Dynamic Scan Scheduling
To be presented at RTSS'02, Austin, TX, Dec. 2002
Bruno Dutertre
System Design Laboratory, SRI International, Menlo Park, CA
bruno@sdl.sri.com

Abstract Our method relies on an algorithm for constructing
schedules with guaranteed detection probabilities. Given
We present an approach to computing cyclic schedulesparametersy, ..., d, andAq,...,A,, wheren is the num-

online and in real time, while attempting to maximize a ber of bands, this algorithm attempts to compute a scan
guality-of-service metric. The motivation is the detection schedule so that the receiver visits barfdr a delays; at

of RF emitters using a schedule that controls the scanningleast once in every interval of length; +§,. This schedule-

of disjoint frequency bands. The problem is NP-hard, but it construction problem is still NP-hard, but empirical results

exhibits a so-called phase transition that can be exploited show that many of its instances can be solved quickly. The
to rapidly find a “good enough” schedule. Our approach key issue is then to rapidly discover parametars. ., d,

relies on a graph-based schedule-construction algorithm. and Ay, ..., A, that ensure a good quality of service but

Selecting the input to this algorithm in the phase-transition for which a schedule can be efficiently constructed.

region ensures, with high probability, that a schedule will This is done by using the utilizatiod] = Zf;l ﬁ

be found quickly, and gives a lower bound on the quality of as a hardness indicator. Since quality of service increases

service this schedule will achieve. with U, one must search for a feasible instance with uti-
lization as high as possible. Intuitively, instances with low

1. Introduction utilization are underconstrained and very likely to be fea-

sible. Conversely, instances with utilization close to 1 are
We examine areal-time scheduling problem encounteredIIker to be overcon_stramgd_ anq.have no sgluﬂon. Experi-
mental results confirm this intuition. More important, one

in the detection of radio-frequency (RF) emitters. A de- bserv h transition similar to what has been noted
tection system uses a receiver that must scan disjoint fre-00SEIVES a phase fransition simiiar to what has been note

guency bands to intercept signals from the emitterscén in many combinatorial search problems (e.g., [9, 11, 13]).

scheduledetermines how much time is allocated to each fThetr.e IS efxfsma.ILlutl!lzattlon mtt(ajrvaiUl, Unl, 'Q WT'ChI\;het .
band, and is critical to achieving good detection perfor- raction of feasiole instances decreases sharply. Most in-

mance. lIdeally, the receiver should focus on emitters that.Stances of utilization I'ess thath are feasible, and. for such
are most likely to be present and most critical to a mis- instances a scheduleis found rapidly, and most instances

sion. Today’s systems rely on a fixed schedule, computedmc utilization more tharU_h are infea_sible_. We exploit this .
offline from an a priori table of known emitter types. Since phepomenon by searching for feas]ble mstanc-:gs whase uti-
the importance of different emitter types may vary during I|.zat|o.n IS betweenUl_ ‘T’md.Uh' With high pro.bab|l|ty,.a fea-
a mission, performance improvements can be expected bf'bl.e instance of ut|I|zat|.on at least as_hlgh @swill be
dynamically adjusting the scan schedule to current condi-.rapIOIIy foupd. The resulting schedule W|II'then have a qual-
tions. This requires an algorithm for computing schedules ity of service ?t least as good as wiiatgives, and often
online and under real-time constraints. beter in pracice.
The relative importance of each emitter type can be spec-
ified by a set of weights. Finding the optimal schedule for a 2. Problem Description
given weight assignment is NP-hard and there is little hope
that this can be done online. Instead, we present a method Receivers used for emitter detection cannot cover the
for constructing a “good enough” schedule within a speci- whole spectrum of possible emitter signals but work by
fied deadline. A key aspect is the use of a so-catiedse  scanning disjoint frequency bands. We assume these bands
transitionto select schedule parameters that give good per-indexed froml to n, wheren > 2. A scan schedulepeci-
formance, while ensuring that the deadline is met. fies the band to cover at every point in time. This schedule
*This work was partially funded by DARPA/AFRL contracts F30602- Produces a sequencedell intervals in each of which the
99-C-0169 and F30602-99-C-0167. receiver is tuned to a particular band for a specified amount




of time. A schedule is an infinite sequenceaointrol de- e e - = -
scriptor words (CDWSs) that specify receiver settings for < < < < <

each dwell interval. For our purpose, a CDW is simply a ¢ o
pair (f,d) wheref is the index of a frequency band ard

is a dwell duration. A scan schedule can then be written

<f07d0>7<f1,d1>,---7<ft,dt>,_.,

Accordingly, the receiver must be tuned to bafiydfor a
durationd,, then to bandf; for a durationd;, and so fortt — aminimal probability of detectiopg € (0, 1]

The emitters to detect produce electromagnetic pulses at — aweightWg
a fixed frequency. The signal strength at the receiver de-
pends on physical parameters such as range, antenna geomhe algorithm must compute a schedgl¢hat satisfies the
etry and orientation, and emitter power. We say thatlan ~ following coverage constraint
minationoccurs when the signal strength is high enough to
enable detection if the receiver is on the correct band. The VE€&: Ps(E) > pg
length of an illumination — called thdlumination time—
varies with the distance between emitter and receiver. For
an emitter to be detected and identified, the receiver must
be tuned to the proper frequency band when an illumina- F(S) = Z WePs(E),
tion occurs and must intercept a sufficient number of pulses. Eee
This requires the receiver to stay on the emitter’s band for Qwhere Ps(E) denotes the probability of detecting an illu-
minimum time, called théuration to detecthe emitter. mination of lengthrs from an emitter of typeE.

Atthe beginning of a mission, a table is loaded that spec-  The weights specify the relative importance of each
ifies the types of emitter that may be encountered. Eachgmitter type, and vary during a missioli/ can be inter-
emitter typel is characterized by its bangh, its duration  reted as a “reward” received whenever an emitter of type
to detectDg, and a nominal illumination time. These g s detected. A good schedule maximizes the expected
parameters are such that< Dy < 75 and1 < ip < n. total reward. The parametepg remain constant. They en-
We denote by’ the set of emitter types, and Bythe setof e that no emitter type is completely ignored and must be
emitter types in band We assume, without loss of gener-  gma|| enough that the coverage constraints can be satisfied.
ality, that none of the set, ..., £, isempty. To work online, the algorithm must compute a schedule

To detect emitters of typé with high probability, the i 5 deadlineD that is on the order of 2 seconds. This
receiver must revisit bangz at least once in every interval requirement is, of course, more important than optimality of

of length 7 — D, for an interval of length at leasty the solution. A schedul§ must be produced on time even
each time. In most cases, this cannot be satisfied for all thqf S is not absolutely optimal.

emitters. Tradeoffs must be made and receiver time must be
allocated in priority to the emitters most likely to be present
and most relevant to the mission.

The emitter table is fixed but the importance of each
emitter type may vary. For example, information about pre- In the most general form, a scan schedule is an infinite
viously detected emitters may indicate that some emitter SEqUENCE = (f;, di): . Our approach relies on a more
types are more likely to be present than others, or unfore-restricted type of schedule that we a@iular. A schedule
seen events may change mission objectives. Our goal is arv IS regular if it satisfies the following requirements:
online algorithm that enables a receiver to adapt its sched-
ule in response to changes in emitter priorities. The input to
such an algorithm consists of the following data:

Figure 1. Dwells in a regular schedule

— atriple (ig, Dg, ) characteristic ot

and maximizes the following objective function

3. Regular Schedules

e There are infinitely many dwell intervals for each band
1, all of the same length; > 0.

e For eachi, there is a constanh; > 0 such that any
two successive dwell intervals of bandre separated
e &: afinite set of emitter types by a delay no more thaa;.

e n: the number of bands

o for each elemenk of £ This is illustrated in Figure 1. Every rectangle represents
1This is a simplified model. More receiver parameters can be specified a dwell mterval[at, bt) in band:. All these dwells are of

for each dwell interval, but these parameters are not relevant here. We alsd€ngthd;. The first i.nterval[ao, bQ) is such thatay < A;
assume that the delay for switching between two bands is negligible. and all subsequent intervals satisfy 1 — b; < A;.




Given an arbitrary schedul& = (f;,d:):en, leti be a all t € N. The smallest sucfi’ is the period ofS, and the

band and let, () be defined as follows: finite sequence
qo(l) =0 w = <f07d0>a"'3<fT—17dT—1>
) 0if fr=1 , -
Gr+1(17) { (i) +dy if f, #1. will be called thegenerator ofS. Periodic schedules are es-

sential in practice since they can be finitely represented and
After thet-th CDW, ¢;(i) measures the delay since the last generated efficiently using simple hardware. In general, a
occurrence of bandin S, or the delay since the beginning regular schedule may be nonperiodic, but limiting ourselves

of the schedule if has not occurred yet: to cyclic regular schedules is sufficient.
<o 4, <~y Proposition 1 If (§; A) is a feasible instance then it has a
T T T periodic solution.
P - Proof: Let S = (f,d;)ten be a solution of 5; A) and let

(¢:)ten be the sequence of states ®f All the states in
We call the tupley; = (¢:(1),...,q:(n)) theschedule state  this sequence belong to the $gt= Q1 x ... x Q,. As

aftert steps. By definition, ifS is regular then the set noted earlier, every; is finite and then is also finite.
There are then two indicasandu’ with v < «’ such that
Qi = {a(i)[teN} Gu = qu. Letw = (fu,dy), ..., (fu_1,dw_1), then the

is bounded. Also, all the elements@f can be written schedule generated hyis a solution of(d; A). O

@) = a6+ ...+ and,, (1) The following important property gives a bound on the
probabilities of detection achieved by a regular schedule.
whereay,...,a, are nonnegative integers amg = 0. - )
Since the dwell times; are positive, this implies thad, Proposition 2 Let S be a regular schedule, solution of an

is finite, and hence has a largest element. For a reguladnstance(d; A), and letE be an emitter type in baniy = i
scheduleS, we denote this largest element By (S) and such thatDg < §;. The probability of detecting an illumi-
the dwell time for band by &;(5). We also use the notation ~Nation fromE with S is bounded as follows:

5(S) andA(S) to refer to the twoe-tuples: o If A; <7 — 2Dp thenPs(E) = 1.

6(5) = (61(5)’ N 75”(S>) o If Az >TE — 2DE then
A(S) = (A1(S),...,An(S5)).

0; + 7 — 2Dg
For two tuplesy = (ar, ..., ) andg = (B, .., ), Ps(E) > —5 =K
we writeao < [ if y < B fori = 1,...,n. A
scan-scheduling instancer instancefor short, is given by This bound is obtained by considering two successive dwell
two n-tuples of positive reals = (é1,...,d,) andA = intervals[a, b) and [a’,b’) for bandi in S, and a random
(A1,...,Ay). Aregular schedules such thaty(S) = 0 illumination [z, + 7] wherez is uniformly distributed
andA(S) < Ais asolutionto the instance. An instance is  betweer: anda’. The illumination is detected if it overlaps
feasibleif it has solutions. [a,b) or [, V') by a delay of at leasDg. This happens if
The utilization of an instanc€d; A) is denoted by ¢ <2 <b—Dgorad + D — 15 < z < d. The result
U(d; A) and is defined by follows sinceb = a + §; anda’ < a + A,.
n This property is the main motivation for choosing regular
Z 0; . schedules. For such schedules, maximizit{¢') amounts
— 0; + A to finding an instance that maximizes a new objective func-
tion
Obviously, a feasible instance must have utilization no more °
than 1. On the other hand, there are infeasible instances of H(S: A) Z Wy min ( i, +TE — 2DE>
arbitrarily low utilization. If § is fixed there is always a Oip + Ay ’

tuple A such thatl/(§; A) = 1 and the instancéd; A) is e

feasible. For a fixed there is also a bountl,,;, below and constructing a schedule for that instance. The important
which all instances are feasible. simplification is thati now depends only on tH: param-

A scheduleS = (f, d;).en is cyclic or periodicif there etersé,,...,0, andAq, ..., A,. The coverage constraints
is a positive integeT” such that f;, d;) = (fiyrT, diy) for also translate to constraints on th@separameters.



4. Schedule Construction

Determining whether a circuit exists would be easy if
G was small. Unfortunately, the cardinality &f increases

A key problem is to determine whether an instance exponentially with.. Even with a small number of bands, it

(6; A) is feasible and, if so, to construct a solutioniNnB

is typically infeasible to construct and store in memory the

PACKING is polynomially reducible to the scan-scheduling whole graph. Experiments with eight bands have shown that

feasibility problem. Thus we have the following.

Proposition 3 Determining whether a scan-schedule in-

stance(d; A) is feasible is NP-hard.

the number of states reachable fr@gf...,0) can attain
several million.

Instead, our algorithm relies on a depth-first search that
does not require constructing the full graph. Aveadepth-

This gives the worst-case complexity, but many instancesfirst search is inefficient as a large proportion of the graph
can actually be solved efficiently using a graph-exploration may have to be explored before a circuit is found (the whole

technique.

If S is a solution to(d; A) then the states of are of
the formg; = (q:(1), ..., ¢:(n)) with ¢,(i) < A,. Further-
more, every componeft (i) can be writtera,6; + ... +
andn, asin (1). In general, l16t; be the set of numbers that

can be written in the form (1) and are smaller than or equal

to A;. ThentheseV = V] x ... x V,, is finite and contains
all the states of any solution ¢§; A).

Given two elements andq’ of V and a band, the state
q' isthe successor afby j, iffor i = 1,...,n we have

q() = {

This is denoted by 7, q'. Also, let— denote the succes-
sor relation or¥/, that is, the relation defined by

0ifi=j
q(i) +6; if i # j.

g—q & Fjiqg-1q.

The setl” and the relation— define a directed grapi =
(V,—). Its vertices are the elements Bfand there is an
edge from a vertex to a vertexq’ if and only if ¢’ is a
successor of.

If G contains an infinite sequence of staeg:cn such

graph if the instance is not feasible). Several optimizations
can significantly reduce the number of nodes to explore:

e One can fix a bang a priori and explore only paths
that start withgy —— ¢ . . .

e |t is redundant to explore paths on which the same
band occurs twice in a row.

e The search for a circuit can be replaced by the fol-

lowing weaker condition. If a path o, q
fu

. =% q, is found wherey, < g for some statey
amongqo, - - -, ¢u—1, then the instance is feasible. The
sequence of band&.; ... f, gives a schedule.

f1
-

The most efficient optimization is a pruning technique
that checks whether it is possible to add a finite number of

bands to a patlyg J, a1 ELRU 'R qu. If the check

fails, ¢,, is not the origin of an infinite path and thus is not

on a circuit. There is then no need to explore its successors.
Given a state, letdy, ..., d, be defined as follows:

thatg: — ¢:+1, then there is a unique sequence of bands If ¢ is the origin of an infinite path i’ then every band

(ft)ten such thaty, LN q:+1 for all t. This sequence de-
fines a regular schedulg = (f;,d;).eny Whered; = dy,
andS is easily seen to be a solution of the instaf&en).

must occur infinitely often on this path. Starting fram
one can then construct a path of lengtton which each

band occurs exactly once. L@tL qi-. Qn-1 ELN qn be

Conversely, ifS is a solution then the sequence of states of such a path. For each bandthere isk such thatf;, = 1.

S is an infinite path inG. SinceG is finite we have the
following.

Proposition 4 The instancgd; A) is feasible if and only if
the graphG derived from this instance contains a circuit.

AssumingG has a circuit, lety be a state on the cir-
cuit. Itis straightforward to show thatcan be reached from
the stateyy = (0,...,0) of G. This remark, together with

Leta; = 05 + ...+ dp,_, and letb; = a; + 6;. Since
q(i) +a; = qr—1(i) andgr_1(7) < A;, we haveb; < d;.
Therefore, ifq is on a circuit, there exist nonoverlap-
ping intervals[ai, b1), ..., [an, b,) such thata;,b;) is of
lengthé; andb; < d;. The pruning test checks whether
suchn intervals exist. This can be rephrased as an elemen-
tary scheduling problem: We are givertasks correspond-
ing to each band; taskis of lengthd; and has deadling;.

Proposition 4, is the basis of our schedule-construction al-We must find whether the tasks can be executed one at a
gorithm. Starting fromyg, the algorithm explores the graph time, in an order such that all deadlines are met. Executing
G until either a circuit is found or all states reachable from thesen tasks in increasing order of deadlines (EDF schedul-
qo have been explored. In the former case, a regular scheding) is optimal for this miniproblem. Our pruning procedure
ule S is obtained from the circuit. In the latter case, no sorts theniy, ..., d, inincreasing order, computes the cor-
regular schedule exists and the instance is not feasible.  responding interval&;, b;), and checks that all deadlines



are met. This EDF-based test can be efficiently integratedtween the fractions of unsolved instances in the two curves
to a depth-first search, with a limited overheadf) per of Figure 2. For the left curvé’, (U) is never more than
visited node. 1%, while F,(U) can be as high at5% for the right curve.
This pruning technique considerably reduces the num- Similarly, the average search time is larger in experiments
ber of nodes to explore, especially on infeasible instances.with coarse thresholds (Figure 3).
It can also be generalized by considering more than one oc- The same behavior was observed on experiments with
currence of each band along a path frgnThis generalized  larger numbers of bands. Two examples with= 20
EDF-based test improves performance even more. Othemre shown in Figure 4. The main difference from previ-
details of the algorithm and the heuristic we use to order theous curves is that very few instances can be determined to

exploration are discussed in [3]. be infeasible in 30 s of search time. This is not surprising
as the graph derived from an instance grows exponentially
5. Phase Transitions with n. To determine that an instance is not feasible, the al-

gorithm must explore an increasingly large number of states
asn augments.

In these experiments, the instance parameters were cho-
sen randomly, according to some uniform distribution. In

We have experimentally evaluated the schedule-
construction algorithm on large sets of randomly generated

mstance_s, t(.) examine th? relatlon_sh|p b_etween utilization practice, the instances are derived from the emitter table,
and the likelihood that an instance is feasible.

In h experiment. 20000 instan wer nstruct dpoverage constraints, and objective function. Given an
each expenment, stances were constructe emitter typeF in bandi, we must ensure thdts (E) > pg.

frandlom(;y. t'l_'getd(\;vglls we_ret chos;n ln((sjependgntl)_/l ar|1d U As a consequence of Proposition 2, the two following con-
ormly distributed in an intervaldmin, dmax]- Similarly, straints must be satisfied:

then deltas were chosen independently and uniformly dis-

tributed in an intervalAin, Amax]. The algorithm was 6, = Dg
applied to each of the 20000 instances with a timeout of 5 —2Dp  6(1 —pE)
30 s. Each experiment used different settingsf@and the A < e + e

distribution intervals. The utilization and status (either fea- ) . .
sible, infeasible, or not solved within the 30 s timeout) of 1he Most économical setting foyis then
each instance were recorded, as were other data, including b = max{Dg|E€é&}. (2
the search time for feasible and infeasible instances.

Figure 2 shows how fractions of feasible, infeasible,  TO satisfy the coverage constraints; must be smaller
and unsolved instances vary for two experiments conductecthan or equal to the constant
with 8 bands. In both cases, one observes a sharp transi- 5 {

i = mi

X . : o o X TE72DE 52'(1pr)
tion in behavior similar to the phase transition observed in +
combinatorial search problems [9, 11, 13, 14]. E&tU), PE bE
F;(U), andF,,(U) denote the fraction of feasible, infeasi- On the other hand, there is no need to choasesmaller
ble, and unsolved instances observed at utilizationFor ~ than the following constant

both experiments in Figure 2, there is a utilizationbe- _ .

low which F,(U) = 1, and a utilizationU/;, above which A = min{rg =2Dp | B €&}, @)
F(U) = 0. At a critical pointU,. betweerlJ; andU;,, 50% since anyA; < A; ensuresPs(E) = 1 for all the emitters
of the instances are feasible. The fraction of unsolved in-in bands.

|E€&}Q)

stances reaches its maximum very clos&totypically at In dynamic scan scheduling, is then fixed a priori from
a utilization equal taU. £ 0.02. This suggests that hard the emitter table, and; varies in the intervalA;, B;]. Al-
instances are located in the interV&}, U], close toU.. though these constraints imply a different distribution than

This is confirmed by Figure 3, which shows that the aver- in the preceding experiments, phase transitions are still ob-
age search time for both feasible and infeasible instances iserved. Figure 5 shows how the fraction of feasible in-
maximal in the interva|U;, U},] with a peak around’.. stances varies with the utilization for two emitter tables and
Qualitatively, we observed the same phenomenon for all coverage constraints. As previously, one observes a transi-
experiments performed with = 8, but the size of the in-  tion zone[U;, Uy]. The curves were generated by construct-
terval [U;, Uy,] varies depending on the bounds frand ing a large number of random instances, with diefixed
A;. In Figure 2, the left curve has a sharp threshold, with and A; uniformly distributed in[4,, B;]. These curves al-
U, = 0.85 andU;, = 0.92, and the right curve shows a low one to experimentally estimate the valueg/pandU, .
coarse threshold, witly; = 0.61 andU;, = 0.92. The This computation must be performed offline as it can re-
size of the intervalU;, U] and the number of unsolved in- quire a few hours of CPU time, but it needs to be done only
stances are also correlated. There is a clear difference beence per emitter table.
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6. Dynamic Scan Scheduling FindA,,..., A, that maximize
. . , . dip + 78 — 2Dg
For an emitter tablé€, the dwell times;s are determined H(A) = Z WEg min (1, ZE(ST ,
by Equation 2, and one can estimate the const@grandU;, EeE ‘e =
that deI|.m|t the pha;e—transnmn region. Our general scan- and satisfy the constraints
scheduling strategy is then as follows:
n
I 9
1. Select a utilization boun®l, betweerlJ; andU;,. Ay <A < B Z m < Up.
i=1 " ‘

2. Compute theA that maximizes quality of service ) ]
among those that satisty(5; A) < U. The bounds4;, B;, andUy, and the dwell times; are fixed.

A solution exists provided/, satisfies the inequality
3. Search for a regular scan schedule(forA), using the

; . n 5.
graph-exploration algorithm. > i
UO = ; 52 + Bz (5)
4. If a solution is found, attempt to improve performance ’
by repeating the process with a lardéy. Otherwise, To solve this problem, the first step is to change vari-
reducel/, and repeat the procedure from Step 2. ables. Letry,...,z, be defined byr; = 1/(5; + A;) for

i=1,...,n,andletag denotey; . + 7 —2Dg. The prob-

To ensure termination within a deadlide, we limit the lem can now be rewritten in the following simpler form:

search time in Step 3 using a timeout and stop after a fixed

. . Findzxq,...,z, that maximize
number of iterations.

Step 2 of this algorithm requires solving the following H (z1,...,2,) = Z Wemin(1, apa;,)
optimization problem: Fee "
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_ i ZWEmin(l,aE$i)7

i=1 E€&;

and satisfy the constraints

1
—— <

1

< —
TS 0 + A

zn: (Siﬂfi < UO.
i=1

This is very close to a linear programming problem and
an optimal tuple(z, ..., z,) can be efficiently computed
using the algorithm of Figure 6. This algorithm runs in
O(N log N) time, whereN is the total number of emitter
types (i.e.N = |&]).

The algorithm starts by setting, . . ., z,, to their min-
imal acceptable value so that the coverage constraints al
satisfied. The solution is then iteratively improved until the
limit Uy is reached or until all the;s have their maximal
valuel/(6; + A;). At each step, the algorithm picks one
emitter typeF, say of band, and increases; just enough
to achieve 100% probability of detection fél, unless this
increases the utilization abog. Lete be the correspond-
ing increment. Changing; to x; + ¢ has a cost 0b;¢ in
utilization, but increasesl’ by ZFGQ Wrare, whereC;

is the set of emitterd” in bandi such thatl/agp < 1/aF.
Thus the total gain can be writtergw ;¢ where

Z WFOéF-

FeC;

agw g

The intuition behind the algorithm is to chooBegor which
the gain vs. cost ratiagw 5 /9; is the highest. It is not hard
to prove that the algorithm is correct. It always finds an opti-
mal solution(z1, . . ., z,,) if condition (5) is satisfied. From
this solution, it is trivial to recover the optimal,, ... A,
of the original problem.

For a fixed set of weights, this algorithm is monotonic:
if A andA’ are the optimal values obtained for two bound

Uy andUj;, respectively, then we have
re

Uy <U, = A <A

The last issue to resolve is the selectiorUgfat the be-
ginning of each iteration. By the monotonicity property, if
schedule construction fails at utilizatidnthen there is no
point in trying Uy > Y. Conversely, if a schedul& was
constructed at utilizatiotX' then choosind/, < X does
not make sense. So we use a simple dichotomy process



foral E € £ Table 1. Scores
let < be the band of £

letC; = {F €& |ar < ag) Detected lllumination|  Critical Noncritical
agw = ¥ peo, Wrar 1st 2000 100
— 2nd 1800 80
L = list of all emitters in decreasing order of gz 3rd 1500 50
fori=1tonsetx; =1/(d:; + Ai) 4th or more -10000 0
U =50, 8w
while U < Up and L # () whetherE is detected on the first, second, or third illumina-
E = first element of L tion, or later (Table 1). If the first three illuminations are not
remove E from L detected thet® is considered missed (or detected too late).
let i be the band of E This incurs a large penalty i is a critical emitter.
ifz; <1/ag Figure 7 shows the score (averaged over 30 runs) of
e =min(l/ag — i, (Uo —U)/b) fixed and dynamic scheduling for two emitter tables and
Ti=12Zi+E€ five weight files. Both tables contain the same number of
U=U+ 0ie emitter types, with identical parameters except the duration
end endif to detect. For one tabld)r = 180 for all E, and in the
otherDg = 200 for all E. The unitis 1Qus. The top charts
Figure 6. Optimal 1, ..., forabound U, in Figure 7 give the total scores and the bottom charts show

the score for the critical emitters. Dynamic scheduling out-

performs fixed scheduling in these examples, and detects
to selectlUy. Initially, X andY are set tal/; and Uy, re- all critical emitters on the first illumination. In the second
spectively. At each iteratiorl/y is taken as the midpoint  scenario, fixed scheduling happens to have high probabili-
betweenX andY’, thatis,Uy = (X + Y)/2. Ifaschedule ties of detection for the critical emitters, and does as well
is found at this stepX is set toU,; otherwiseY is set to as dynamic scheduling. However, the fixed schedule misses
Up. This simple strategy works well in practice, although several critical emitters in other scenarios.
more sophisticated approaches — that take into account the Figure 8 gives the total scores (averaged @@et5 runs)

probability that an instance of utilizatidri, is feasible — of fixed and dynamic scheduling for increasingly hard emit-
could be envisaged. ter tables. The tables were obtained by increagiggrom

90 to 300. In the easiest case, both approaches achieve de-
7. Simulation Results tection probabilities close to 1 for all emitter types and have

almost maximal scores. The scores get lowerDasin-

Simulation was used to compare the performance of dy-créases, but dynamic scan scheduling always does better
namic and fixed scan scheduling for several emitter tablesth@n fixed scheduling. In particular, dynamic scheduling
and scenarios. For each table, a first schedylevas ob- has a perfect score on the critical emitters, except for the
tained by assigning equal weight to all emitter types. The tW(_) hardest tables. Fo_r _these t_wo tables_, the resource re-
performance of a receiver that uség as a fixed sched- guirements for some critical emitters are in conflict, and it

ule was then compared to a receiver that relies on dynamidS N0t possible to ensure 100% probability of detection for
scheduling, and uses five successive schedsiles ., S5 all of them. On the same two tables, fixed scheduling misses

constructed from five weight file§/i, ..., Ws. In each many critical emitters. The same results have been observed

weight file, five emitter types are considered critical and for emitter tables with nonuniforv.

have weightl2000; all the other emitter types have weight Simulation shows the benefits of adjusting a scan sched-
100. The schedulesS, and S;,...,Ss were all com- ule to the emitter weights. Our algorithm can compute a
puted using our scan-scheduling algorithm, Sytvas con- scan schedule online within a deadline of 2 s, and the re-
structed “offline”, that is, with a large deadline of several Sulting schedule largely outperforms a fixed schedule.

minutes. On the other handy, ..., S5 were constructed
“online”, with a deadlineD of 2 s CPU time. 8. Related Work
For each emitter typ#, a simulator synthesized periodic
illuminations of lengthrg. The period, phase, and num- The construction of regular schedules from an instance

ber of illuminations varied randomly. For each weight file (§; A) is similar to the distance-constrained scheduling
W;, detection results fo6, and for.S; were collected and  problem described in [4]. Han and Lin solve the prob-
a score computed on 30 simulation runs. The scord:for lem by using pinwheel scheduling [7]. An important dif-

takes into accounk’s weight, as given byV;, and the first ~ ference is that, unlike in [4], preemption is not possible in
illumination from FE that is detected. The score depends on our case: a dwell interval for a bardannot be fractioned
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Figure 7. Total scores and scores for critical emitters

in small parts. Despite this restriction, variations of pin- approach is to use the algorithm online. Although the worst-
wheel scheduling may be applicable to scan scheduling. Tocase complexity is high, real-time performance is achiev-
the best of our knowledge, existing approaches to pinwheelable by avoiding instances that are too hard, taking utiliza-
scheduling (e.g., [1,2,10]) require transforming the original tion as a hardness indicator, and exploiting the presence of
instance into one that satisfies adequate algebraic relationsa phase transition. Phase transitions have been observed in
In our case, such transformations would replace the originalmany examples of constraint satisfaction problems (CSPs),
A;s by smaller values, which would both complicate the most notablyN-sat (e.g., [9, 11, 13, 14]), but also in other
probability estimates and possibly lead to overconstrainedcombinatorial problems (see [6] for a survey). Techniques
instances. Another difficulty is that pinwheel scheduling for exploiting phase transitions in CSPs have been investi-
typically assumes tasks of unit duration, which in our case gated in [5] to construct good search heuristics.

would require all§;s to be equal. The graph exploration

we use is appllcablle to general instances and does not makg. Conclusion

particular assumptions about the parameters.

Scan. scheduling is also re]gted to other nonpreemptive  \ye have presented an algorithm that is capable of con-
scheduling problems. In traditional contexts — where the gy ,cting a scan schedule in real time, to improve detection
objective is to complete all jobs before their deadlines — o rtormance as emitter priorities change. The algorithm

EDF scheduling is optimal [8]. This is no longer true for ,qe5 in a novel way a technique for estimating the hardness
scan scheduling. For example, selecting bands in decreas:

) ) ] ) of specific problem instances. This enables the construc-
ing order of the deadlineg; (using the notations of Sec- 5 of 4 schedule online and in real time, even though the
tion 4) does not always work. EDF is not optimal because

f th h ) ; I problem is NP-hard in general.
of the dependency between the start time of one dwell and Improvements were demonstrated via simulation, but the

the dgadllne for the next dwell. It may be better to select a basic techniques can be extended and generalized for even
bandj before: even thoughl; > d; if A; +6; < Aq + 6. better performance. In this respect, a possible limitation of
The MSP.RTL tool [12] can synthesize very general the approach presented here is its strict reliance on regular
classes of schedules by solving a constraint satisfac-schedules. Such schedules are simple and easy to analyze,
tion problem expressed in the real-time logic RTL. Our but having all the dwells for a bandof the same length
schedule-construction approach relies on an algorithm sim-can be expensive if the emitters in that band have widely
ilar to that discussed in [12]. A main original feature of our different parameters. Extensions of the basic techniques to
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Figure 8. Scores for increasingly hard emitter tables

other types of scan schedule should improve results in such [6] T. Hogg, A. Huberman, and C. Williams, editorArtificial

cases.

The techniques presented seem generalizable to many

types of nonpreemptive scheduling, as used for example in
scheduling communication across buses in distributed sys-
tems. More complex models, with or without task preemp-

(7]

tion, and with or without synchronization between tasks, are
possible areas where new algorithms and hardness estima-[g)

tion techniques could be valuable.

The development of theoretical foundations for hardness
estimation remains an important issue. All our results are
based on empirical evidence, based on a large number of 9]
random instances, but we have no rigorous proofs. The ex-

periements strongly suggest that scan scheduling exhibits
the same form of phase transition as other types of com-

binatorial problem. Rigorous proofs that these phenomena

exist are particularly difficult, but scan scheduling may have [11]

a simpler structure than, say,-SAT or graph coloring, and
be more easily amenable to theoretical study.
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