springer-Verlag.[45] J. Lundelius Welch and N. Lynch. A new fault-tolerant algorithm for clock synchro-nization. Information and Computation, 77(1):1{36, April 1988.[46] John H. Wensley, Leslie Lamport, Jack Goldberg, Milton W. Green, Karl N. Levitt,P. M. Melliar-Smith, Robert E. Shostak, and Charles B. Weinstock. SIFT: Designand analysis of a fault-tolerant computer for aircraft control. Proceedings of the IEEE,66(10):1240{1255, October 1978.[47] William D. Young. Verifying the Interactive Convergence clock-synchronization algo-rithm using the Boyer-Moore prover. NASA Contractor Report 189649, NASA LangleyResearch Center, Hampton, VA, April 1992. (Work performed by Computational LogicIncorporated).[48] T. Yuasa and R. Nakajima. IOTA: A modular programming system. IEEE Transactionson Software Engineering, SE-11(2):179{187, February 1985.
26

[29] S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype veri�cation sys-tem. In Deepak Kapur, editor, 11th International Conference on Automated Deduc-tion (CADE), volume 607 of Lecture Notes in Arti�cial Intelligence, pages 748{752,Saratoga, NY, June 1992. Springer-Verlag.[30] Daniel L. Palumbo and R. Lynn Graham. Experimental validation of clock synchro-nization algorithms. NASA Technical Paper 2857, NASA Langley Research Center,Hampton, VA, July 1992.[31] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of faults.Journal of the ACM, 27(2):228{234, April 1980.[32] John Rushby. Formal veri�cation of an Oral Messages algorithm for interactive con-sistency. Technical Report SRI-CSL-92-1, Computer Science Laboratory, SRI Interna-tional, Menlo Park, CA, July 1992. Also available as NASA Contractor Report 189704,October 1992.[33] John Rushby. A fault-masking and transient-recovery model for digital ight-controlsystems. In Jan Vytopil, editor, Formal Techniques in Real-Time and Fault-TolerantSystems, Kluwer International Series in Engineering and Computer Science, chapter 5,pages 109{136. Kluwer, Boston, Dordecht, London, 1993. An earlier version appearedin [44, pp. 237{257].[34] John Rushby. Formal Methods and Digital Systems Validation for Airborne Systems.Federal Aviation Administration Technical Center, Atlantic City, NJ, 1993. Forthcom-ing chapter for \Digital Systems Validation Handbook," DOT/FAA/CT-88/10.[35] John Rushby and Friedrich von Henke. Formal veri�cation of the Interactive Conver-gence clock synchronization algorithm using Ehdm. Technical Report SRI-CSL-89-3R,Computer Science Laboratory, SRI International, Menlo Park, CA, February 1989 (Re-vised August 1991). Original version also available as NASA Contractor Report 4239,June 1989.[36] John Rushby and Friedrich von Henke. Formal veri�cation of algorithms for criticalsystems. IEEE Transactions on Software Engineering, 19(1):13{23, January 1993.[37] John Rushby, Friedrich von Henke, and SamOwre. An introduction to formal speci�ca-tion and veri�cation using Ehdm. Technical Report SRI-CSL-91-2, Computer ScienceLaboratory, SRI International, Menlo Park, CA, February 1991.[38] Fred B. Schneider. Understanding protocols for Byzantine clock synchronization. Tech-nical Report 87-859, Department of Computer Science, Cornell University, Ithaca, NY,August 1987.[39] Natarajan Shankar. Mechanical veri�cation of a generalized protocol for Byzantinefault-tolerant clock synchronization. In Vytopil [44], pages 217{236.[40] Joseph R. Shoen�eld. Mathematical Logic. Addison-Wesley, Reading, MA, 1967.[41] Robert E. Shostak. Deciding combinations of theories. Journal of the ACM, 31(1):1{12,January 1984. 25

[15] F. Keith Hanna, Neil Daeche, and Mark Longley. Speci�cation and veri�cation usingdependent types. IEEE Transactions on Software Engineering, 16(9):949{964, Septem-ber 1989.[16] R. M. Kieckhafer, C. J. Walter, A. M. Finn, and P. M. Thambidurai. The MAFT archi-tecture for distributed fault tolerance. IEEE Transactions on Computers, 37(4):398{405, April 1988.[17] Israel Kleiner. Rigor and proof in mathematics: A historical perspective. MathematicsMagazine, 64(5):291{314, December 1991. Published by the Mathematical Associationof America.[18] Imre Lakatos. Proofs and Refutations. Cambridge University Press, Cambridge, Eng-land, 1976.[19] L. Lamport and P. M. Melliar-Smith. Synchronizing clocks in the presence of faults.Journal of the ACM, 32(1):52{78, January 1985.[20] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine generals problem.ACM Transactions on Programming Languages and Systems, 4(3):382{401, July 1982.[21] Patrick Lincoln and John Rushby. Formal veri�cation of an algorithm for interactiveconsistency under a hybrid fault model. Technical Report SRI-CSL-93-2, ComputerScience Laboratory, SRI International, Menlo Park, CA, March 1993. Also available asNASA Contractor Report 4527, July 1993.[22] Erwin Liu and John Rushby. A formally veri�ed module to support Byzantine fault-tolerant clock synchronization. Project report 8200-130, Computer Science Laboratory,SRI International, Menlo Park, CA, December 1993.[23] Robyn R. Lutz. Analyzing software requirements errors in safety-critical embeddedsystems. In IEEE International Symposium on Requirements Engineering, pages 126{133, San Diego, CA, January 1993.[24] Dale A. Mackall. Development and ight test experiences with a ight-crucial digitalcontrol system. NASA Technical Paper 2857, NASA Ames Research Center, DrydenFlight Research Facility, Edwards, CA, 1988.[25] P. M. Melliar-Smith and R. L. Schwartz. Formal speci�cation and veri�cation of SIFT:A fault-tolerant ight control system. IEEE Transactions on Computers, C-31(7):616{630, July 1982.[26] P. Michael Melliar-Smith and John Rushby. The Enhanced HDM system for speci�ca-tion and veri�cation. In Proc. VerkShop III, pages 41{43, Watsonville, CA, February1985. Published as ACM Software Engineering Notes, Vol. 10, No. 4, Aug. 85.[27] J. F. Meyer and R. D. Schlichting, editors. Dependable Computing for CriticalApplications|2, volume 6 of Dependable Computing and Fault-Tolerant Systems.Springer-Verlag, Vienna, Austria, February 1991.[28] Paul S. Miner. A veri�ed design of a fault-tolerant clock synchronization circuit: Prelim-inary investigations. NASA Technical Memorandum 107568, NASA Langley ResearchCenter, Hampton, VA, March 1992. 24

References[1] W. R. Bevier and W. D. Young. Machine-checked proofs of a Byzantine agreementalgorithm. Technical Report 55, Computational Logic Incorporated, Austin, TX, June1990.[2] W. R. Bevier and W. D. Young. The design and proof of correctness of a fault-tolerantcircuit. In Meyer and Schlichting [27], pages 243{260.[3] R. S. Boyer and J S. Moore. A Computational Logic. Academic Press, New York, NY,1979.[4] R. S. Boyer and J S. Moore. Integrating decision procedures into heuristic theoremprovers: A case study with linear arithmetic. In Machine Intelligence, volume 11.Oxford University Press, 1986.[5] R. S. Boyer and J S. Moore. A Computational Logic Handbook. Academic Press, NewYork, NY, 1988.[6] J. H. Cheng and C. B. Jones. On the usability of logics which handle partial functions.In Carroll Morgan and J. C. P. Woodcock, editors, Proceedings of the Third Re�nementWorkshop, pages 51{69. Springer-Verlag Workshops in Computing, 1990.[7] R. L. Constable, S. F. Allen, H. M. Bromley, W. R. Cleaveland, J. F. Cremer, R. W.Harper, D. J. Howe, T. B. Knoblock, N. P. Mendler, P. Panangaden, J. T. Sasaki, andS. F. Smith. Implementing Mathematics with the Nuprl Proof Development System.Prentice-Hall, Englewood Cli�s, NJ, 1986.[8] R. W. Dennis and A. D. Hills. A fault tolerant y by wire system for maintenance freeapplications. In 9th AIAA/IEEE Digital Avionics Systems Conference, pages 11{20,Virginia Beach, VA, October 1990. The Institute of Electrical and Electronics Engi-neers.[9] Ben L. Di Vito and Ricky W. Butler. Formal techniques for synchronized fault-tolerantsystems. In C. E. Landwehr, B. Randell, and L. Simoncini, editors, Dependable Comput-ing for Critical Applications|3, volume 8 of Dependable Computing and Fault-TolerantSystems, pages 163{188. Springer-Verlag, Vienna, Austria, September 1992.[10] Ben L. Di Vito, Ricky W. Butler, and James L. Caldwell. High level design proof of areliable computing platform. In Meyer and Schlichting [27], pages 279{306.[11] William M. Farmer, Joshua D. Guttman, and F. Javier Thayer. IMPS: An interactivemathematical proof system. Journal of Automated Reasoning, 11(2):213{248, October1993.[12] System Design and Analysis. Federal Aviation Administration, June 21, 1988. AdvisoryCircular 25.1309-1A.[13] M. Gordon, R. Milner, and C. Wadsworth. Edinburgh LCF: A Mechanized Logic ofComputation, volume 78 of Lecture Notes in Computer Science. Springer-Verlag, 1979.[14] John Guttag and J. J. Horning. Formal speci�cation as a design tool. In 7th ACMSymposium on Principles of Programming Languages, pages 251{261, Las Vegas, NV,January 1980. 23

away at NASA Langley Research Center. The evolution of our languages and toolsin response to the lessons learned took us in the direction of increasingly powerfultype systems, and increasingly interactive and powerfully automated theorem prov-ing. Powerful type systems allow many constraints to be embedded in the types,so that the main speci�cation is uncluttered and typechecking can provide a verye�ective consistency check. E�ectively automated and user-guided theorem provingalso assists early detection of error, and the productive development of proofs whoseinformation content can assist in the certi�cation of safety-critical systems [34].Most of the techniques we employ were pioneered by others. For example,Nuprl [7] and Veritas [15] provide predicate subtypes and dependent types; the-ory interpretations were used in Iota [48] and, later, Imps [11]; our theorem provingtechniques draw on LCF [13], the Boyer-Moore prover [3, 5], and on earlier workat SRI [41]. Our systems di�er from others in tightly integrating capabilities thatusually occur separately; this has allowed us to provide expressive speci�cation lan-guages and powerful and very e�ective mechanization within a classical framework.It should be noted that many of the design choices we have made are tightly cou-pled: for example, predicate subtypes and dependent types bring great richnessof expression to a logic of total functions but require theorem proving to ensuretype correctness, which is only feasible if the theorem prover is highly e�ective; ef-fective theorem proving needs decision procedures for arithmetic and equality overuninterpreted function symbols, which require that functions are total.We consider these design choices to have served us well and, at some risk ofcomplacency, we are satis�ed with them; although we plan to improve on the detailsof our languages and their mechanizations, we do not expect to change the maindecisions. Direct comparisons with alternative approaches would support objectiveevaluation, but will not be possible until more veri�cation systems are capable ofundertaking mechanically checked veri�cations of the scale and di�culty describedhere.Although this paper has concentrated on our experiences with veri�cation offault-tolerance properties, Ehdm and PVS are also being applied to designs forsecure systems, to hardware, and to real-time applications. In other collaborativeprojects, PVS is being used in requirements analysis for the \Jet Select" functionof the Space Shuttle ight control system, and for microprogram veri�cation of acommercial avionics computer.Acknowledgments:The work reported here owes a very great deal to our collaborators at NASA LangleyResearch Center: Rick Butler, Jim Caldwell, Paul Miner, and Ben Di Vito. We alsothank colleagues at SRI: Pat Lincoln and Erwin Liu, who performed some of theveri�cations, and David Cyrluk, who contributed to the tools development.22

as a lambda-application, but must print as a \let," not a \lambda," and this mustremain so after it has undergone transformations, such as the expansion of de�nedterms appearing within it).Obviously, formulas change as proof steps are performed, but it is usually bestif each transformation in the displayed proof corresponds to an action explicitlyinvoked by the user. For example, Ehdm always eliminates quanti�ers by Skolem-ization, but for PVS we found it best to retain quanti�ers until the user explicitlyrequests a quanti�er-elimination step.Interactive theorem provers must avoid overwhelming the user with information.Ideally, the user should be expected to examine less than a screenful of information ateach interaction. It requires powerful low level automation to prune (only) irrelevantinformation e�ectively. For example, irrelevant cases should be silently discardedwhen expanding de�nitions|so that expanding a de�nition of the formf(x) = if x = 0 then A else B endifin the context f(z+1) where z is a natural number should result in simply B. Suchautomation requires tight integration of rewriting, arithmetic, and the use of typeinformation.An interactive prover should allow the user to attack the subcases of a proof inany order, and to use lemmas before they have been proved. Often, the user willbe most interested in the main line of the proof, and may wish to postpone minorcases and boundary conditions until satis�ed that the overall argument is likely tosucceed. In these cases, it is necessary to provide a macroscopic \proof-tree analyzer"to make sure that all cases and lemmas are eventually dealt with, and that all proofobligations arising from typechecking are discharged. In addition to this \honestycheck," our systems can identify all the axioms, de�nitions, assumptions and lemmasused in the proof of a formula (and so on recursively, for all the lemmas used in theproof). Such information helps eliminate unnecessary axioms and de�nitions fromtheories, and identi�es the assumptions that must be validated by external means.Finally, we have found it useful to provide some automated support for instan-tiation of quanti�ed variables and for conducting proofs by induction. These capa-bilities are visibly impressive, and nice to have, but their impact on productivity isrelatively minor.4 ConclusionsWe have described our experiences in developing mechanically-checked formal ver-i�cations of several quite di�cult arguments arising in fault-tolerant systems. Aswell as ourselves, veri�cations were performed by colleagues at SRI who had notbeen involved in the development of our tools, and by collaborators 3,000 miles21

general principles. For example, we may extract and generalize some part of thespeci�cation as a reusable and veri�ed component to be stored in a library.Consequences for Prover DesignThe evolution of our theorem proving systems to best serve the various requirementsdescribed above has followed two main tracks: increasingly powerful automation oflow-level inference steps, such as arithmetic reasoning and rewriting, and increas-ingly direct and interactive control by the user for the higher level steps. We havefound this combination to provide greater productivity than that achieved eitherwith highly automated provers that must be kept on a short leash, or with low levelproof checkers that must be dragged towards a proof.We have made a number of design decisions in the interests of enhancing produc-tivity for the human user that have entailed complex implementation strategies. Forexample, we allow the user to invent and introduce new lemmas or de�nitions dur-ing an ongoing proof; this exibility is very valuable, but requires tight integrationbetween the theorem prover and the rest of the veri�cation system: the prover mustbe able to call the parser and typechecker in order to admit a new de�nition (andalso when substitutions are proposed for quanti�ed variables), and typechecking canthen generate further proof obligations.A yet more daring freedom is the ability to modify the statement of a lemma orde�nition during an ongoing proof. Much of what happens during a proof attemptis the discovery of inadequacies, oversights, and faults in the speci�cation that isintended to support the theorem. Having to abandon the current proof attempt,correct the problem, and then get back to the previous position in the proof, canbe very time consuming. Allowing the underlying speci�cation to be extended andmodi�ed during a proof (as we do in PVS) confers enormous gains in productivity,but the mechanisms needed to support this in a sound way are quite complex.One of the greatest advantages provided by interactive theorem provers is theability to back out of (i.e., undo) unproductive lines of exploration. This can oftensave much work in the long run: if a case-split is performed too soon, then manyidentical subproofs may be performed on each of the branches. A user who recognizesthis can back up to before the case-split, do a little more work there so that theo�ending subproof is dealt with once and for all, and then invoke the case-split oncemore.Interactive theorem provers or proof checkers must display the evolving stateof a proof so that the user can study it and propose the next step. It is generallymuch easier for the user to comprehend the proof display if it expressed in the sameterms as the original speci�cation, rather than some canonical or \simpli�ed" form.This means that the external representations of structures need to be maintainedalong with their internal form (for example, the \let" construct is treated internally20

prover is like this), or in the form of a program that speci�es the proof strategyto be used (the \tactics" of LCF-style provers [13] such as HOL are like this). Wehave found that direct instruction by the user seems the most productive and mosteasily understood method of guidance, provided the basic repertoire of operationsis not too large (no more than a dozen or so). And we �nd that a style of proofbased on Gentzen's Sequent Calculus allows information to be presented to the userin a very compact but understandable form, and also organizes the interaction veryconveniently.A large veri�cation often decomposes into smaller parts that are very similarto each other and we have found it useful if the user can specify customized proofcontrol \strategies" (similar to LCF-style tactics and tacticals) that can automatethe repetitive elements of the proof.Presentation: Formal veri�cation may be undertaken for a variety of purposes; the\presentation" phase is the one in which the chosen purpose is satis�ed. For example,one important purpose is to provide evidence to be considered in certifying that asystem is �t for its intended application. We do not believe the mere fact that certainproperties have been formally veri�ed should constitute grounds for certi�cation;the content of the veri�cation should be examined, and human judgment broughtto bear. This means that one product of veri�cation must be a genuine proof|that is a chain of argument that will convince a human reviewer. It is this proofthat distills the insight into why a certain design does its job, and it is this proofthat we will need to examine if we subsequently wish to change the design or itsrequirements. Many powerful theorem-proving techniques (for example, resolution)work in ways that do not lend themselves to the extraction of a readable proof, andare unattractive on this count. On the other hand, heuristic methods can generate\unnatural" proofs, while low-level proof checkers overwhelm the reader with detail.It seems to us that the most promising route to mechanically-checked proofs thatare also readable is to allow the user to indicate major steps, while routine ones areheavily automated.Generalization and Maintenance: Designs are seldom static; user requirementsmay change with time, as may the interfaces and services provided by other com-ponents of the overall system. A veri�cation may therefore need to be revisitedperiodically and adjusted in the light of changes, or explored in order to predict theconsequences of proposed changes. Thus, in addition to the human-readable proof, asecond product of formal veri�cation should be a description that guides the theoremprover to repeat the veri�cation without human guidance. This proof descriptionshould be robust|describing a strategy rather than a line-by-line argument|sothat small changes to the speci�cation of lemmas will not derail it.In addition to the modi�cations and adjustments that may be made to ac-commodate changes in the original application, another class of modi�cations|generalizations|may be made in order to support future applications, or to distill19

In our experience, formal veri�cation of even a moderately sized example cangenerate large numbers of lemmas involving arithmetic. E�ective automation ofarithmetic, that is the ability to instantly discharge formulas such asx � y ^ x � 1� y ^ 2� x � 1 � F (2� x) = F (1)(where x and y are rational numbers), is therefore essential to productive theoremproving in this context.Our proof checkers include decision procedures for an extended, quanti�er-freeform of Presburger Arithmetic: that is arithmetic with constants and variables, ad-dition and subtraction, but with multiplication restricted to the linear case (i.e.,multiplication by literal constants only), together with the relations <, >, �, �, =,and 6=. The decision procedures deal with both integer and rational numbers, andpropositional calculus [41]. It would, in our view, be quite infeasible to undertakeveri�cations that involve large amounts of arithmetic (such as clock synchronization)without arithmetic decision procedures. However, it has also been our experiencethat seemingly non-arithmetic topics (such as fault masking) require a surprisingquantity of elementary arithmetic (for example, inequality chaining, and \+1" argu-ments in inductions). Veri�cation systems that lack automation of arithmetic andpropositional reasoning require their users to waste inordinate amounts of e�ortestablishing trivial facts.Other common operations in proofs arising from formal veri�cation are to expandthe de�nition of a function and to replace one side of an equation by the correspond-ing instance of the other. Both of these can be automated by rewriting. But it is notenough for a prover to have arithmetic and rewriting capabilities that are individu-ally powerful: these two capabilities need to be tightly integrated. For example, thearithmetic procedures must be capable of invoking rewriting for simpli�cation|andthe rewriter should employ the arithmetic procedures in discharging the conditionsof a conditional equation, or in simplifying expanded de�nitions by eliminating ir-relevant cases. Theorem provers that are productive in veri�cation systems derivemuch of their e�ectiveness from tight integration of powerful primitives such asrewriting and arithmetic decision procedures|and the real skill in developing suchprovers is in constructing these integrations [4]. More visibly impressive capabilitiessuch as automatic induction heuristics are useful (and we do provide them), but ofmuch less importance than competence in combining powerful basic inference stepsincluding arithmetic and rewriting.An integrated collection of highly e�ective primitive inference steps is one re-quirement for productive theorem proving during the proof development phase; an-other is an e�ective way for the user to control and guide the prover through largersteps. Even \automatic" theorem provers need some human guidance or controlin the construction and checking of proofs. Some receive this guidance indirectlyin the order and selection of results they are invited to consider (the Boyer-Moore18

replay a proof, this is done only on request. \Proof-tree analysis" (described below)identi�es the state of a proof during an evolving veri�cation.3.3 Theorem ProvingTheorem proving in support of fairly di�cult or large veri�cations requires a ratherlarge range of capabilities and attributes on the part of the theorem prover or proofchecker. Furthermore, we have found that each formal veri�cation evolves througha succession of phases, not unlike the lifecycle in software development, and thatdi�erent requirements emerge at di�erent phases. We have identi�ed four phases inthe \veri�cation lifecycle" as follows.Exploration: In the early stages of developing a formal speci�cation and veri�-cation, we are chiey concerned with exploring the best way to approach the chosenproblem. Many of the approaches will be awed, and thus many of the theoremsthat we attempt to prove will be false. It is precisely in the discovery and isolationof mistakes that formal veri�cation can be of most value. Indeed, the philosopherLakatos argues similarly for the role of proof in mathematics [18]. According to thisview, successful completion is among the least interesting and useful outcomes of aproof attempt at this stage; the real bene�t comes from failed proof attempts, sincethese challenge us to revise our hypotheses, sharpen our statements, and achievea deeper understanding of our problem: proofs are less instruments of justi�cationthan tools of discovery [17].The fact that many putative theorems are false imposes a novel requirement ontheorem proving in support of veri�cation: it is at least as important for the theoremprover to provide assistance in the discovery of error, as that it should be able toprove true theorems with aplomb. Most research on automatic theorem provinghas concentrated on proving true theorems; accordingly, few heavily automatedprovers terminate quickly on false theorems, nor do they return useful informationfrom failed proof attempts. By the same token, powerful heuristic techniques are ofquestionable value in this phase, since they require the user to �gure out whether afailed proof attempt is due to an inadequate heuristic, or a false theorem.Development: Following the exploration phase, we expect to have a speci�cationthat is mostly correct and a body of theorems that are mostly true. Althoughdebugging will still be important, the emphasis in the development phase will be one�cient construction of the overall veri�cation. Here we can expect to be dealingwith a very large body of theorems spanning a wide range of di�culty. Accordingly,e�cient proof construction will require a wide range of capabilities. We wouldlike small or simple theorems to be dealt with automatically. Large and complextheorems will require human control of the proof process, and we would like thiscontrol to be as straightforward and direct as possible.17

(including completed and partial proofs) from one session to the next, so that workcan pick up where it left o�. We have found it best to record such informationcontinuously (so that not everything will be lost if a machine crashes) and incre-mentally (so that work is not interrupted while the entire state is saved in a singleshot).We have also found it necessary to support version management and carefulanalysis of the consequences of changes. Version management is concerned withthe control of changes to a formal development (ensuring that two people do notmodify a module simultaneously, for example) and with tracking the consequencesof changes. Not all veri�cation systems police these matters carefully. For exam-ple, some implementations of HOL, which is often praised as a system with verysound foundations, can still consider a theorem proved after some of its supportingde�nitions have been changed.Ehdm at one time had quite elaborate built-in capabilities for version manage-ment, maintenance of shared libraries, and so on. These proved unpopular (userswanted direct access to the underlying �les), so we have now arranged matters sothat Ehdm and PVS monitor, but do not attempt to control, access to speci�cation�les. Changes to speci�cation �les are detected by examining their write-dates, andinternal data structures corresponding to changed �les are invalidated. Users whowish to exercise more control over modi�cation to speci�cation �les can do so usinga standard version control package such as RCS.Tracking the propagation of changes can be performed at many levels of granu-larity. At the coarsest level, the state of an entire development can be reset whenany part of it is changed; at a �ner level, changes can be tracked at the module level;and at the �nest level of granularity, they can be tracked at the level of individualdeclarations and proofs. Once the consequences of changes have been propagated,another choice needs to be made: should the a�ected parts be reprocessed at once,or only when needed? Ehdm originally propagated changes at the module level(so that if a module was changed and its internal data structures invalidated, thatinvalidation would propagate transitively up the tree of modules). Reprocessing(i.e., typechecking and proving) took place under user control and reconstructed theinternal data structures of the entire tree of modules. This proved expensive whenlarge speci�cations were involved. An unsuccessful proof in a module at the top of atree of modules might necessitate a change to an axiom in a module at the bottom.Re-typechecking the entire tree could take several minutes, with consequent loss ofconcentration and productivity. Ehdm now propagates the consequences of changesat the level of individual declarations, and re-typechecking is done incrementally andlazily (i.e., only when needed), also at the level of declarations. This requires a farmore complex implementation, but the increase in human productivity is enormous,as the user now typically waits only seconds while the relevant consequences of achange are propagated. Because it can take several seconds, or even minutes, to16

example, in demonstrating the consistency of the axiomatization used to specifyassumptions about clocks [36], we have a module algorithm that uses (imports) themodule clocks . An interpretation for algorithm will normally generate interpreta-tions for the types and constants in clocks as well. But if we have already establishedan interpretation for clocks , we will want the interpretation for algorithm to referto it, not generate a new one. Supporting these requirements in a reasonable way isnot di�cult once the requirements have been understood. Our experience has beenthat it takes some real-world use to learn these requirements.3.2 Support ToolsThe previous few paragraphs have outlined some of the complicating details thatmust be addressed in the support environment for a speci�cation language that pro-vides a rich type system and theory interpretations. A consequence of the designdecision that typechecking can require theorem proving is that the support envi-ronments for Ehdm and PVS provide a far closer integration between the languageanalysis and theorem proving components than is usual. We discuss this in moredetail in the section on theorem proving. More mundane, but no less important, en-gineering decisions concern the choice of interface, style of interaction, and functionsprovided by the support tools.Some speci�cation environments allow direct use of mathematical symbols suchas 8. Although super�cially attractive, we have found that the burdens of support-ing these conveniences outweigh the bene�ts, bringing in their wake such menaces toproductivity as structure editors and a plethora of mouse and menu selections. Sincethe marketplace has plainly demonstrated that the preferred and most productiveconnection between mind and computer is the Emacs editor, we have adopted thisas our interface, and accepted an ascii representation for our speci�cations. Our ex-perience has been that it is the naturalness of its semantic foundation and syntacticexpression that determines the acceptance of a speci�cation notation, not its lexi-cal representation. Nonetheless, we have taken care to provide a civilized concretesyntax, a competent prettyprinter and, as noted earlier, a LaTEX-prettyprinter thatcan produce attractively typeset documents for review and presentation.Our speci�cations have been quite large, typically involving hundreds of dis-tinct identi�ers and dozens of separate modules. We have found facilities for cross-referencing and browsing essential to productive development of large speci�cationsand veri�cations, especially when returning to them after an absence, or when build-ing on the work of others. Browsing is an on-line capability that allows the user toinstantly refer to the de�nition or uses of an identi�er; cross-reference listings pro-vide comparable information in a static form suitable for typeset documentation.Our speci�cations and veri�cations are developed over periods of days or weeksand we have found it imperative that the system record the state of a development15

function that induces a homomorphism between the concrete and the abstract spec-i�cation. The required constructions can easily be speci�ed within our speci�cationlanguages, but we have found the process to be tedious and error-prone (for example,it is easy to overlook the requirement that the abstraction function be surjective).Accordingly, we have provided mechanized support for hierarchical veri�cation sincethe earliest versions of Ehdm.12 Our mechanization is based on the notion of theoryinterpretations [40, Section 4.7]; the basic idea is to establish a translation from thetypes and constants of the \source" or abstract speci�cation to those of a \target"or concrete speci�cation, and to prove that the axioms of the source speci�cation,when translated into the terms of the target speci�cation, become provable theoremsof that target speci�cation. The di�erence between the use of theory interpretationto demonstrate correctness of an implementation and to demonstrate consistencyof a speci�cation is that for the latter, the \implementation" does not have to beuseful, or realistic, or e�cient; it just has to exist.13The basic mechanism of theory interpretation is quite easy to implement: a\mapping" module speci�es the connection between a source and a target moduleby giving a translation from the types and constants of the former to those of thelatter, and a \mapped" module of proof obligations is then generated. Special careis needed when the equality relation on a type is interpreted by something otherthan equality on the corresponding concrete type.14 This construction requires proofobligations to ensure that the mapped equality is a congruence relation (i.e., hasthe properties of equivalence and substitutivity).These straightforward mechanisms have become somewhat embellished overtime, as the stress of real use has revealed additional requirements. For example, weoriginally assumed that source modules would be speci�ed entirely axiomatically.This proved unrealistic: modules generally contain a mixture of axiomatic and def-initional constructions, and it is necessary for the mapping mechanism to translatede�nitions (and theorems) into the terms of the target speci�cation. Next, we foundthat our users wished to interpret not just single modules, but whole chunks of spec-i�cation in which both source and target spanned several modules. This is quitestraightforward to support, except that care needs to be taken to exclude modulescommon to both source and target (these often include modules that specify mathe-matical prerequisites common to both levels). As the size of speci�cations increases,it becomes necessary to introduce more layers into the hierarchical veri�cation. For12PVS does not support this at the moment; we are examining a slightly di�erent approachinvolving quotient types.13What is demonstrated here is relative consistency: the source speci�cation is consistent if thetarget speci�cation is. Generally, the target speci�cation is one that is speci�ed de�nitionally, orone for which we have some other good reason to believe in its consistency.14For example, if abstractly speci�ed stacks are implemented by a pair comprising an array anda pointer, then the equality on abstract stacks corresponds to equality of the implementing arraysup to the pointer; this is not the standard equality on pairs.14

automatically generate the proof obligations necessary to ensure that the operationspreserve the invariant.Dependent types increase expressive convenience still further. We �nd themparticularly convenient for dealing with functions that would be partial in simplertype systems. The standard \challenge" for treatments of partial functions [6] is thefunction subp on the integers de�ned bysubp(i; j) = if i = j then 0 else subp(i; j + 1) + 1 endif :This function is unde�ned if i < j (when i � j; subp(i; j) = i � j) and it is oftenargued that if a speci�cation language is to admit such a de�nition, then it mustprovide a treatment for partial functions. Fortunately, examples such as these donot require partial functions: they can be admitted as total functions on a veryprecisely speci�ed domain. Dependent types , in which the type of one component ofa structure depends on the value of another, are the key to this. For example, inthe language of PVS, subp can be speci�ed as follows.subp((i : int); (j : int j i � j)): recursive int =if i = j then 0 else subp(i; j + 1) + 1 endifmeasure � (i : int); (j : int j i � j) : i� j10Here, the domain of subp is the dependent tuple-type[i : int ; fj : int j i � jg](i.e., the pairs of integers in which the �rst component is greater than or equal tothe second) and the function is total on this domain.The earliest versions of Ehdm required almost all concepts to be speci�edaxiomatically|thereby raising the possibility of inadvertently introducing inconsis-tencies. Our decisions to support very powerful type-constructions and to embracethe consequence that theorem-proving can be required during typechecking weremotivated by a desire to increase the expressive power of those elements of the lan-guage for which we could guarantee conservative extension. On the other hand, wedo not wish to exclude axiomatic speci�cations; these are often the most naturalway to specify assumptions about the environment, and top-level requirements.11Axioms can be proved consistent by exhibiting a model|a process that is closelyrelated to veri�cation of hierarchical developments.The established way to demonstrate that one level of speci�cation \implements"the requirements of another is to exhibit an \abstraction" (also called \retrieve")10The measure clause speci�es a function to be used in the termination proof.11Abstract data types are also conveniently speci�ed axiomatically. PVS provides for this througha \datatype" construction that generalizes the \shell" mechanism of the Boyer-Moore prover [3].PVS datatype speci�cations automatically generate axiomatizations of a stereotyped form that isknown to be consistent. 13

is immediately seen to be type-correct. However, the expressionpop(pop(push(x; push(y; s)))) = s (1)is not obviously type-correct (since the outermost pop requires a nonempty stack ,but is given the result of another pop|which is only known to be a stack). However,it can be shown to be well-typed by proving the theorempop(push(x; push(y; s))) 6= empty ;which follows from the usual stack axioms. Ehdm and PVS automatically generatethis theorem as a proof obligation (i.e., TCC) when typechecking the expression (1).Proof obligations that are not discharged automatically by the theorem proverare added to the speci�cation text and can be proved later, under the user's control.Untrue proof obligations indicate a type-error in the speci�cation, and have proveda potent method for the early discovery of speci�cation errors. For example, theinjections are speci�ed as that subtype of the functions associated with the one-to-one property:injection : type = ff : [t1 ! t2] j 8(i; j : t1): f(i) = f(j) � i = jg(here t1 and t2 are uninterpreted types introduced in the module parameter list). Ifwe were later to specify the function square as an injection from the integers to thenaturals by the declarationsquare : injection[int ! nat] = �(x : int): x� x : natthen the PVS typechecker would require us to show that the body of square satis�esthe injection subtype predicate.9 That is, it requires the proof obligation i2 = j2 �i = j to be proved in order to establish that the square function is well-typed. Sincethis theorem is untrue (e.g., 22 = (�2)2 but 2 6= �2), we are led to discover a faultin this speci�cation.Notice how use of predicate subtypes here has automatically led to the genera-tion of proof obligations that might require special-purpose checking tools in othersystems. Yet another example of the utility of predicate subtypes arises when mod-eling a system by means of a state machine. In this style of speci�cation, we �rstidentify the components of the system state; an invariant speci�es how the com-ponents of the system state are related, and we then specify operations that arerequired to preserve this relation. With predicate subtypes available, we can usethe invariant to induce a subtype on the type of states, and can specify that eachoperation returns a value of that subtype. Typechecking the speci�cation will then9We would also be required to discharge the (true) proof obligation generated by the subtypepredicate for nat : 8(x : int):x� x � 0. 12

More interestingly, the signature for the division operation (on the rationals) isspeci�ed by =: [rational; nonzero rational ! rational]where nonzero rational : type = fx: rational j x 6= 0gspeci�es the nonzero rational numbers. This constrains division to nonzero divisors,so that a formula such as x 6= y � (y � x)=(x� y) < 0requires the typechecker to discharge the proof obligation (or TCC)x 6= y � (x� y) 6= 0in order to ensure that the occurrence of division is well-typed. Notice that the\context" (x 6= y) of the division appears as an antecedent in the proof obligation.These proof obligations establish that the value of the original expression does notdepend upon the value of a type-incorrect term. The arithmetic decision proceduresof our theorem provers generally dispose of such proof obligations instantly (if theyare true!), and the user usually need not be aware of them. This use of predicatesubtypes allows certain functions that are partial in some other treatments to remaintotal (thereby avoiding the need for logics of partial terms or three-valued logics).Related constructions allow nice treatments of errors, such as pop(empty) in thetheory of stacks. Here we can type the stack operations as follows:stack : typeempty : stacknonempty stack : type = f(s: stack) j s 6= emptygpush: [elem, stack ! nonempty stack]pop: [nonempty stack ! stack]top: [nonempty stack ! elem]With these signatures, the expression pop(empty) is rejected during typechecking(because pop requires a nonempty stack as its argument), and the theorempush(e; s) 6= emptyis an immediate consequence of the type de�nitions. For the same reason, theconstruction pop(push(y; s)) = s11

We do use specialized formalisms, such as temporal logic, when it seems appro-priate, but we do so by formalizing them within higher-order logic. The advantageof embedding such formalisms within a single logic is that it is then easier to com-bine them with others and easier to share common theories, such as datatypes,arithmetic, and other prerequisite mathematics. Furthermore, we are not restrictedto a �xed selection of formalisms, but can develop specialized notations to suit theproblem at hand|rather in the way that productive pencil and paper mathematicsis done.In the case of the examples considered here, it was relatively straightforward todescribe the necessary concepts directly within higher-order logic in a manner thatreproduced the presentation in standard journal treatments of the topics concernedfairly closely [19,38], or that followed a style that had proved comfortable in earlierpencil and paper development (e.g., compare the pencil and paper development ofa fault-masking model [10] with a fully formal version [33]).We have taken some pains to allow these formal speci�cations to be renderedin a natural syntactic form. For example, we provide rich sets of propositionalconnectives (including a polymorphic if-then-else) and of arithmetic and relationaloperators, and we allow set-notation for predicates.7 Several conveniences thatappear syntactic actually require semantic treatment. For example, we allow thepropositional connectives such as \or" and the arithmetic and relational operatorssuch as + and� to be overloaded with new de�nitions (while retaining their standardones). This allows the propositional connectives to be \lifted" to temporal formulas(represented as predicates on the natural numbers), for example, so that if x and yare temporal formulas, x_ y could be de�ned to denote their pointwise disjunction.These usages correspond to informal mathematical practice, but their mechanizedanalysis requires rather powerful strategies for type inference and name resolution.Just as the syntactic aspects of our languages have been enriched over the years,so have their semantic attributes|and in particular the type systems. Initially wehad just the \ground" types (i.e., uninterpreted, boolean, and integer and rationalnumbers) and (higher-order) function types. We soon found it convenient to addrecord and enumeration types, and then|the most signi�cant step of all|predicatesubtypes. In PVS we also provide tuple types, and dependent type constructions.8As their name suggests, predicate subtypes use a predicate to induce a subtypeon some parent type. For example, the natural numbers are speci�ed (in PVS) as:nat : type = fn : int jn � 0g :in a functional style, and to transfer to the imperative style only in the �nal steps|very much inthe manner advocated by Guttag and Horning [14].7In higher-order logic, sets are represented by their characteristic predicates, which are them-selves simply functions with range type \boolean."8A rather useful dependent construction has been available in Ehdm since the beginning throughthe mechanism of module parameters. 10

soundness of axiomatizations are clearly desirable (purely de�nitional speci�cationsare often too restricting), as are habits and techniques for reviewing the contentof formal speci�cations. Third, our veri�cations are seldom �nished: changed as-sumptions and requirements, the desire to improve an argument or a bound, andsimple experimentation, have led us to revise some of our veri�cations several times.We believe that investment in an existing veri�cation should assist, not discour-age discovery of simpli�cations, improvements, and generalizations. But this meansthat the method of theorem proving must be robust in the face of reasonably smallchanges to the speci�cation. Fourth, our formal speci�cations and veri�cations wereoften used by someone other than their original developer. These secondary userssometimes carry o� just a few theories (or ideas) for their own work, sometimes theysubstantially modify or extend the existing veri�cation, and sometimes they buildon top of it; in all cases, they need to understand the original veri�cation. Theseactivities argue for speci�cations and proofs that are structured or modularized insome way, and that are su�ciently perspicuous that users other than the originalauthors can comprehend them well enough to make e�ective use of them.In the following subsections we expand on these points and describe some of thedesign decisions taken in our languages, support tools, and theorem provers, in lightof these experiences.3.1 Speci�cation LanguageIn this section we describe some of the choices made in the design of our speci�cationlanguages, and discuss some of the changes we have made in the light of experience.The main constraints informing our design decisions have been the desire for alanguage that is powerfully expressive, yet that nonspecialists �nd comfortable,that has a straightforward semantics, and that can be given e�ective mechanizedsupport|this includes very stringent (and early) detection of speci�cation errors,as well as powerful theorem proving.The domain of problems that we have investigated involves asynchronous com-munication, distributed execution, real-time properties, fault tolerance, and hierar-chical development. One question that arises is the degree of support for these topicsthat should be built-in to the speci�cation language and its veri�cation system. Ourviewpoint here is pragmatic rather than philosophical: we have found that a clas-sical, simply-typed higher-order logic is adequate for formalizing all the conceptsof interest to us in a perspicuous and e�ective way. We have also found that thecomputational aspects of the systems of interest to us are adequately modeled in afunctional style and we have not found it necessary to employ Hoare logic or othermachinery for reasoning about imperative programs.66Ehdm does support Hoare logic directly, and we have used this capability in other applications.Even so, we generally �nd it most convenient to develop the bulk of the speci�cation and veri�cation9

than the pencil and paper version. The stronger theorem requires a proof by Noethe-rian induction (as opposed to simple induction for the weaker theorem), which israther tricky to state and carry out in semi-formal notation, but no more di�cultthan simple induction in a mechanized setting.The most ambitious formal veri�cation carried out in the program so far wasperformed by Rick Butler and Ben Di Vito at NASA: it connects fault maskingwith clock synchronization. The models for fault masking (and also those for inter-active consistency) assume totally synchronous execution of the redundant comput-ing channels (and instantaneous communication), whereas the clock-synchronizationalgorithms guarantee only that the channels are synchronized within some smallbound. The reconciliation of these di�erent models involves a hierarchical veri�-cation with two intermediate levels. The topmost level is called the uniprocessorsynchronous (US) model: it is essentially the correctness criterion|a single com-puter that never fails. The level below this is the fault-masking model, now calledthe replicated synchronous (RS) model; below this is the distributed synchronous(DS) model, which introduces the fact that communication between channels takestime; and at the bottom is the distributed asynchronous (DA) model, which con-nects to the clock synchronization conditions and recognizes that the channels areonly approximately synchronized. The US to RS veri�cation is similar to ours, theother two are new and involve quite large speci�cations and proofs (well over 300lemmas) [9].It will be noted that we have concentrated on verifying algorithms and architec-tural designs (rather than program code or hardware circuits); the available evidencepoints to these and other early lifecycle concerns (particularly requirements) as theprinciple sources of failure in safety critical systems.53 Lessons LearnedWe summarize here some of the main characteristics observed and conclusions drawnfrom the veri�cations described above. First, most of the proofs we have been inter-ested in checking, not to mention many of the theorems, and some of the algorithms,were incorrect when we started. Thus, we �nd it at least as important that a veri�-cation system should assist in the early detection of error as that it should con�rmtruth. Second, our axiomatizations were occasionally unsound, and sometimes theywere sound but didn't say what we thought they did. Mechanisms for establishing5These systems are developed under stringent controls that are very e�ective at detecting andeliminating faults introduced in the later lifecycle phases of detailed design and coding. For example,Lutz [23] reports on 387 software faults detected during integration and system testing of theVoyager and Galileo spacecraft. 197 of the faults were characterized as having potentially signi�cantor catastrophic e�ects (with respect to the spacecraft's missions). Only 3 of these faults wereprogramming errors; the vast majority were requirements problems.8

was more complex than necessary, and attempted an independent veri�cation. Wewere able to complete this in less than a week, and found that one of the keys to sim-plifying the argument was to focus on the symmetric formulation (which is actuallythe form required), rather than the asymmetric Byzantine Generals form [32].Because of its manageable size and complexity (it is an order of magnitudesmaller than the clock-synchronization proofs), we used veri�cation of the OralMessages algorithm as a test-case in the development of the theorem prover forPVS. Eventually we were able to construct the necessary proofs (starting from thespeci�cation and a couple of minor lemmas) in under an hour. Thus equipped, weturned to an important variation on the algorithm due to Thambidurai and Park [43]that uses a hybrid fault model, and thereby provides greater fault tolerance thanthe classical algorithm. Here we found not merely that the journal-style argumentfor the correctness of the algorithm was awed, but that the algorithm containedan outright bug. We proposed a modi�ed algorithm and our colleague Pat Lincolnformally veri�ed its correctness|and then found that it, too, was awed.How could we verify an incorrect algorithm? The explanation is that our axiom-atization of a certain \hybrid majority" function required \omniscience": it had tobe able to exclude faulty values from the vote, whereas the source of all the di�cultyin Byzantine fault-tolerant algorithms is that it is not known which values are faulty.Thus our algorithm was \correct" but unimplementable. Pat Lincoln detected thisproblem by thinking carefully about the speci�cation, and we were then able todevelop and formally verify a new and correct algorithm for Interactive Consistencyunder a hybrid fault model [21]. This work took less than two weeks, and was pri-marily undertaken by Pat Lincoln (using PVS) as his �rst exercise in mechanizedformal veri�cation. We believe that the discipline of formalism and the mechanicalsupport provided by PVS were instrumental in developing a correct algorithm andargument for this tricky problem.A model for the main fault-masking and transient-recovery architecture of RCP,and the argument for its correctness, were developed by Rick Butler, Jim Caldwelland Ben Di Vito at NASA. Their model and veri�cation were formal, in the styleof a traditional presentation of a mathematical argument [10]. Working in paral-lel, we developed a formal speci�cation and veri�cation of a slightly simpli�ed, butalso rather more general model [33]. Before formally specifying and verifying ourmodel in Ehdm, we developed a description and proof with pencil and paper. Thisdescription was developed with speci�cation in Ehdm in mind; it was built fromstraightforward mathematical concepts and was transliterated more or less directlyinto Ehdm in a matter of hours. The formal veri�cation took about three weeksof part-time work. Some of this time was required because the formal veri�cationproves a number of subsidiary results that were glossed over in the pencil and pa-per version, and some of it was required because Ehdm's theorem prover lacked arewriter at that time. However, the mechanically veri�ed theorem is also stronger7

was his �rst exposure to formal hardware veri�cation). During circuit design, it be-came apparent that one of the assumptions of the clock-synchronization veri�cation(i.e., that the initial clock corrections are all zero) is very inconvenient to satisfy inan implementation. We explored the conjecture that this assumption is unnecessaryby simply eliminating it from the formal speci�cation and re-running all the proofs(which takes about 10 minutes on a Sun SparcStation 2) in order to see which onesno longer succeeded. We found that the proofs of a few internal lemmas needed tobe adjusted, but that the rest of the veri�cation was una�ected.We are now contemplating further adjustments to the veri�cation. DanPalumbo and Lynn Graham of NASA built equipment for experimenting with clock-synchronization circuitry and found that the observed worst-case skews were betterthan predicted by theory. They showed that a slight adjustment to the analysis canbring theory into closer agreement with observation [30]. We intend to incorporatethis improved bound into our mechanically-checked veri�cation, and will also ex-pand the analysis to incorporate a hybrid fault model (an informal derivation hasalready been developed).There are alternatives to ICA that seem more attractive from the implementa-tion point of view. Also, there is a choice in formalizations of clock synchronizationwhether clocks are modeled as functions from \clock time" to \real time" or thereverse. ICA does it the �rst way, but the other appears to �t better into the argu-ments for an overall architecture. Accordingly, we next embarked on a mechanizedveri�cation of Schneider's generalized clock-synchronization protocol, which gives auniform treatment that includes almost all known synchronization algorithms [38],and models clocks in the \real time" to \clock time" direction. As before, we founda number of small errors in the original argument and were able to produce animproved journal-style presentation as well as the mechanically-checked proof [39].This veri�cation included a proof that the \convergence function" of ICA satis�esSchneider's general conditions (thereby providing an independent formal veri�cationof ICA). Paul Miner of NASA took a copy of our Ehdm veri�cation and extendedit to verify that the more attractive convergence function characterizing the Welch-Lynch fault-tolerant mid-point algorithm [45] also satis�es these conditions. Inaddition, he identi�ed improvements in the formulations of some of the conditions.In continuing work, he is verifying a signi�cant extension to the algorithm thatprovides for transient recovery [28].Turning from fault-tolerant clock synchronization to sensor distribution, we nextfocussed on the \Oral Messages" algorithm for Interactive Consistency [20].4 Bevierand Young at CLI, who had already veri�ed this algorithm, found it \a fairly di�-cult exercise in mechanical theorem proving" [1]. We suspected that their treatment4Interactive consistency is the problem of distributing consistent values to multiple channels inthe presence of faults [31]. It is the symmetric version of the Byzantine Generals problem, and shouldnot be confused with interactive convergence, which is an algorithm for clock synchronization.6

program \state" is supported in Ehdm, it is not used in the speci�cations consideredhere; algorithms and computations are described functionally. The built-in typesof Ehdm and PVS include the booleans, integers, and rationals; enumerations anduninterpreted types can also be introduced, and compound types can be built using(higher-order) function and record constructors (PVS also provides tuples). Thetype systems of both languages provide features (such as predicate subtypes) thatrender typechecking algorithmically undecidable. In these cases, proof obligations(called type-correctness conditions, or TCCs) are generated and must be dischargedbefore the speci�cation is considered type correct. The speci�cation languages ofEhdm and PVS are built on very di�erent foundations than those of, say, Z andVDM, but, in our experience, provide similar convenience and expressiveness.2 Formal Veri�cations PerformedThe �rst veri�cation we undertook in NASA's program was of Lamport and Melliar-Smith's Interactive Convergence Algorithm (ICA) for Byzantine fault-tolerant clocksynchronization. At the time, this was one of the hardest mechanized veri�cationsthat had been undertaken and we began by simply trying to reproduce the ar-guments in the journal paper that introduced the algorithm [19]. Eventually, wesucceeded, but discovered in the process that the proofs or statements of all butone of the lemmas, and the proof of the main theorem, were awed in the journalpresentation. In developing our mechanically-checked veri�cation we eliminated theapproximations used by Lamport and Melliar-Smith and streamlined the argument.We were able to derive a journal-style presentation from our mechanized veri�cationthat is not only more precise than the original, but is simpler, more uniform, andeasier to follow [35, 36]. Our mechanized veri�cation in Ehdm took us a couple ofmonths to complete and required about 200 lemmas (most of which are concernedwith \background knowledge," such as summation and properties of the arithmeticmean, that are assumed in informal presentations).We have modi�ed our original veri�cation several times. For example, we wereunhappy with the large number of axioms required in the �rst version. Later, whende�nitional forms guaranteeing conservative extension were added to Ehdm, wewere able to eliminate the large majority of these in favor of de�nitions. Even so,Bill Young of CLI, who repeated our veri�cation using the Boyer-Moore prover [47],pointed out that one of the remaining axioms was unsatis�able in the case of drift-free clocks. We adopted a repair suggested by him (a substitution of � for <),and also an improved way to organize the main induction. We have since veri�edthe consistency of the axioms in our current speci�cation of ICA using the theoryinterpretation mechanism of Ehdm.Our colleague Erwin Liu developed a design for a hardware circuit to performpart of the clock-synchronization function, and formally veri�ed the design [22] (this5

us for some time to come.3 The veri�cations performed with our tools are describedin Section 2, the lessons we have learned in Section 3, and brief conclusions arepresented in Section 4. Before describing the veri�cations performed with them, webriey introduce our tools.1.1 Our Veri�cation SystemsEhdm, which �rst became operational in 1984 [26] but whose development stillcontinues, is a system for the development, management, and analysis of formalspeci�cations and abstract programs that extends a line of development that beganwith SRI's original Hierarchical Development Methodology (HDM) of the 1970's.Ehdm's speci�cation language is a higher-order logic with a rather rich type systemand facilities for grouping related material into parameterized modules. Ehdm sup-ports hierarchical veri�cation, so that the theory described by one set of modules canbe shown to interpret that of another; this mechanism is used to demonstrate cor-rectness of implementations, and also the consistency of axiomatizations. The Ehdmtools include parser, prettyprinter, typechecker, proof checker, and many browsingand documentation aids, all of which use a customized Gnu Emacs as their interface.Its proof checker is built on a decision procedure (due to Shostak [41]) for a com-bination of ground theories that includes linear arithmetic over both integers andrationals. Ehdm's proof-checker is not interactive; it is guided by proof descriptionsprepared by the user and included as part of the speci�cation text [37].Development of PVS, our other veri�cation system, started in 1991; it was builtas a lightweight prototype for a \next generation" veri�cation system and in orderto explore ideas in interactive proof checking. Our goal was considerably greaterproductivity in mechanically-supported veri�cation than had been achieved withother systems. The logic of PVS is similar to that of Ehdm, but has an even richertype system. Its theorem prover includes the same decision procedures as Ehdm,but in an interactive environment that uses a presentation based on the sequentcalculus [29]. The primitive inference steps of the PVS prover are rather powerfuland highly automated, but the selection and composition of those primitive stepsinto an overall proof is performed interactively in response to commands from theuser. Theorem proving techniques prototyped in PVS are now being incorporatedinto Ehdm.Speci�cations in Ehdm and PVS can be stated constructively using a numberof de�nitional forms that provide conservative extension, or they can be given ax-iomatically, or a mixture of both styles can be used. Although a notion of implicit3CLI Inc., and ORA Corporation also participate in the program, using their own tools. De-scriptions of some of their work can be found in [2] and [42], respectively. The overall program isnot large; it is equivalent to about three full-time sta� at NASA, and slightly less than one each atCLI, ORA, and SRI. 4

the pattern of dataow dependencies among the application tasks) and on the faultarrival rate. Markov modeling shows that a nonrecon�gurable architecture withtransient recovery can provide fully adequate reliability even under fairly pessimisticassumptions.We mentioned earlier that the distribution of single-source data must be donein a manner that is resistant to Byzantine faults. The same is true of the clock syn-chronization that keeps the channels operating in lock-step. Byzantine fault-tolerantalgorithms suitable for both problems are known, but su�er from some disadvan-tages. First, the classic Byzantine fault-tolerant clock-synchronization algorithmsdo not provide transient recovery: there is no fully analyzed mechanism that al-lows a temporarily disturbed clock to get back into synchronization with its peers.Second, Byzantine fault-tolerant algorithms treat all faults as Byzantine and there-fore tolerate fewer simple faults than less sophisticated algorithms. For example,a �ve-channel system ought to be able to withstand two simultaneous symmetricfaults by simple majority voting, and as many as four crash faults. Yet a stan-dard Byzantine fault-tolerant algorithm is only good for one fault of any kind in a�ve-channel system. To overcome this, the MAFT project introduced the idea ofhybrid fault models and of algorithms that are maximally resistant to simultaneouscombinations of faults of various types [43].Although the principles just sketched for a \reliable computing platform" (RCP)for ight-control applications are understood, fully credible analysis of the necessaryalgorithms and their implementations (which require a combination of hardwareand software), and of their synthesis into a total architecture, has been lacking.2In 1989, NASA's Langley Research Center began a program to investigate use offormal methods in the design and analysis of an RCP. We supplied our Ehdm and(later) PVS veri�cation systems to NASA Langley, and have collaborated closelywith researchers there. The overall goal of the program is to develop mechanicallychecked formal speci�cations and veri�cations for the architecture, algorithms, andimplementations of a nonrecon�gurable RCP with transient recovery.This is a rather ambitious goal, since the arguments for correctness of some ofthe individual Byzantine fault-tolerant algorithms are quite intricate, and their syn-thesis into an overall architecture is of daunting complexity. Because mechanizedveri�cation of algorithms and fault-tolerance arguments of the di�culty we werecontemplating had not been attempted before, we did not have the con�dence tosimply lay out a complete architecture and then start verifying it. Instead, we �rstisolated some of the key challenges and worked on those in a relatively abstractedform, and then gradually elaborated the analysis, and put some of the pieces to-gether. The process is still far from complete and we expect the program to occupy2Some aspects of SIFT|which was built for NASA Langley|were subjected to formal veri�ca-tion [25], but the treatment was far from complete.3

1 IntroductionCatastrophic failure of digital ight-control systems for passenger airplanes must be\extremely improbable"; a requirement that can be interpreted as a failure rate ofless than 10�9 per hour [12, paragraph 10.b]. This must be achieved using electronicdevices such as computers and sensors whose individual failure rates are severalorders of magnitude worse than this. Thus, extensive redundancy and fault toleranceare needed to provide a computing resource of adequate reliability for ight-controlapplications. Organization of redundancy and fault-tolerance mechanisms for ultra-high reliability is a challenging problem. Redundancy management can account forhalf the software in a ight-control system [8] and, if less than perfect, can itselfbecome the primary source of system failure [24].There are many candidate architectures for the ultra-reliable \computing plat-form" required for ight-control applications, but a general approach based on ra-tional foundations was established in the late 1970s and early 1980s by the SIFTproject [46]: several independent computing channels operate in approximate syn-chrony; single source data (such as sensor samples) are distributed to each channelin a manner that is resistant to \Byzantine" faults1 [31], so that each good chan-nel gets exactly the same input data; the channels run the same application taskson the same data at the same time and the results are submitted to exact-matchmajority voting before being sent to the actuators. Failed sensors are dealt with bythe sensor-conditioning and diagnosis code that is common to every channel; failedchannels are masked by the majority voting of actuator output. The original SIFTdesign su�ered from performance problems, but several e�ective architectures basedon this general idea have since been developed, including one (called MAFT) by amanufacturer of ight-control systems [16] that improved on many of the details.Experimental data shows that the large majority of faults are transient (typicallysingle event upsets caused by cosmic rays, and other passing hazards): the devicetemporarily goes bad and corrupts data, but then restores itself to normal operation.The potential for lingering harm remains, however, from the corrupted data that isleft behind. This contamination can gradually be purged if the computing channelsvote portions of their internal state data periodically and replace their local copiesby majority-voted versions. This process provides transient recovery ; after a while,an a�icted processor will have completely recovered its health, refreshed its statedata, and become a productive member of the community again. The viability ofthis scheme depends on the recovery rate (which itself depends on the frequencyand manner in which state data are refreshed with majority voted copies, and on1Byzantine faults are those that manifest asymmetric symptoms: sending one value to onechannel and a di�erent value to another, thereby making it di�cult for the receivers to reach acommon view. Symmetric faults deliver wrong values but do so consistently. Crash faults are as ifthe failed channel had simply ceased to exist. 2

Formal Veri�cation for Fault-TolerantArchitectures: Some Lessons Learned�Reprint (slightly expanded) of a paper in FME '93: Industrial-Strength FormalMethods, pages 482{500, Odense, Denmark, April 1993. Volume 670 of SpringerVerlag Lecture Notes in Computer Science. Note: A major revision of thispaper appears in IEEE Transactions on Software Engineering, Vol. 21No. 2 (feb. 1995) pp. 107{125 under the title \Formal Veri�cation forFault-Tolerant Architectures: Prolegomena to the Design of PVS ."Sam Owre, John Rushby,Natarajan Shankar, Friedrich von HenkeyComputer Science LaboratorySRI InternationalMenlo Park CA 94025 USAAbstractIn collaboration with NASA's Langley Research Center, we are developingmechanically veri�ed formal speci�cations for the fault-tolerant architecture,algorithms, and implementations of a \reliable computing platform" (RCP) forlife-critical digital ight-control applications. To achieve a failure rate that iscerti�ably less than 10�9 per hour, RCP employs redundant, synchronized com-puting channels for fault masking and transient recovery. The synchronizationand sensor-distribution algorithms are resilient with respect to a hybrid faultmodel that includes Byzantine faults.Several of the formal speci�cations and veri�cations performed in support ofRCP are individually of considerable complexity and di�culty. But in order tocontribute to the larger goal, it has often been necessary to modify completedveri�cations to accommodate changed assumptions or requirements, and peopleother than the original developer have often needed to understand, build on,modify, or cannibalize an intricate veri�cation.Accordingly, we have been developing and honing our veri�cation tools tobetter support these large, di�cult, iterative, and collaborative veri�cations.Our goal is to reduce formal veri�cations as di�cult as these to routine exercises,and to maximize the value obtained from formalization and veri�cation.In this paper, we describe some of the challenges we have faced, lessonslearned, design decisions taken, and results obtained.�This work was performed for the National Aeronautics and Space Administration LangleyResearch Center under contracts NAS1 17067 and NAS1 18969.yVon Henke's main a�liation is now Fakult�at f�ur Informatik, Universit�at Ulm, Germany.

