
Design Assurance Arguments for Intrusion Tolerance∗

Steve Dawson Joshua Levy Bob Riemenschneider
Hassen Säıdi Victoria Stavridou Alfonso Valdes

System Design Laboratory
SRI International

Menlo Park, CA 94025, USA
{dawson,levy,rar,saidi,stavridou,valdes}@sdl.sri.com

Abstract

We introduce the notion of adesign assurance argument
as a diverse assembly of design choices, evidence, and rea-
soning that makes a convincing case that the design of the
system, from abstract architecture to the most concrete de-
tails of implementation and operation, meets appropriate
operational and security requirements. We sketch an ap-
proach to forming design assurance arguments and discuss
its advantages and applicability to intrusion tolerant sys-
tems, using an intrusion tolerant Web server as an illustra-
tion.

1. Introduction

1.1. The challenge of intrusion tolerance

Despite broad acknowledgment that information secu-
rity is a growing problem, and one no longer confined to
the largest and traditionally most security-conscious orga-
nizations, there appears to be little agreement on how the
problem should be addressed. However, there is general
agreement, at least within the security research community,
on the failure of some methods — such as retrofitting sys-
tems designed without security in mind — and the need to
focus on more promising approaches. Since most systems
are now built from low-cost, commercial-quality elements
that almost surely contain security flaws, the importance of
designing systems that continue to function in the presence
of security breaches is now quite apparent. In addition to the
promise of meeting more stringent security requirements at
lower cost, intrusion tolerant systems have the ability to pro-
vide graceful degradation of their performance and eventu-
ally offer mechanisms for recovery.
∗This research was partially sponsored by DARPA under contract num-

ber N66001-00-C-8058. The views herein are those of the authors and do
not necessarily reflect the views of the supporting agency.

Unlike traditional approaches to secure system design,
in which security requirements on components are typically
as strong as the overall system requirements, intrusion tol-
erance focuses on building systems from less trustworthy
components that have weaker requirements than the overall
system. The wider availability of such components means
more flexibility in the design process, and most likely would
lead to more economical solutions. However, the intrusion
tolerance approach imposes a greater challenge in establish-
ing that overall security requirements are met, since it is
necessary to show that the lower-security components are
assembled so as to guarantee security, as well as correct
functionality. We discuss a few ideas for meeting this chal-
lenge.

1.2. Codesign and the design assurance argument

As part of our ongoing Cyberscience project,1 we have
begun to develop a framework for development of secure
systems. We call our approachsecurity codesign[DDL+01,
RD01], by analogy with hardware/software codesign and
influenced by work in dependable software architecture and
the development of safety-critical systems. The goal of this
approach is to integrate security into the design and engi-
neering process of computer systems and to provide ev-
idence that the resulting system meets its security goals.
The codesign approach provides two main advantages: it
allows a loosening of the coupling between security design
and functionality design that streamlines the design pro-
cess (a feature we will not discuss here), and it enables the
construction of an information assurance case showing that
the implemented system meets its security requirements.
The assurance case is designed for making a convincing,
auditable, maintainable case that the implemented system
meets its security requirements by covering all phases of
system development such as design, implementation, test-

1http://www.sdl.sri.com/projects/cyberscience

C–8–1



ing, deployment, and maintenance and showing that secu-
rity requirements are accounted for in all phases. A critical
piece of this case is adesign assurance argument(DAA), a
diverse assembly of evidence, design details, and reasoning
that makes a convincing case that the the design of the sys-
tem, from abstract architecture to the most concrete details
of implementation and operation, meets appropriate opera-
tional and security requirements.

We believe that by properly structuring and recording
design information, it is possible to construct DAAs that
give high assurance that an implemented system meets its
goals in terms of operation, security, and intrusion toler-
ance. Because of their comprehensive scope, encompass-
ing all layers of abstraction, DAAs include both formal and
informal reasoning, with the amount of rigor determined
by the needs of the application. Furthermore, these argu-
ments can be constructed from information captured during
the design process, and do not depend on any specific de-
sign methodology. In this paper, we sketch an approach to
forming DAAs and discuss its advantages and applicability,
using an intrusion tolerant Web server as an illustration.

2. The design assurance argument

A complete description of an implemented system, even
a small system such as a simple server, is a complex as-
sembly of many details, abstract and concrete, specifying,
for instance, conceptual architecture, data flow, software
and operating system modules, source code, machine code,
hardware operation, and the numerous ways the different
views of the system relate. Obviously, since requirements
for a system often concern all these ingredients, a design
assurance argument must also be a very complex entity. In
general, a DAA could include each description, from most
abstract to most concrete, and reasoning about each descrip-
tion and relating different descriptions. When complete, it
would argue that the most abstract description is a faithful
interpretation of the high-level requirements, and the most
concrete descriptions of the system, which should be quite
close to the actual implementation, is a refinement of the
abstract description that preserves both the functional and
the intrusion tolerance requirements.

It is important that the DAA include descriptions that are
as concrete as possible, since it is essential to ensure that
the system itself runs according to its higher-level require-
ments. Often, formal verification focuses on the relation-
ship between two descriptions, such as between a specifi-
cation and a piece of code. The DAA would include this
verification, but should also give some reason, not neces-
sarily formal, that the the system actually executes the code
that was verified. In summary, a DAA is

• Concise and readable by human auditors

High-level design
(e.g. basic functionality)

↓
Abstract architecture

(e.g. major components, data flow)

↓
Implementation

(e.g. code, platforms)

↓
Operation

(e.g. application and OS operation, hardware operation)

Figure 1. Design of a system at different levels
of abstraction.

• Sound, in that it has no contradictions or gaps

• Structured, so that it clearly assembles different as-
pects of the design

• Broad in scope, covering all layers of abstraction

• Semi-formal, in that it may contain informal or a com-
bination of formal and informal arguments

Given the detail and comprehensive scope of a DAA, it
is clear that creating a DAA for an existing system from
scratch would be a formidable, if not impossible, task.
However, we believe a DAA is essentially an explicit repre-
sentation of the type of argument designers implicitly create
when developing a system. The DAA is a structured assem-
bly of all the design decisions, reasoning, and factual infor-
mation that would be used to explain each phase of system
design. In fact, by sufficiently documenting the design pro-
cess, we may be able to capture both the content and struc-
ture of a DAA. In our Cyberscience investigation, we have
explored a similar idea, advocating the creation of a code-
sign object base that records relevant data from the design
process, and is used to generate an information assurance
case.

These notions become clearer if we consider the de-
sign of a system at various levels of abstraction, as in Fig-
ure 1. In some cases, designers may progress in an orderly
“top-down” manner through the layers of abstraction, with
higher-level abstract design preceding lower-level imple-
mentation decisions, but in general, development can take
place at different layers at different times, or at more than
one layer at once. Regardless of the development methodol-
ogy, designers are explicitly and implicitly making choices
at each of these levels to meet the requirements of the sys-
tem. If a sufficiently well-organized and detailed develop-
ment record of this process were kept, we would have de-

C–8–2



scriptions — from architecture diagrams to code to hard-
ware choices — at each level of the hierarchy, together with
the evidence and reasoning explaining how the choices meet
the needs of the system. Typically, development at a given
moment focuses on a certain part (or all parts) of the system,
at a certain level of abstraction. The captured reasoning at
that moment — formal or informal — can be distilled into
an argument, based on relevant evidence, that the design
description for a certain part of the system at a certain level
of abstraction meets all relevant requirements (in particular,
requirements at this level of abstraction) of the system un-
der specified assumptions. Properly expressed, the require-
ments, design choices, reasoning, and assumptions form a
design elementthat captures that portion of the development
(Figure 2).

The development process yields design elements at all
levels of abstraction. The most abstract design element con-
sists of the high-level requirements and basic form of the
system. Slightly more concrete design elements could detail
the architecture of the system, and of various components.
The key idea is that each element would give an argument
about why its contents satisfy its requirements, under speci-
fied assumptions. Often, assumptions become requirements
for design elements of subsystems or of more concrete com-
ponents. For instance, an architectural design element could
decompose a system into several components and specify
their interoperation, placing assumptions on the behavior of
components. Lower-level design elements would take these
assumptions as their own requirements. Other assumptions
may impose constraints, such as on the environment, that
cannot be directly met by other design elements.

The DAA is the organization of design elements into a
concise and readable argument that the high-level require-
ments of the system are met, subject to an unestablished
(but reasonable) set of assumptions. Depending on the high-
level requirements, the DAA may not refer to design el-
ements for all parts or aspects of the system, but only to
relevant ones.

3. An example: design of an intrusion toler-
ant Web server

As an illustration of how a DAA can be assembled from
elements of the design process, we give an overview of our
own work in designing and building a dependable intrusion
tolerant Web server (theDIT system) [VAC+01]. As the
purpose is simply to give a feel for the approach to forming
a DAA, we discuss a simple instance of the system and omit
the details of a number of mechanisms.

The mission of the DIT system is to provide, at rea-
sonable cost, a system for high-availability distribution of
Web content by incorporating widely available, relatively
low-assurance COTS software into a high-assurance intru-

Requirements

Design description
(architecture, specification, code, etc.)

Reasoning and evidence
(why description meets requirements under as-
sumptions)

Assumptions

Figure 2. A design element.

sion tolerant design. The emphasis is on availability and
integrity, not confidentiality, of the service.

3.1. Overview of the DIT system

The architecture of the system is based on the obser-
vation that widely available COTS Web server software is
feature-filled and complex, and tends to contain security
vulnerabilities (such as those exploited by last year’s Code
Red virus). However, different Web server programs and
operating systems have different vulnerabilities, so a system
with redundant diverse Web servers on diverse platforms
should be able to provide a greater assurance of availabil-
ity and integrity, provided we have a reliable mechanism
for comparing and forwarding responses from the redundant
servers to clients. The DIT system attempts to accomplish
just this, using aproxy to forward client requests to a col-
lection of diverseapplication serversrunning COTS soft-
ware, and a monitoring subsystem that contains intrusions.
The proxy is a hardened platform running a small amount
of custom code. The simplicity and customized nature of
the software on the proxy makes the proxy more amenable
to hardening than the application servers, which are run-
ning more complex, harder-to-verify COTS software. The
proxy accepts client requests, forwards them to a number
of application servers, compares the content returned by the
application servers, and, assuming enough agree, sends the
corroborated answer back to the client. The proxy and ap-
plication servers communicate over a private network that is
monitored by an intrusion detection system (IDS). The IDS
provides assurance that ill-behaving compromised applica-
tion servers will be detected and corrected (by rebooting
from read-only media), so that compromises are likely to
remain limited to a small number of application servers. A
agreement policydetermines which and how many servers
are queried by the proxy for each client request, and how
sufficient agreement is determined.

C–8–3



3.2. Obtaining the DAA from the design process

Now let us consider how, as the DIT system is designed
and built, relevant information from the design process can
be captured. At the highest level, we have the mission goals
(requirements) of the system (high-availability Web service
at reasonable cost with a certain throughput capability), the
approach (an intrusion tolerant system using COTS soft-
ware), and an argument that the goals will be met given cer-
tain assumptions (the system will with high assurance toler-
ate expected attacks, and the cost constraints on COTS and
non-COTS components will be met). Together, these form
the highest-level design element, represented at the top of
Figure 3.

Moving on to the architecture of the system, the next
design element takes the above assumptions as its require-
ments and describes the topology and basic function of
the system: one proxy that communicates with the client
and forwards requests and responses between the client and
each of multiple COTS application servers. From this de-
sign, it is clear that in order to meet the requirement that
expected attacks be tolerated, we must make a number of
new assumptions, including that

• A majority of the application servers are functioning
properly at any one time;

• The proxy implements an agreement policy that serves
correct content;

• It is very unlikely that the proxy is compromised by
attacks.2

Design at more concrete levels naturally focuses on the
three basic parts of the architecture: the proxy, the ap-
plication servers, and the network components connecting
them.3 Design elements for each of these parts detail the
more concrete internal design of the components and how it
meets the architecture assumptions.

We must also look more concretely at how the compo-
nents fit together. For example, we must specify the ex-
act protocols used between proxy and application servers.
We also must argue that the concrete interoperation follows
the assumptions of the more abstract architecture design.
For instance, once we know that the application servers
are computers running COTS operating systems and soft-
ware, and that they are connected by Ethernet, we realize
the possibility of a single compromised application server
attacking and compromising additional application servers.

2This requirement, obviously, is hard to meet. The system we are de-
veloping actually includes intrusion tolerant redundancy in the proxy func-
tionality as well.

3In this case, each design element seems to focus on a physical entity,
but this is not the case in general. The elements simply reflect the natural
or convenient points of view for the designers.

We can argue that this is unlikely if we assume that traf-
fic between application servers is restricted and that com-
promised application servers will be detected and rebooted.
To meet these assumptions we introduce various monitor-
ing mechanisms including an intrusion detection system
[PN97].

For examples of more concrete design elements, con-
sider the proxy design. The most abstract design element
for the proxy contains a specification of its operation, with
explanation of how the specification meets the requirements
for the proxy. The specification references the agreement
policy, and of course assumes an implementation that fol-
lows its specification. The implementation element decides
the software and operating system to be used, and another
element contains the software code itself. Because of the
strict security requirements on the proxy, it is not at all triv-
ial to provide a good argument that the proxy code is cor-
rect. Our argument relies on two assumptions. One is that
the code includesonline verification, that is, that it contains
an independently implemented mechanism that verifies that
the code follows the agreement policy properly. The other
is that the code is written and compiled in a secure way,
to reduce chances for having typical security vulnerabilities
(such as possible buffer overflows).

4. Discussion

Although in the above example, we described the design
elements from the top down, in reality the various design
elements have been elaborated in a different sequence. In-
deed, some design stages can affect more than one element
at a time, and two different elements can make assumptions
about each other, so a perfectly ordered approach is likely
to be impossible. Nonetheless, if all the design elements
are eventually complete and span from the most abstract re-
quirements to the concrete details, the assumptions for each
element are met, and the reasoning within the elements is
sound, then we have essentially created the DAA for the
system. Thus, the DAA does not inherently constrain the
choice of design methodology.

It may be possible to enrich the DAA with additional in-
formation that can not only provide assurance that the sys-
tem meets its requirements, but can also help justify cost
of the components and mechanisms used. For instance, in
the DIT system, the DAA could justify not only that the re-
dundancy of the application servers is sufficient to achieve
intrusion tolerance goals, but that the inclusion of a certain
number of servers is necessary. In this way, in addition to
progressing up the abstraction hierarchy, showing that re-
quirements are met, we can also progress down the hierar-
chy, making cases that design choices are economical.

The DAA also can aid in comparing the security of two
systems. In our example, we could determine that a single

C–8–4



Missiongoals
andbasic approach

Abstract
architecture

Proxy
Application

servers
Communication

components

Concrete
interoperation

Agreement
policy

Proxy
implementation

Proxy
software

Proxy
OS

Online
verification

Coding/compilation
methods

Application
software

Software
configuration

Application
OS

OS
configuration

IDSNetwork

Network
hardware

Figure 3. A summary of some of the design elements in the DIT system.

Web application server built from COTS products is less
secure than our intrusion tolerant Web server if we establish
that the single Web application server cannot reliably meet
the high-level requirements of the DAA for the DIT system.

Although the DAA must contain some informal argu-
ments, part of the design element assembly process can
be formalized into logic. When the different levels of ab-
straction of the design are also expressed formally in terms
of architectures and abstract models of computations that
have to satisfy the requirements, it is possible to check the
soundness of the DAA construction. In our example, re-
quirements and assumptions carried out through the design
process can be expressed in modal logic with a variety of
temporal and knowledge modalities.

References

[DDL+01] Steve Dawson, Bruno Dutertre, Joshua Levy, Bob
Riemenschneider, Hassen Saı̈di, Victoria Stavridou,
and Toḿas E. Uribe. Security co-design. Technical
report, System Design Laboratory, SRI International,
2001.

[PN97] P. Porras and P. Neumann. EMERALD: Event Moni-
toring Enabling Responses to Anomalous Live Distur-
bances. InNational Information Security Conference,
October 1997.

[RD01] R. A. Riemenschneider and Steve Dawson. Depend-
ability co-design. InNSF Workshop on New Visions
for Software Design and Productivity: Research and
Applications, Vanderbilt University, Nashville, TN,
Dec 2001.

[VAC+01] Alfonso Valdes, Magnus Almgren, Steven Cheung,
Yves Deswarte, Bruno Dutertre, Joshua Levy, Hassen
Säıdi, Victoria Stavridou, and Toḿas E. Uribe. An
adaptive intrusion-tolerant server architecture. Tech-
nical report, System Design Laboratory, SRI Interna-
tional, 2001.

C–8–5


