
EÆient Fault-Tolerant Certi�ate Revoation�Rebea N. WrightAT&T Labs { Researh180 Park AvenueFlorham Park, NJ 07932 USArwright�researh.att.omPatrik D. Linoln, Jonathan K. Millen, Andrea I. LinolnSRI International333 Ravenswood AveMenlo Park, CA 94025 USAfmillen,linolng�sl.sri.omJune 5, 2000AbstratWe onsider salable erti�ate revoation in a publi-key infrastruture. We introduedepender graphs, a new lass of graphs whih support eÆient and fault-tolerant revoation.Nodes of a depender graph graph are partiipants that agree to forward revoation informationto other partiipants. Our depender graphs are k-redundant, so that revoations are provablyguaranteed to be reeived by all non-failed partiipants even if up to k�1 partiipants have failed.We present a protool for onstruting k-redundant depender graphs that has two desirableproperties. First, it is load-balaned, in that no partiipant need have too many dependers.Seond, it is loalized, in that it avoids the need for any partiipant to maintain the global stateof the depender graph. We also give a loalized protool for restruturing the graph in the eventof permanent failures.1 IntrodutionPubli keys and their erti�ates eventually beome invalid. Most erti�ates have an expirationdate, but for various reasons a erti�ate may beome invalid prior to the expiration date. Forexample, the seret key may have been lost or ompromised. The owner's identifying information,whih might inlude an e-mail address or employer, may have hanged. The erti�ate might havebeen used to enable organizational privileges whih have been withdrawn by the employer. Underthese irumstanes, there should be some way to revoke the erti�ate.1.1 Existing ApproahesCurrent proposed standards for revoation, as found in the X.509 diretory framework [X.509℄,and the Internet draft standard Publi Key Infrastruture [AZ98℄, involve erti�ate revoation�Some of the ideas in this paper appeared in exploratory form in: J. Millen and R. Wright, \Certi�ate Revoationthe Responsible Way," Pro. Computer Seurity, Dependability, and Assurane: From Needs to Solutions (CSDA'98),IEEE Computer Soiety, (1999), pp. 196{203.Submission to CCS '2000 | Please do not distribute

lists (CRLs) maintained on key servers, whih at as a repositories for erti�ates. To revoke aerti�ate, the owner sends the key server a revoation notie, whih is a signed message identifyingthe erti�ate to be revoked.Upon reeipt of a revoation notie, the key server updates its CRL and no longer gives outthe revoked erti�ate. End users who want to hek the validity of a erti�ate must querythe key server, and in response reeive all or part of the latest full, signed, CRL, whih is updatedperiodially. Good disussions of revoation tehnologies an be found in [FL98℄ and [Mey98℄. Thereare various strategies for reduing ommuniation and storage osts while maintaining timelinessof revoation, suh as Koher's erti�ate revoation tree [Ko98℄ and related advanes [KAN99,NN98℄, and methods for reduing server load, as in [Coo99, MJ00℄.One an try to redue the need for revoation by limiting erti�ates to brief expiration periods,but this inreases server load beause new erti�ates must be sent more frequently. Rivest [Riv98℄suggested a two-level staged expiration, but this more omplex system still requires a \suiidebureau" to maintain revoations due to key ompromise. MDaniel and Rubin [MR00℄ suggestthat revoation will remain a neessary part of any PKI.From a soial point of view we want to aknowledge the fat that many erti�ates are issued byindividuals, perhaps using PGP, and they are distributed without the use of a key server [Zim95℄.Certi�ates and revoations might be posted on Web pages to publiize them, but these pagestypially do not support key server responsibilities suh as CRL maintenane.1.2 A New Distributed ApproahIn this paper, we propose a new method for handling distribution of revoations or erti�ateupdates. In our method, eah erti�ate holder has a list of dependers. Revoations and updatesfor that erti�ate are sent only to the dependers.The advantage of having a set of dependers for eah erti�ate is that it narrows the burdenof noti�ation to the minimal set of interested parties. However, a solution in whih a single rootentity sends revoation noties for a partiular erti�ate to all the dependers for that erti�ate hasseveral disadvantages. If the root entity is a key server with many erti�ates and many ustomers,it may be too ostly to provide and distribute ustomized CRL's for eah of its ustomers. Onthe other hand, if the root entity is an individual, it need only be responsible for sending notiesregarding its own erti�ate, but even so may not have the resoures to distribute them to a largelist. For example, everyone with a opy of the PGP software has the erti�ate of its reator PhilZimmerman, and he would not and ould not put everyone on his depender list. Finally, it is notfault-tolerant. For example, if the network link onneting a depender to the root entity is rashedor slow, then the depender will not be able to reeive the revoation notie in a timely fashion.In our system, rather than having a entralized revoation server who sends revoations to allend users, partiipants who wish to be dependers for a partiular erti�ate register as dependerswith other partiipants. The partiipants an then be onsidered to form a depender graph. Apartiipant agrees to forward any revoations or other updates she reeives to her dependers. Thesoure of a revoation notie sends it to dependers registered diretly with it; those dependers thenforward the revoations to their dependers, and so on.The simplest kind of depender graph is a tree. For example, we ould make a rule saying thatanyone who relays a erti�ate should put the reipient on a depender list. That is, if A sends aerti�ate to B, then A puts B on A's depender list for that erti�ate, regardless of who owns theerti�ate or where it ame from. However, this simple sheme has the diÆulty that it dependson the orret and prompt operation of partiipants, and that a partiipant who distributes a2

erti�ate to many users will also be bound to distribute revoations to them. Furthermore, it iseven more vulnerable to failures than the entralized root entity sheme sine there is generallyonly one path by whih a revoation notie an be forwarded.In order to provide tolerane of up to k � 1 rashed, slow, or misbehaving partiipants (or thenetwork links onneting them), we require partiipants to register as dependers with at least kother partiipants. This straightforward idea has several desirable properties:� It is workable for individuals.� It is \server-light," so that massive institutional failities are not required.� It is deentralized.� It is survivable in the event of typial omputer and network failures.� It supports prompt revoation, even if some of omponents exhibit extraordinary delays.� It requires only a realisti workload for those using the system.� The workload is alloated in proportion to the self-interest of users.� It makes it pratial to distribute revoation information immediately, rather than delayingfor a periodi CRL publiation shedule.Although we fous on using depender graphs to distribute revoations, they an also be usedto distribute frequent short-lived erti�ates or other kinds of erti�ate updates.In order to join a depender graph, a partiipant needs to �nd k other partiipants to dependon. We present joining protools that are load-balaned, in that no partiipant need have too manydependers, and loalized, in that no global state is maintained and partiipants need only maintaininformation about a few other partiipants. We also give a loalized protool for restruturing thegraph in the event of permanent failures.We de�ne depender graphs and prove their fault tolerane properties in Setion 2. We presentdepender graph onstrution protools in Setion 3. In Setion 4, we present algorithms to reon�g-ure the graph around permanent failures. We present further disussion in Setion 5 and onludein Setion 6.2 Depender GraphsFor a given erti�ate, we view erti�ate-holding partiipants in a network as nodes in a diretedgraph, alled a depender graph, where there is an edge from A to B if B is on A's depender list forthat erti�ate. In that ase we say that B depends on A, and that A is a parent of B. We willalways onstrut depender graphs to be ayli and rooted , and we say B is below A in a dependergraph if there is a path from A to B. The root of the depender graph|usually the erti�ateowner or some kind of erti�ate server|is the soure of revoation or update information aboutthe erti�ate. When the root initiates a erti�ate revoation or update notie, it sends the notieto its dependers, alled root-dependers. In turn, eah node reeiving the notie forwards it to itsdependers.In general, di�erent erti�ates have di�erent depender graphs, though these graphs may sharesome ommon subgraphs. In pratie, multiple depender graphs might have signi�ant overlap, and3

some operations on them ould be ombined for eÆieny. We do not disuss suh optimizationsfurther in this paper.In order to avoid spurious revoations, revoation noties are typially authentiated in someway. In our setting, we propose that revoation noties of an individual's publi key should be signedby the orresponding private key; forwarded revoation noties maintain the initial signature. Aorret signature then implies that the revoation notie either ame from the owner of the key andshould therefore be trusted, or the revoation notie ame from someone who knows the privatekey (or who knows how to forge signatures from that key), in whih ase the key is by de�nitionompromised and should be revoked. One advantage of this method is that sine the key used toverify the revoation notie is the same as the key that is being revoked, a user will always be ableto hek the signature on revoation noties for erti�ates she has. The only ase where this is notpossible is when a publi key is being revoked beause the private key has been lost. In this ase,we require the user to �rst obtain a new set of keys and use these to authentiate the revoationmessage; this has the disadvantage of requiring the new key to be disseminated before the old keyan be revoked. However, it has the advantage that sine revoations are digitally signed, anddisarded if the authentiation of the signature fails for any reason, maliious or arbitrary failureshave the same e�et as rash or omission failures, in whih the wrong messages are sent.We would like depender graphs to be fault-tolerant. Obviously, we annot expet informationfrom the root to be sent if the root has failed. However, the temporary or permanent failure offewer than k non-root nodes should not prevent a revoation notie sent by the root from reahingany non-failed erti�ate holder in a timely fashion. To obtain fault tolerane, we onsider thefollowing k-redundany property: a rooted direted ayli graph is k-redundant if even after theremoval of any set of k � 1 non-root nodes, there is a path from the root to every remaining node.(In Setion 5.2, we address methods for making the root itself fault-tolerant if desired.)We show below that the global property of k-redundany an be ahieved by ensuring a loalproperty|that every node exept for the root and its dependers has k parents in the graph; thisis alled the k-parent property. We refer to a rooted, direted, ayli graph with the k-parentproperty as a k-rdag .In order to prove the fault tolerane properties of k-rdags, we need some basi graph theoretide�nitions, slightly modi�ed to take into aount the rooted nature of our depender graphs. A setof nodes is root-avoiding if it does not ontain the root. A ut set is a root-avoiding set of nodeswhose removal disonnets some remaining node from the root. Two or more paths from A to Bare pairwise internally node-disjoint if no two of the paths have any nodes in ommon exept A andB. In any rooted, �nite, ayli graph, it is possible to de�ne a rank funtion on nodes suh thatevery edge goes to a node of greater rank than the one it is from (so edges are rank-inreasing).For example, the rank of a node an be the length of the longest path from the root to that node.Theorem 1 Let G be a k-rdag. Then G is k-redundant.Proof: Let G be a k-rdag and let C be a ut set of G. Note that if every ut set ontains at leastk nodes, then any set of k � 1 or fewer non-root nodes is not a ut set, so all remaining nodes areonneted to the root, and the graph is k-redundant. Hene, it suÆes to show that C has at leastk nodes. Let x be a node that is disonneted from the root in G�C, and de�ne the neighborhoodof x to be the set of nodes y on paths from the root to x in G suh that no path from y to x has anode in C. These are the nodes between C and x.Note that sine C disonnets x from the root, x is not the root or a neighbor of the root, andtherefore x has k parents by assumption. If the neighborhood of x is empty, then every parent ofx must be in C, and hene C has at least k nodes, and we are done. Otherwise, �nd a node y in4

the neighborhood of x of minimum rank. By the de�nition of a neighborhood, y also is not theroot or a neighbor of the root. Hene, by the k-parent property, y has k parents. Those parentsmust all be in C, for one that is not would be in the neighborhood of x and have rank less than y,a ontradition. Thus, C has at least k nodes, ompleting the proof.The following more expliit result will be helpful when we onsider the eÆieny of revoationdistribution.Theorem 2 Every k-rdag has k pairwise interior node-disjoint paths from the root to any node.Proof: Let G be a k-rdag. If the root and a root-neighbor are both ative, then there is alwaysa path between them (onsisting of the single edge that onnets them). Suppose x is a not theroot of G, and is not a root-neighbor in G. Then by the argument in the proof of Theorem 1, itfollows that any ut set that disonnets x from the root is of size at least k. By Menger's Theorem(f. [Har69℄), it further follows that there are k pairwise interior node-disjoint paths from the rootto x.3 Depender Graph ConstrutionDepender graphs grow as new nodes join the graph. We envision that a new node will join thegraph for a partiular erti�ate when it reeives the erti�ate from one of the nodes already inthe graph. In order to maintain the k-parent property, the joining node must either depend on theroot or �nd k nodes to depend on that are already in the graph.3.1 Neessary and SuÆient ConditionsWe �rst address the onditions neessary to ensure that there are always enough available parentswithout overloading partiipants with too many dependers. Hene, a restrition on the hoie ofparents is that there is limit on the number of depender slots, the maximum number of dependersa node is willing to support. It is lear that if nodes are not willing to have enough depender slots,then it will not always be possible to add new nodes to the graph, sine one the root's dependerslots are full, eah new node requires k available parent slots in order to join the graph. We anshow that it is enough for eah new node to have k depender slots. De�ne a kernel as k nodes thathave at least 1, 2, ..., k slots available, respetively.Theorem 3 A k-rdag an be onstruted from any number of nodes with k depender slots.Proof: Begin with the root and make the next k nodes root-dependers. Subsequent nodes needto �nd k parents. We laim that when a kernel exists, another node with k depender slots analways be added to the graph, and there will still be a kernel; that is, the existene of a kernel isan invariant.Note �rst that just after the k root-dependers are added, the k root-dependers eah have all theirk slots available, more than satisfying the requirement for a kernel. (In fat, the root-dependersform a kernel even if the ith root-depender has only i slots.)For the proof of invariane, assume that a kernel exists. We an add a new node and give itk parents by taking one parent from eah of the kernel nodes. This preserves the existene of akernel, sine the original kernel nodes now have at least 0, 1, ..., k � 1 slots available and the newnode an be added to the kernel with its k available slots.5

Kernel

Root

Figure 1: The k = 3 Triangular ShemeThe kernel-based algorithm for adding nodes to a depender graph used in the proof above isalled a triangular sheme. The result of adding eight nodes to a root using suh a sheme isillustrated in Figure 3.1 for k = 3. To emphasize the regular onstrution of the graph, the rootdependers are shown with additional root-depender parents, though those edges are not neessary.Note that a kernel may not be unique, and there may exist other nodes with additional availableslots, beause some nodes, suh as those designed to be key servers, may support more than theminimum assumed k dependers for eah erti�ate.The triangular sheme always has 1 + 2 + :::+ k = (k2 + k)=2 slots available one all the root-dependers have been added. This may sound exessive, sine adding a node only requires �ndingk slots (in di�erent parents), but we an show that this number (k2 + k)=2 is minimal.Theorem 4 In order to add k non-root-depender nodes, a k-rdag must have at least (k2 + k)=2slots available.Proof: Consider adding a new set S of k nodes. The �rst node in S to be added must dependon k other nodes. So there must be at least one slot open in k other nodes at the beginning of theproess of adding the S nodes. Also, by the end of adding all nodes in S, k2 slots have been used.Eah of the k additions need to depend on k nodes, some of whih may be in S. The maximumnumber of slots that may be used in the set S (with members of S depending on earlier membersof S) is (k2 � k)=2. Sine k2 total slots are used in adding S, that means there must have been atleast k2 � (k2 � k)=2 = (k2 + k)=2 slots at the beginning of the proess of adding S.Hene, the triangular sheme is optimal in the sense of having the fewest sustainable numberof available slots. Note, though, that there are other ways of ahieving the same optimal numberof available slots if some nodes are willing to support more than k dependers.6

3.2 A Loalized Protool for Node AdditionOne motivation of forwarding erti�ates and reording dependers for later revoation is that it isdistributed and deentralized harater, so that it is not neessary for the root to ommuniate withall the nodes holding its erti�ate. Adding nodes with a triangular sheme seems to destroy thisadvantage by requiring partiipants to keep trak of whih nodes are in the urrent kernel. However,it is not neessary to do so, beause it turns out the existene of a kernel an be maintained withoutknowing where it is.Spei�ally, if there is a kernel and the parents of a new node are taken to be any k nodes withavailable slots, a kernel exists after the addition of the node. To see this, note that where kernelnodes are taken, an argument as in the proof of Theorem 3 shows that the new node plus all butone node from the old kernel form a new kernel. Where a non-kernel node is taken, the kernelnode that \should" have been taken is still available to �ll its role in the new kernel. Hene, theexistene of a kernel is preserved. This exibility in hoosing parents makes it possible to onsideroptimization goals, suh as minimizing the average path length in the depender graph.Theorem 5 shows that if there is a kernel, then one an �nd k available depender slots in kdistint nodes by traing down in the graph from any initial \searh set" of k nodes.Theorem 5 If G is a k-rdag, then there is an available parent set below any set of k nodes.Proof: Let S be a set of k nodes. Indut on the maximum length (ounting the number of edges)of a path that begins in S and ends outside S. If the maximum is 0 then the S nodes have nodependers outside S, so eah node in S an have at most k � 1 dependers (all the other nodes inS), eah node in S has at least one available slot, and thus S an be the parent set.For the indution step, suppose the maximum suh path length is n. If every node in S has anavailable slot, the k nodes in S an serve as parents. Otherwise, some node has no available slots,so it has a set S0 of k dependers. The set S0 has maximum path length smaller than n, and isbelow the original set S, so by indution and transitivity of below there exists an available parentset below the given k nodes.Theorem 5 suggests a loalized protool for adding new nodes, for whih eah node in the graphkeeps trak only of its parents and its dependers. Given a new node, we begin by identifying asingle node already in the graph as a \starting node"; typially, the starting node would be apartiipant from whom a new partiipant has just learned a erti�ate. If the starting node doesnot have k parents, it must be the root or a root-depender. In that ase, either the new node anbe a root-depender, or if there are already k root-dependers, take those k nodes as a searh set andapply Theorem 5. Otherwise, the starting node has k parents that an be taken as a searh set.It might be desired to hoose parents in suh a way that the path lengths from the root toeah new node are minimized. The onstrution in Theorem 5 does not satisfy that property.To minimize path length, one would instead traverse bak up the parent links and take dependerslots from the highest available nodes. However, this would either require nodes to maintain moreinformation about where in the graph the available slots are, or would require a new partiipant totraverse more of the graph in the worst ase.4 Reon�guring After FailuresWhen a node wants to drop out of a depender graph, or is otherwise disovered (somehow) tohave failed permanently, we would like to be able to restruture the depender graph so that the7

k-redundany property is maintained on the new graph. If suh reon�gurations are done, the faulttolerane of our system over time an be muh more than k, as long as there are not more thank � 1 failed nodes between reon�gurations. We sketh a protool for reon�guring the graph ifonly rash failures an our. If maliious failures an our, the reon�guration protool needs tobe made robust in order to tolerate them.A node's role as a depender and as a parent for its dependers an be taken over ompletely byone of the following:� the last node added, whih has no dependers,� the next node added, if it is feasible to wait,� one of its dependers (whose role will have to be taken over reursively),� k slots (found by the protools of Setion 3.2) using one of its parents or dependers as astarting node.There are several details that have to be addressed. If the protool to determine whih node willreplae the failed node is deentralized, then there is a problem with asynhrony. Without a globalordering, if two nodes try to take the plae of a failed node, eah might start replaing the failednode in its parent's dependers' slots. Then both new nodes might get half way through, having onlyk=2 parents. In theory, the dependers of the failed node ould run a mutual exlusion or priorityalgorithm. In pratie, some anonial ordering suh as one based on IP address ould be used.In order to arry out a replaement, it is neessary that the topologial information stored inthe failed node (its parent and depender addresses) has not been lost. It ould be saved in another\aretaker" node, for example the �rst depender of that node in some anonial ordering (suh asIP address in a pratial setting). However, it annot be saved inde�nitely, beause then it wouldbeome part of the topologial information of the aretaker node, whih would have to be savedin another node, leading to an unaeptable regress of aumulating redundant information. If weassume that at most ` permanent failure ours between reon�gurations, it is suÆient for eahnode to store ` levels of topologial information.A topi for further researh is to repair known failures gradually. A failure is \known" if a nodebeomes aware that one of its parents or dependers is no longer ative. The unsolved question hereis how to use loal information to �nd and take advantage of available slots.5 DisussionIn this setion, we briey disuss a number of issues and possible extensions where further researhis alled for.5.1 Link/Transport onnetivityIf two paths are node-disjoint, then they are also edge-disjoint. Thus, our depender graphs aretolerant against the failure of k�1 node or edge failures. However, in a real network, links betweendi�erent nodes are not independent. Often many links go through the same swithing node in anunderlying ommuniation infrastruture. Thus, the failure of one swithing node may result inthe failure of many edges in a depender graph.It would therefore be desirable to assure that links from a node to its k parents are independent(so it takes k failures of lower-layer swithing nodes to break them all). If in addition there are8

k independent paths from the root to its dependers, then an indutive argument shows that ittakes k failures of the underlying network omponents to ut all paths to a node. A weaker versionguarantees k-redundany for non-root-depender nodes so long as eah link from the root to a root-depender is independent of all other links in the graph. We an still show by indution that it takesk failures to ut o� a non-root-depender.Cheking independene of transport paths an be done using network monitoring tools suh as\traeroute." However, in pratie this information is rather dynami and may be diÆult to keepa handle on.5.2 Distributing root authorityIn some settings, it is desirable for the root authority to be distributed among multiple parties,so that it takes at least t of these parties to send out a valid revoation notie. This an beahieved by distributing the funtionality of the root into multiple parties and using thresholdsignatures [DF91, GJKR96℄ so that the orret partiipation of t parties is neessary and suÆientto reate a valid revoation. If this new \distributed root" onsists of at least k + t � 1 parties,then this also provides rash fault tolerane for up to k � 1 of the root parties.In order for the threshold signatures to work, the root-dependers must now have at least k+t�1the root parties as parents; other nodes still need k parents as before. When a revoation notie issent, it is signed using the threshold signature sheme. Eah root node sends its partial signatureto the root-dependers. The root-dependers reonstrut the signed revoation notie, and if it is avalid signature, they proeed as before by forwarding the signed revoation. Sine the resultingdepender graph has its normal properties with respet to this distributed root, it still enjoys thek-redundany property with respet to it.5.3 Global OptimizationsFor distribution of revoation noties, the k-redundany property an be exploited simply by havingeah node forward a notie to all its dependers. In the general ase, this is the best that an be done.However, there are several situations in whih global information about the graph ould be usedto redue or eliminate unneessary network traÆ while still ensuring revoations are distributedproperly.For example, if the graph in fat more than k disjoint paths to some nodes, it might be possibleto remove or ignore some of the edges of the graph. Similarly, if not all nodes need to reeive eahupdate, then some edges an be removed. Given a partiular destination node, Theorem 2 saysthat there are k pairwise interior node-disjoint paths from the root to that node, so that using onlythe edges in these paths would eliminate unneessary traÆ while preserving k-redundany withrespet to that one destination node. When only some subset of nodes needs to reeive a revoationnotie, the goal would be to �nd a minimal set of edges that inlude k disjoint paths to eah nodein the subset. Finally, in the ase that something more is known about whih failure on�gurationsan our than just that any k � 1 nodes might simultaneously fail, it might be possible to ensurethat eah node has always at least one path from the root through no failed nodes without havingk disjoint paths to eah node.To go one step further, depender graphs for multiple erti�ates ould take advantage of stru-ture sharing, so that where partiipants have erti�ates in ommon, messages relating to thoseerti�ates ould be oalesed. This ould be done not just for revoation noties, but for thedepender graph onstrution protool itself. Struture sharing ould be further failitated by pro-tools to merge multiple depender graphs with ommon nodes into one graph with the maximal9

number of ommon edges.6 ConlusionsWe have presented depender graphs, whih provide a loally manageable, salable, eÆient, andfault-tolerant method of erti�ate revoation in a publi-key infrastruture.Due to their fault tolerane and loalized onstrution protools, k-rdags may �nd useful ap-pliations elsewhere. As desribed in this paper, they are most useful for environments in whihonly rash or delay failures our, or if the information to be sent is digitally signed or otherwiseveri�able, as in the ase of erti�ate revoations. However, even in the ase of maliious failuresduring the distribution of information, k-rdags an tolerate up to (k�1)=2 failures by using voting.Other possible appliations that might bene�t from depender graphs inlude fault-tolerant mul-tiast bakbone (MBone) trees, maintaining loation information for a mobile host as it moves fromone base station to another, and distributing routing information in the Internet suh as reahabilityinformation exhanged by the BGP protool.AknowledgmentsWe thank Patrik MDaniel for helpful disussions.Referenes[AZ98℄ C. Adams and R. Zuherato, \Internet X.509 Publi Key Infrastruture Data Certi�-ation Server Protools," Internet Draft, PKIX Working Group, 1998.[Coo99℄ D. Cooper, \A Model of Certi�ate Revoation," Pro. 15th Annual Computer SeurityAppliations Conferene, 1999, 256{264.[DF91℄ Y. Desmedt and Y. Frankel, \Shared generation of authentiators and signatures," InAdvanes in Cryptology|CRYPTO '91, Leture Notes in Computer Siene 576, 457{469, Springer-Verlag, 1992.[FL98℄ B. Fox and B. LaMahia, \Certi�ate Revoation: Mehanis and Meaning," Pro.Finanial Cryptography '98 , LNCS 1465, 1998, 158{164.[GJKR96℄ R. Gennaro, S. Jareki, H. Krawzyk, and T. Rabin, \Robust Threshold DSS Signa-tures," In Advanes in Cryptology|CRYPTO '96, Leture Notes in Computer Siene1070, 354{371, Springer-Verlag, 1996.[Har69℄ F. Harary, Graph Theory , Addison-Wesley, Reading, MA, 1969.[KAN99℄ H. Kikuhi, K. Abe, and S. Nakanishi, \Performane Evaluation of Certi�ate Revoa-tion Using k-Valued Hash Tree," Pro. ISW'99, LNCS 1729, 1999, 103{117.[Ko98℄ P. Koher, \On Certi�ate Revoation and Validation," Pro. Finanial Cryptography'98, LNCS 1465, 1998, 172{177.[MJ00℄ P. MDaniel and S. Jamin, \Windowed Certi�ate Revoation," Pro. IEEE Infoom2000 , IEEE, 2000, 1406{1414. 10

[MR00℄ P. MDaniel and A. Rubin, \A Response to `Can We Eliminate Certi�ate RevoationLists?' ", Pro. Finanial Cryptography 2000, to appear.[Mey98℄ M. Myers, \Revoation: Options and Challenges," Pro. Finanial Cryptography '98,LNCS 1465, 1998, 165-171.[NN98℄ M. Naor and K. Nissim, \Certi�ate Revoation and Certi�ate Update," Pro. 7thUSENIX Seurity Symposium, 1998, 217{228.[Riv98℄ R. Rivest, \Can we eliminate erti�ate revoation lists?" Pro. Finanial Cryptography'98, LNCS 1465, 1998, 178-183.[X.509℄ \The Diretory-Authentiation Framework," CCITT Reommendation X.509.[Zim95℄ P. Zimmermann, The OÆial PGP User's Guide, MIT Press, 1995.

11

