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Systematic Formal Veri�cation for Time-Triggered Algorithms 31 IntroductionSynchronous systems are distributed computer systems where there are knownupper bounds on the time that it takes nonfaulty processors to perform certain op-erations, and on the time that it takes for a message sent by one nonfaulty processorto be received by another. The existence of these bounds simpli�es the develop-ment of fault-tolerant systems because nonfaulty processes executing a commonalgorithm can use the passage of time to predict each others' progress. This prop-erty contrasts with asynchronous systems, where there are no upper bounds onprocessing and message delays, and where it is therefore provably impossible toachieve certain forms of consistent knowledge or coordinated action in the presenceof even simple faults [6,13].For these reasons, fault-tolerant systems for critical control applications in air-craft, trains, automobiles, and industrial plants are usually based on the syn-chronous approach, though they di�er in the extent to which the basic mechanismsof the system really do guarantee satisfaction of the synchrony assumption. Forexample, process scheduling algorithms that can miss deadlines, bu�er over
ows,and contention buses such as Ethernet can all lead to violations of the synchronyassumption, but may be considered \good enough" in less than truly critical appli-cations. Those applications that are truly critical, however, often build on mech-anisms that are not merely synchronous but synchronized and time-triggered: theclocks of the di�erent processors are kept close together, processors perform theiractions at speci�c times, and tasks and messages are globally and statically sched-uled. The Honeywell SAFEbusTM [1,17] that provides the safety-critical backplanefor the Boeing 777 Airplane Information Management System (AIMS) [31,39], thecontrol system for the Shinkansen (Japanese Bullet Train) [16], and the Time-Triggered Protocol (TTP) proposed for safety-critical automobile functions [21] alluse this latter approach.A number of basic functions have been identi�ed that provide important build-ing blocks in the construction of fault-tolerant synchronous systems [8, 10]; theseinclude consensus (also known as interactive consistency and Byzantine agree-ment) [33], reliable and atomic broadcast [9], and group membership [7]. Numer-ous algorithms have been developed to perform these functions and, because oftheir criticality and subtlety, several of them have been subjected to detailed for-mal [15, 23, 43] and mechanically checked [2, 26{28, 34] veri�cations, as have theircombination into larger functions such as diagnosis [25], and their synthesis into afault-tolerant architecture based on active (state-machine) replication [11,35].Formal, and especially mechanically-checked, veri�cation of these algorithms isstill something of a tour de force, however. To have real impact on practice, weneed to reduce the di�culty of formal veri�cation in this domain to a routine andlargely automated process. In order to achieve this, we should study the sourcesof di�culty in existing treatments and attempt to reduce or eliminate them. Inparticular, we should look for opportunities for systematic treatments: these mayallow aspects common to a range of algorithms to be treated in a uniform way, and



4may even allow some of those aspects to be broken out and veri�ed in a genericmanner once and for all.There is a wide range in the apparent level of di�culty and detail in the veri�ca-tions cited above. Some of the di�erences can be attributed to the ways in whichthe problems are formalized or to the di�erent resources of the formal speci�cationlanguages and theorem provers employed. For example, Rushby [34] and Bevierand Young [2] describe mechanically checked formal veri�cations of the same \OralMessages" algorithm [24] for the consensus problem that were performed using dif-ferent veri�cation systems. Young [42] argues that di�erences in the di�culty ofthese treatments (that of [34] is generally considered simpler and clearer than thatof [2]) are due to di�erent choices in the way things are formalized. We may assumethat such di�erences will be reduced or eliminated as experience is gained and thebetter choices become more widely known.More signi�cant than di�erences due to how things are formalized are di�erencesdue to what is formalized, and the level of detail considered necessary. For exam-ple, both veri�cations of the Oral Messages algorithm mentioned above specifythe algorithm as a functional program and the proofs are conventional inductions.Following this approach, the special case of a two-round algorithm (a variant of thealgorithm known as OM(1)) is speci�ed in [28] in a couple of lines and its veri�ca-tion is almost completely automatic. In contrast, the treatment of OM(1) in [23]is long and detailed and quite complicated. The reason for its length and com-plexity is that this treatment explicitly considers the distributed, message passingcharacter of the intended implementation, and calculates tight real-time boundson the timeouts employed. All these details are abstracted away in the treatmentsusing functional programs|but this does not mean these veri�cations are inferiorto the more detailed analyses: on the contrary, I would argue that they capturethe essence of the algorithms concerned (i.e., they explain why the algorithm isfault tolerant) and that message-passing and real-time bounds are implementationdetails that ought to be handled separately. In fact, most of the papers that in-troduce the algorithms concerned, and the standard textbook [29], use a similarlyabstract and time-free treatment. On the other hand, it is undeniably importantalso to verify a speci�cation that is reasonably close to the intended implementa-tion, and to establish that the correct timeouts are used, and that the concretefault modes match those assumed in the more abstract treatment.The natural resolution for these competing claims for abstractness and concrete-ness is a hierarchical approach in which the essence of the algorithm is veri�ed inan abstract formulation, and a more realistic formulation is then shown to be are�nement, in some suitable sense, of the abstract formulation. If things workout well, the re�nement argument should be a routine calculation of timeouts andother concrete details. The purpose of this paper is to present a framework for sucha hierarchical treatment and to show that, for the important case of time-triggeredimplementations of round-based algorithms, most of the details of the re�nementto a concrete formulation can be worked out once and for all.



Systematic Formal Veri�cation for Time-Triggered Algorithms 52 Round-Based AlgorithmsIn her textbook [29], Nancy Lynch identi�es algorithms for the synchronoussystem model with those that execute in a series of \rounds." Rounds have twophases: in the �rst, each processor1 sends a message to some or all of the otherprocessors (di�erent messages may be sent to di�erent processors; the messageswill depend on the current state of the sending processor); in the second phase,each processor changes its state in a manner that depends on its current stateand the collection of messages it received in the �rst phase. There is no notion ofreal-time in this model: messages are transferred \instantaneously" from sendersto recipients between the two phases. The processors operate in lockstep: all ofthem perform the two phases of the current round, then move on to the �rst phaseof the next round, and so on.Several of the algorithms of interest here were explicitly formulated in terms ofrounds when �rst presented, and others can easily be recast into this form. Forexample, the Oral Messages algorithm for consensus, OM(1), requires two roundsas follows.Algorithm OM(1)Round 0:Communication Phase: A distinguished processor called the transmittersends a value to all the other processors, which are called receivers; thereceivers send no messages.Computation Phase: Each receiver stores the value received from thetransmitter in its state.Round 1:Communication Phase: Each receiver sends the value it received from thetransmitter to all the other receivers; the transmitter sends no message.Computation Phase: Each receiver sets the \decision" component of itsstate to the majority value among those received from the other receiversand that (stored in its state) received from the transmitter.In the presence of one or fewer arbitrary faults, OM(1) ensures that all nonfaultyreceivers decide on the same value and, if the transmitter is nonfaulty, that valueis the one sent by the transmitter.There are two di�erent ways to implement round-based algorithms. In the time-triggered approach, the implementation is very close to the model: the proces-sors are closely synchronized (e.g., to within a couple of bit-times in the case of1I refer to the participants as processors to stress that they are assumed to fail independently;the agents that perform these actions will actually be processes.



6SAFEbus) and all run a common, deterministic schedule that will cause them toexecute speci�c algorithms at speci�c times (according to their local clocks). Thesequencing of phases and rounds is similarly driven by the local clocks, and com-munication bandwidth is also allocated as dedicated, �xed, time slots. The �rst(communication) phase in each round must be su�ciently long that all nonfaultyprocessors will be able to exchange messages successfully; consequently, no ex-plicit timeouts are needed: a message that has not arrived by the time the second(computation) phase of a round begins is implicitly timed out.Whereas the allocation of resources is statically determined in the time-triggeredapproach, in the other, event-triggered, approach, resources are scheduled dynam-ically and processors respond to events as they occur. In this implementationstyle, the initiation of a protocol may be triggered by a local clock, but subsequentphases and rounds are driven by the arrival of messages. In Lamport and Merz'treatment of OM(1), for example, a receiver that has received a message from thetransmitter may forward it immediately to the other receivers without waiting forthe clock to indicate that the next round has started (in other words, the pacingof phases and rounds is determined locally by the availability of messages). Un-like the time-triggered approach, messages may have to be explicitly timed out inthe event-triggered approach. For example, in Lamport and Merz' treatment ofOM(1), a receiver will not wait for relayed messages from other receivers beyond2� + � past the start of the algorithm (where � is the maximum communicationdelay and � the maximum time that it can take a receiver to decide to relay amessage).Some algorithms were �rst introduced using an event-triggered formulation (forexample, Cristian's atomic broadcast and group membership algorithms [7, 9]),but it is possible to reconstruct explicitly round-based equivalents for them, andthen transform them to time-triggered implementations (Kopetz' time-triggeredalgorithms [19] for the same problems do this to some extent). Event-triggeredsystems are generally easier to construct than time-triggered ones (which requirea big planning and scheduling e�ort upfront) and achieve better CPU utilizationunder light load. On the other hand, Kopetz [20,21] argues persuasively that time-triggered systems are more predictable (and hence easier to verify), easier to test,make better use of broadcast communications bandwidth (since no addresses needbe communicated|these are implicit in the time at which a message is sent), canoperate closer to capacity, and are generally to be preferred for truly critical appli-cations. The previously mentioned SAFEbus for the Boeing 777, the Shinkansentrain control system, and the TTP protocol for automobiles are all time-triggered.Our goal is a systematic method for transforming round-based protocols fromvery abstract functional programs, whose properties are comparatively easy toformally and mechanically verify, down to time-triggered implementations withappropriate timing constraints and consideration for realistic fault modes. Thetransformation is accomplished in two steps: �rst from a functional program toan (untimed) synchronous system, then to a time-triggered implementation. The�rst step is systematic but must be undertaken separately for each algorithm (see



Systematic Formal Veri�cation for Time-Triggered Algorithms 7Section 4); the other is generic and deals with a large class of algorithms and faultassumptions in a single veri�cation. This generic treatment of the second step isdescribed in the following section.3 Round-Based Algorithms Implemented as Time-Triggered SystemsThe issues in transforming an untimed round-based algorithm to a time-triggeredimplementation are basically to ensure that the timing and duration of events inthe communication phase are such that messages between nonfaulty processorsalways arrive in the communication phase of the same round, and fault modesare interpreted appropriately. To verify the transformation, we introduce formalmodels for untimed synchronous systems and for time-triggered systems, and thenestablish a simulation relation between them. This treatment has been formalizedand mechanically checked using the PVS veri�cation system|see Section 3.4.3.1 Synchronous SystemsFor the untimed case, we use Nancy Lynch's formal model for synchronoussystems [29, Chapter 2], with some slight adjustments to the notation that makeit easier to match up with the mechanically veri�ed treatment.De�nition 1 Untimed Synchronous Systems.We assume a set mess of messages that includes a distinguished value null, anda set proc of processors. Processors are partially connected by directed channels;each channel can be thought of a bu�er that can hold a single message. Associatedwith each processor p are the following sets and functions.� A set of processors out-nbrsp to which p is connected by outgoing channels.� A set of processors in-nbrsp to which p is connected by incoming channels;the function inputsp : in-nbrsp ! mess gives the message contained in eachof those channels.� A set statesp of states with a nonempty subset initp of initial states. It isconvenient to assume that there is a component in the state that countsrounds; this counter is zero in initial states.� A function msgp : statesp� out-nbrsp ! mess that determines the messageto be placed in each outgoing channel in a way that depends on the currentstate.� A function transp : statesp � inputsp ! statesp that determines the nextstate, in a way that depends on the current state and the messages receivedin the incoming channels.



8 The system starts with each processor in an initial state. All processors p thenrepeatedly perform the following two actions in lockstep.Communication Phase: apply the message generation functionmsgp to the cur-rent state to determine the messages to be placed in each outgoing channel.(The message value null is used to indicate \no message.")Computation Phase: apply the state transition function transp to the currentstate and the message held in each incoming channel to yield the next state(with the round counter incremented).2A particular algorithm is speci�ed by supplying interpretations to the various setsand functions identi�ed above.Faults. Distributed algorithms are usually required to operate in the presence offaults: the speci�c kinds and numbers of faults that may arise constitute the faulthypothesis. Usually, processor faults are distinguished from communication faults;the former can be modeled by perturbations to the transition functions transp,and the latter by allowing the messages received along a channel to be changedfrom those sent. Following [29, page 20], an execution of the system is then anin�nite sequence of triples(S0;M0; N0); (S1;M1; N1); (S2;M2; N2); : : :where Sr is the global state at the start of round r, Mr is the collection of messagesplaced in the communication channels, and Nr is the (possibly di�erent) collectionof messages received.Because our goal is to show that a time-triggered implementation achieves thesame behavior as the untimed synchronous system that serves as its speci�cation,we will need some way to ensure that faults match up across the two systems. Forthis reason, I prefer to model processor and communications faults by perturbationsto the transp and msgp functions, respectively (rather than allowing messagesreceived to di�er from those sent). In particular, I assume that the current roundnumber is recorded as part of the state and that if processor p is faulty in roundr, with current state s and the values of its input channels represented by thearray i, then transp(s; i) may yield a value other than that intended; similarly,if the channel from p to q is faulty, then the value msgp(s)(q) may be di�erentthan intended (and may be null). Exactly how these values may di�er from thoseintended depends on the fault assumption. For example, a crash fault in round rresults in transp(s; i) = s and msg(s)(q) = null for all i, q, and states s whoseround component is r or greater. Notice that although transp and msgp may nolonger be the intended functions, they are still functions; in fact, there is no needto suppose that the transp and msgp were changed when the fault arrived in round



Systematic Formal Veri�cation for Time-Triggered Algorithms 9r: since the round counter is part of the state, we can just assume these functionsbehave di�erently than intended when applied to states having round countersequal or greater than r.The bene�t of this treatment is that, since transp and msgp are uninterpreted,they can represent any algorithm and any fault behavior; if we can show thata time-triggered system supplied with arbitrary transp and msgp functions hasthe same behavior as the untimed synchronous system supplied with the samefunctions, then this demonstration encompasses behavior in the presence of faultsas well as the fault-free case. Furthermore, since we no longer need to hypothesizethat faults can cause di�erences between those messages sent and those received(we instead assume the fault is in msgp and the \di�erent" messages were actuallysent), executions can be simpli�ed from sequences of triples to simple sequences ofstates S0; S1; S2; : : :where Sr is the global state at the start of round r. Consequently, to demonstratethat a time-triggered system implements the behavior speci�ed by an untimedsynchronous system, we simply need to establish that both systems have the sameexecution sequences; by mathematical induction, this will reduce to showing thatthe global states of the two systems are the same at the start of each round r.3.2 Time-Triggered SystemsFor the time-triggered system, we elaborate the model of the previous sectionas follows.Each processor is supplied with a clock that provides a reasonably accurateapproximation to \real" time. When speaking of clocks, it is usual to distinguishtwo notions of time: clocktime, denoted C is the local notion of time supplied byeach processor's clock, while realtime, denoted R is an abstract global quantity. Itis also usual to denote clocktime quantities by upper case Roman or Greek letters,and realtime quantities by lower case letters.Formally, processor p's clock is a function Cp : R ! C. The intended interpre-tation is that Cp(t) is the value of p's clock at realtime t.2 The clocks of nonfaultyprocessors are assumed to be well-behaved in the sense of satisfying the followingassumptions.Assumption 1 Monotonicity. Nonfaulty clocks are monotonic increasing func-tions: t1 < t2 � Cp(t1) < Cp(t2):Satisfying this assumption requires some care in implementation, because clocksynchronization algorithms can make adjustments to clocks that cause them to2In the terminology of [22], these are actually \inverse" clocks.



10jump backwards. Lamport and Melliar-Smith describe some solutions [22], anda particularly clever and economical technique for one particular algorithm is in-troduced by Torres-Pomales [40] and formally veri�ed by Miner and Johnson [30].Schmuck and Cristian [38] examine the general case and show that monotonicitycan be achieved with no loss of precision.Assumption 2 Clock Drift Rate. Nonfaulty clocks drift from realtime at a ratebounded by a small positive quantity � (typically � < 10�6):(1� �)(t1 � t2) � Cp(t1)� Cp(t2) � (1 + �)(t1 � t2):Assumption 3 Clock Synchronization. The clocks of nonfaulty processors aresynchronized within some small clocktime bound �:jCp(t)� Cq(t)j � �:De�nition 2 Time-Triggered Systems.The feature that characterizes a time-triggered system is that all activity isdriven by a global schedule: a processor performs an action when the time on itslocal clock matches that for which the action is scheduled. In our formal model,the schedule is a function sched : N ! C, where sched(r) is the clocktime atwhich round r should begin. The duration of the r'th round is given by dur(r) =sched(r + 1) � sched(r).In addition, there are �xed global clocktime constants D and P that give theo�sets into each round when messages are sent, and when the computation phasebegins, respectively. Obviously, we need the following constraint.Constraint 1 0 < D < P < dur(r).Notice that the duration of the communication phase is �xed (by P ); it is only theduration of the computation phase that can di�er from one round to another.3The states, messages, and channels of a time-triggered system are the same asthose for the corresponding untimed synchronous system, as are the transitionand message functions. In addition, processors have a one-place bu�er for eachincoming message channel.The time-triggered system operates as follows. Initially each processor is in aninitial state, with its round counter zero and its clock synchronized with the othersand initialized so that Cp(t0) � sched(0), where t0 is the current realtime. Allprocessors p then repeatedly perform the following two actions.3In fact, there is no di�culty in generalizing the treatment to allow the time at which messagesare sent, and the duration of the communication phase, to vary from round to round. That is,the �xed clocktime constants D and P can be systematically replaced by functions D(r) andP (r), respectively. This generalization was developed during the mechanized veri�cation; seeSection 3.4.



Systematic Formal Veri�cation for Time-Triggered Algorithms 11Communication Phase: This begins when the local clock reads sched (r), wherer is the current value of the round counter. Apply the message generationfunction msgp to the current state to determine the messages to be sent oneach outgoing channel. The messages are placed in the channels at local clocktime sched(r)+D. Incoming messages that arrive during the communicationphase (i.e., no later than sched(r) + P ) are moved to the corresponding in-put bu�er where they remain stable through the computation phase. Thesebu�ers are initialized to null at the beginning of each communication phaseand their value is unspeci�ed if more than one message arrives on their as-sociated communications channel in a given communication phase.Computation Phase: This begins at local clock time sched(r) + P . Apply thestate transition function transp to the current state and the messages held inthe input bu�ers to yield the next state. The computation will be completeat some local clock time earlier than sched(r + 1). Increment the roundcounter, and wait for the start of the next round.2Message transmission in the communication phase is explained as follows. Weuse sent(p; q;m; t) to indicate that processor p sent message m to processor q (amember of out-nbrs(p)) at real time t (which must satisfy Cp(t) = sched(r) + Dfor some round r). We use recv(q; p;m; t) to indicate that processor q receivedmessage m from processor p (a member of in-nbrs(q)) at real time t (which mustsatisfy the constraint sched(r) � Cq(t) < sched(r) + P for some round r). Thesetwo events are related as follows.Assumption 4 Maximum Delay. When p and q are nonfaulty processors,sent (p; q;m; t) � recv(q; p;m; t+ d)for some 0 � d � �.In addition, we require no spontaneous generation of messages (i.e., recv(q; p;m; t)only if there is a corresponding sent (p; q;m; t0)).Provided there is exactly one recv(q; p;m; t) event for each p in the communi-cation phase for round r on processor q (as there will be if p is nonfaulty), thatmessage m is moved into the input bu�er associated with p on processor q beforethe start of the computation phase for that round and remains there throughoutthe phase.Because the clocks are not perfectly synchronized, it is possible for a message sentby a processor with a fast clock to arrive while its recipient is still on the previousround. It is for this reason that we do not send messages until D clocktime unitsinto the start of the round. In general, we need to ensure that a message from



12a processor in round r cannot arrive at its destination before that processor hasstarted round r, nor after it has �nished the communication phase for round r. Wemust establish constraints on parameters to ensure these conditions are satis�ed.Now processor p sends its message to processor q, say, at realtime t where Cp(t) =sched(r) +D and, by the maximum delay assumption, the message will arrive atrealtime t+ d where d � �. We need to be sure thatsched(r) � Cq(t+ d) < sched(r) + P: (1)By clock synchronization, we have jCq(t) � Cp(t)j � �; substituting Cp(t) =sched(r) +D we obtain � � � Cq(t)� sched(r) �D � �: (2)By the monotonic clocks assumption, this givessched(r) +D �� � Cq(t) � Cq(t+ d)and so the �rst inequality in (1) can be ensured byConstraint 2 D � �.The clock synchronization calculation (2) above also givesCq(t) � sched(r) +D + �and the clock drift rate assumption gives(1� �)d � Cq(t+ d) � Cq(t) � (1 + �)dfrom which it follows thatCq(t+ d) � Cq(t) + (1 + �)d:Thus, the second inequality in (1) can be ensured byConstraint 3 P > D + �+ (1 + �)�.Faults. We will prove that a time-triggered system satisfying the various assump-tions and constraints identi�ed above achieves the same behavior as an untimedsynchronous system supplied with the same transp and msgp functions. I explainedearlier that faults are assumed to be modeled in the transp and msgp functions;by using the same functions in both the untimed and time-triggered systems, weensure that the latter inherits the same fault behavior and any fault-toleranceproperties of the former. Thus, if we have an algorithm that has been shown, in itsuntimed formulation, to achieve some fault-tolerance properties (e.g., \this algo-rithm resists a single Byzantine fault or two crash faults"), then we may concludethat the implementation has the same properties.



Systematic Formal Veri�cation for Time-Triggered Algorithms 13This simple view is somewhat compromised, however, because the time-triggeredsystem contains a mechanism|time triggering|that is not present in the untimedsystem. This mechanism admits faults (notably, loss of clock synchronization) thatdo not arise in the untimed system. An implementation must ensure that suchfaults are either masked, or are transformed in such a way that their manifestationsare accurately modeled by perturbations in the transp and msgp functions.In general, it is desirable to transform low-level faults (i.e., those outside themodel considered here) into the simplest (most easily tolerated) fault class for thealgorithm concerned. If no low-level mechanism for dealing with loss of clock syn-chronization is present, then synchronization faults may manifest themselves asarbitrary, Byzantine faults to the abstract algorithm. For example, if one pro-cessor's clock drifts to such an extent that it is in the wrong round, then it willexecute the transition and message functions appropriate to that round and willsupply systematically incorrect messages to the other processors. This could easilyappear as Byzantine behavior at the level of the untimed synchronous algorithm.For this reason, it is desirable to include the round number in messages, so thatthose from the wrong round can be rejected (thereby reducing the fault manifes-tation to fail-silence). TTP goes further and includes all critical state information(operating mode, time, and group membership) in its messages as part of the CRCcalculation [21].Less drastic clock skews may leave a processor in the right round, but sendingmessages at the wrong time, so that they arrive during the computation phases ofthe other (correct) processors. It is partly to counter this fault mode that the time-triggered model used here explicitlymovesmessages from their input channels to aninput bu�er during the communication phase: this shields the receiving processorfrom any changes in channel contents during the computation phase.If the physical implementation of the time triggered system multiplexes its com-munications channels onto shared buses, then it is necessary to control the \bab-bling idiot" fault mode where a faulty processor disrupts the communications ofother processors by speaking out of turn. In practice, this is controlled by a BusInterface Unit (BIU) that only grants access to the bus at appropriate times. Forexample, in SAFEbus, processors are paired, with each member of a pair control-ling the other's BIU; in TTP, the BIU has independent knowledge of the schedule.In both cases, babbling can occur only if there are undetected double failures.3.3 Veri�cationWe now need to show that a time-triggered system achieves the same behavioras its corresponding untimed synchronous system. We do this in the traditionalway by establishing a simulation relationship between the states of an executionof the time-triggered system and those of the corresponding untimed execution.It is usually necessary to invent an \abstraction function" to relate the states ofan implementation to those of its speci�cation; here, however, the states of the



14two systems are the same, and the only di�cult point is to select the moments intime at which states of the time-triggered system should correspond to those ofthe untimed system.The untimed system makes progress in discrete global steps: all componentprocessors perform their communication and computation phases in lockstep, soit is possible to speak of the complete system being in a round r. The processorsof the time-triggered system, however, progress separately at a rate governed bytheir internal clocks, which are imperfectly synchronized, so that one processormay still be on round r while another has moved on to round r + 1. We need toestablish some consistent \cut" through the time-triggered system that provides aglobal state in which all processors are at the same point in the same round. Insome treatments of distributed systems, it is not necessary for the global cut tocorrespond to a snapshot of the system at a particular realtime instant: the cut maybe an abstract construction that has no direct realization. In our case, however,it is natural to assume that the time-triggered system is used in some controlapplication and that outputs of the individual processors (i.e., some functionsof their states) are used to provide redundant control signals in real time|forexample, a typical application will be one in which the outputs of the processorsare subjected to majority voting, or separately drive some actuator in a \force-summing" con�guration.4 Consequently, we do want to identify the cut throughthe system with its global state at a speci�c real time instant.In particular, we need some realtime instant gs(r) that corresponds to the\global start" of the r'th round. We want this instant to be one in which allnonfaulty processors have started the r'th round, but have not yet started itscomputation phase (when they will change their states).We can achieve this by de�ning the global start time gs(r) for round r to be therealtime when the processor with the slowest clock begins round r. That is, gs(r)satis�es the following constraints:8q : Cq(gs(r)) � sched(r); (3)and 9p : Cp(gs(r)) = sched (r) (4)(intuitively, p is the processor with the slowest clock).Since the processors are not perfectly synchronized, we need to be sure that theycannot drift so far apart that some processor q has already reached its computationphase|or is even on the next round|at gs(r). Thus, we need8q : Cq(gs(r)) < sched(r) + P: (5)By (3) we have Cq(gs(r)) = sched(r) +X for some X � 0, and (4) plus the clocksynchronization assumption then gives X � �. Now processor q will still be on4For example, the outputs of di�erent processors may energize separate coils of a singlesolenoid, or multiple hydraulic pistons may be linked to a single shaft (see, e.g., [12, Figure3.2{2]).



Systematic Formal Veri�cation for Time-Triggered Algorithms 15round r and in its communication phase provided X < P and this is ensured bythe inequality just derived when taken together with Constraint 3.We now wish to establish that the global state of a time-triggered system at timegs(r) will be the same as that of the corresponding untimed synchronous systemat the start of its r'th round. We denote the global state of the untimed system atthe start of the r'th round by gu(r) (for global untimed). Global states are simplyarrays of the states of the individual processors, so that the state of processor pat this point is gu(r)(p). Similarly, the global state of the time-triggered systemat time gs(r) is denoted gt(r) (for global timed), and the state of its processor p isgt(r)(p). We can now state and prove the desired result.Theorem 1 Given the same initial states, the global states of the untimed andtime-triggered systems are the same at the beginning of each round:8r : gt(r) = gu(r):Proof: The proof is by induction.Base case. This is the case r = 0. Both systems are then in their initial stateswhich, by hypothesis, are the same.Inductive step. We assume the result for r and prove it for r + 1. For theuntimed case, the message inputsq(p) from processor p received by q in the r'thround is msgp(gu(r)(p))(q).5By the inductive hypothesis, the global state of processor p in the time-triggeredsystem at time gs(r) is gu(r)(p) also. Furthermore, processor p is in its commu-nication phase (ensured by (5)) and has not changed its state since starting theround. Thus, at local clocktime sched(r) +D, it sends msgp(gu(r)(p))(q) to q. By(1), this is received by q while in the communication phase of round r, and trans-ferred to its input bu�er inputsq(p). Thus, the corresponding processors of theuntimed and time-triggered systems have the same state and input componentswhen they begin the computation phase of round r. The same state transitionfunctions transp are then applied by the corresponding processors of the two sys-tems to yield the same values for the corresponding elements of gu(r + 1) andgt(r + 1), thereby completing the inductive proof.2 5For the bene�t of those not used to reading Curried higher-order function applications, thisis decoded as follows: gu(r)(p) is p's state in round r; p's message function msgp applied to thatstate gives msgp(gu(r)(p)), which is an array of the messages sent to its outgoing channels; q'scomponent of that array is msgp(gu(r)(p))(q).



163.4 Mechanized Veri�cationThe treatment of synchronous and time-triggered systems in Sections 3.1 and 3.2has been formally speci�ed in the language of the PVS veri�cation system [32], andthe veri�cation of Section 3.3 has been mechanically checked using PVS's theoremprover. The PVS language is a higher-order logic with subtyping, and formalizationof the semiformal treatment in Sections 3.1 and 3.2 was quite straightforward. ThePVS theorem prover includes decision procedures for integer and real linear arith-metic and mechanized checking of the calculations in Section 3.3, and the proofof the Theorem, were also quite straightforward. The complete formalization andmechanical veri�cation took less than a day, and no errors were discovered. The for-mal speci�cation and veri�cation are described in the Appendix; the speci�cation�les themselves are available at URL http://www.csl.sri.com/dcca97.html.While it is reassuring to know that the semiformal development withstandsmechanical scrutiny, we have argued previously (for example, [32,36]) that mecha-nized formal veri�cation provides several bene�ts in addition to the \certi�cation"of proofs. In particular, mechanization supports reliable and inexpensive explo-ration of alternative designs, assumptions, and constraints. In this case, I wonderedwhether the requirement that messages be sent at the �xed o�setD clocktime unitsinto each round, and that the computation phase begin at the �xed o�set P , mightnot be unduly restrictive. It was the work of a few minutes to generalize the formalspeci�cation to allow these o�sets to become functions of the round, and to adjustthe mechanized proofs. I contend that corresponding revisions to the semiformaldevelopment in Sections 3.2 and 3.3 would take longer than this, and that it wouldbe di�cult to summon the fortitude to scrutinize the revised proofs with the samecare as the originals.4 Round-Based Algorithms as Functional ProgramsThe Theorem of Section 3.3 ensures that synchronous algorithms are correctlyimplemented by time-triggered implementations that satisfy the various assump-tions, constraints, and constructions introduced in the previous section. The next(though logically preceding) step is to ask how one might verify properties of aparticular algorithm expressed as an untimed synchronous system.Although simpler than its time-triggered implementation, the speci�cation ofan algorithm as a synchronous system is not especially convenient for formal (andparticularly mechanized) veri�cation because it requires reasoning about attributesof imperative programs: explicit state and control. It is generally easier to verifyfunctional, rather than imperative, programs because these represent state andcontrol in an applicative manner that can be expressed directly in conventionallogic.There is a fairly systematic transformation between synchronous systems andfunctional programs that can ease the veri�cation task by allowing it to be per-formed on a functional program. I illustrate the idea (which comes from Bevier



Systematic Formal Veri�cation for Time-Triggered Algorithms 17and Young [2]) using the OM(1) algorithm from Section 2. Because that algorithmhas already been introduced as a synchronous system, I will illustrate its transfor-mation to a functional program; once the technique becomes familiar, it is easy toperform the transformation in the other direction.We begin by introducing a function send(r; v; p; q) to represent the sending of amessage with value v from processor p to processor q in round r. The value of thefunction is the message received by q. If p and q are nonfaulty, then this value isv: nonfaulty(p) ^ nonfaulty (q) � send (r; v; p; q) = v;otherwise it depends on the fault modes considered (in the Byzantine case it is leftentirely unconstrained, as here).If T represents the transmitter, v its value, and q an arbitrary receiver, then thecommunication phase of the �rst round of OM(1) is represented bysend(0; v; T; q):The computation phase of this round simply moves the messages received into thestates of the processors concerned, and can be ignored in the functional treatment(though see Footnote 6).In the communication phase of the second round, each processor q sends thevalue received in the �rst round (i.e., send (0; v; T; q)) on to the other receivers. Ifp is one such receiver, then this is described by the functional compositionsend (1; send (0; v; T; q); q; p): (6)In the computation phase for the second round, processor p gathers all the messagesreceived in the communication phase and subjects them to majority voting.6 Now(6) represents the value p receives from q, so we need to gather together in someway the values in the messages p receives from all the other receivers q, and use thatcombination as an argument to the majority vote function. How this \gatheringtogether" is represented will depend on the resources of the speci�cation languageand logic concerned: in the treatment using the Boyer-Moore logic, for example,it is represented by a list of values [2]. In a higher-order logic such as PVS [32],however, it can be represented by a function, speci�ed as a �-abstraction:�q : send (1; send (0; v; T; q); q; p)(i.e., a function that, when applied to q, returns the value that p received from q).Majority voting is represented by a function maj that takes two arguments: the\participants" in the vote, and a function over those participants that returns the6 In the formulation of the algorithm as a synchronous system, p votes on the messages fromthe other receivers, and the message that it received directly from the transmitter, which it hassaved in its state. In the functional treatment, q includes itself among the recipients of themessage that it sends in the communication phase of the second round, and so the vote is simplyover messages received in that round.



18value associated with each of them. The function maj returns the majority valueif one exists; otherwise some functionally determined value. (This behavior caneither be speci�ed axiomatically, or de�ned constructively using an algorithm suchas Boyer and Moore's linear time MJRTY [4].) Thus, p's decision in the computationphase of the second round is represented bymaj (rcvrs; �q : send (1; send (0; v; T; q); q; p))where rcvrs is the set of all receiver processors. We can use this formula as thede�nition for a higher-order function OM1(T; v) whose value is a function thatgives the decision reached by each receiver p when the (possibly faulty) transmitterT sends the value v :OM1(T; v)(p) = maj (rcvrs; �q : send (1; send (0; v; T; q); q; p)): (7)The properties required of this algorithm are the following, provided the numberof receivers is three or more, and at most one processor is faulty:Agreement: nonfaulty(p) ^ nonfaulty(q) � OM1(T; v)(p) = OM1(T; v)(q);Validity: nonfaulty (T ) ^ nonfaulty(p) � OM1(T; v)(p) = v.De�nition (7) and the requirements for Agreement and Validity stated above areacceptable as speci�cations to PVS almost as given (PVS requires we be a littlemore explicit about the types and quanti�cation involved). Using a constructivede�nition for maj, PVS can prove Agreement and Validity for a speci�c numberof processors (e.g., 4) completely automatically. For the general case of n � 4processors, PVS is able to prove Agreement with only a single user-supplied proofdirective, while Validity requires half a dozen (the only one requiring \insight" isa case-split on whether the transmitter is faulty).Not all synchronous systems can be so easily transformed into a recursive func-tion, nor can their properties always be formally veri�ed so easily. Nonetheless,I believe the approach has promise for many algorithms of practical interest. Asimilar method has been advocated by Florin, G�omez, and Lavall�ee [14].5 ConclusionMany round-based fault-tolerant algorithms can be formulated as synchronoussystems. I have shown that synchronous systems can be implemented as time-triggered systems and have proved that, provided care is taken with fault modes,the correctness and fault-tolerance properties of an algorithm expressed as a syn-chronous system are inherited by its time-triggered implementation. The proofidenti�es necessary timing constraints and is independent of the particular algo-rithm concerned; it provides a more general and abstract treatment of the analysis
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24AppendicesIn these appendices I present mechanically-checked formal speci�cations andveri�cations of the developments in Sections 3 and 4 using the PVS veri�cationsystem [32]. The corresponding PVS speci�cation and proof �les are available fromURL http://www.csl.sri.com/dcca97.html.A Untimed and Timed Synchronous Systems in PVSThe PVS treatment is presented in three subsections corresponding to those ofSection 3.A.1 Untimed Synchronous SystemsI begin by specifying the synchronous systemmodel of Section 3.1 in the languageof PVS.The starting point is De�nition 1 on Page 7. In PVS, the sets of processors,messages, and states are represented by the nonempty types, proc, mess, andstate respectively. For simplicity, we assume that the state type is the same forall processors (in Section 3.1, each processor p had its own individual set of states,statesp; it is easy to add this embellishment if desired). The initial states are repre-sented by the nonempty subtype init state of state, and the distinguished nullmessage by the uninterpreted constant null of type mess. Next, some variablesare declared and in nbrs and out nbrs are speci�ed as functions from proces-sors to sets of processors, so that, for example, out nbrs(p) represents out-nbrsp,the set of processors connected to processor p by outgoing channels. The axiomchannels match states a necessary constraint, missing from the treatment of Sec-tion 3.1, that q is among the in-nbrs of p if and only p is among the out-nbrs ofq.untimed_system: THEORYBEGINproc, mess, state: TYPE+init_state: TYPE+ FROM statenull: messin_nbrs, out_nbrs: [proc -> setof[proc]]p, q: VAR procs, t: VAR statechannels_match: AXIOM in_nbrs(p)(q) IFF out_nbrs(q)(p)



Systematic Formal Veri�cation for Time-Triggered Algorithms 25In PVS, a set (or equivalently, a predicate) enclosed in parentheses denotesthe corresponding subtype; thus (out nbrs(p)) is the subtype of proc comprisingthose processors connected to p by outgoing channels. We can therefore specify themessage function msg(p) for processor p to have the following dependently-typedsignature.msg(p): [state, (out_nbrs(p)) -> mess]That is, msg(p) takes a state and processor from among the out-nbrs of p and re-turns the message to be sent to that processor. The messages received by processorp form an array indexed by (in nbrs(p)); arrays are equivalent to functions inPVS, so this array has type [(in nbrs(p)) -> M], which we denote by the PVStype application (essentially, a parameterized type) inputs(p) as follows.inputs(p): TYPE = [(in_nbrs(p)) -> M]The state transition function for processor p can then be given the following sig-nature.trans(p): [state, inputs(p) -> state]The full (\global") synchronous system is composed of the states of each of itsconstituent processors; thus the global states and initial states have the followingtypes.global_state: TYPE = [proc -> state]global_init: TYPE = [proc -> init_state]If the system is in global state s, then processor q's component of that state iss(q), and so the message that it sends to processor p during the communicationphase is msg(q)(s(q), p). Thus, the array of inputs received by p in that phaseis given by abstracting this expression over all p's in-nbrs q:(LAMBDA (q:(in_nbrs(p))): msg(q)(s(q), p)).Therefore, p's computation phase will result in the statetrans(p)(s(p), (LAMBDA (q:(in_nbrs(p))): msg(q)(s(q), p))).This expression provides the heart of the de�nition for the recursive functionrun(ginit)(r), which speci�es the global state of the system following r rounds,starting from the global initial state ginit, as follows.



26 round: TYPE = natrun(ginit: global_init)(r: round): RECURSIVE global_state =IF r = 0 THEN ginitELSE LAMBDA p: trans(p)(s(p),LAMBDA (q:(in_nbrs(p))): msg(q)(s(q), p))WHERE s = run(ginit)(r - 1)ENDIFMEASURE rThis de�nition causes PVS to generate three TCCs (proof obligations): one toestablish termination, one to ensure that the argument r-1 in the recursive callsatis�es the constraints on rounds (i.e., is nonnegative), and one to ensure thatthe second argument to msg(q) (i.e., p) is in the out-nbrs of q. The �rst twoTCCs are discharged by PVS's default strategies, and the third by appeal to thechannels match axiom.A.1.1 LaTEX-printed Speci�cationuntimed system : theorybeginproc;mess; state : type+init state : type+ from statenull : messin nbrs; out nbrs : [proc! setof[proc]]p; q : var procs; t : var statechannels match : axiom in nbrs(p)(q), out nbrs(q)(p)msg(p) : [state; (out nbrs(p)) ! mess]inputs(p) : type = [(in nbrs(p)) ! mess]trans(p) : [state; inputs(p) ! state]global state : type = [proc! state]global init : type = [proc! init state]round : type = natrun(ginit : global init)(r : round) : recursive global state =if r = 0 then ginitelse � p : trans(p)(s(p); (� (q : (in nbrs(p))) : msg(q)(s(q); p)))where s = run(ginit)(r � 1)endifmeasure rend untimed system



Systematic Formal Veri�cation for Time-Triggered Algorithms 27A.1.2 Testing the Speci�cation. It is generally a good idea to validate top-levelspeci�cations by checking that some expected properties do indeed hold. For theuntimed system speci�cation, we could do this by checking that it \runs" thealgorithm OM(1) correctly. However, this will be a rather complicated demonstra-tion (after all, the whole point of Section 4 was to demonstrate an easier approachusing a functional speci�cation), so we will be satis�ed by the simpler algorithmOM(0). This one-round algorithm proceeds as follows.Algorithm OM(0)Round 0:Communication Phase: A distinguished processor called the transmittersends a value to all the other processors, which are called receivers; thereceivers send no messages.Computation Phase: Each receiver stores the value received from thetransmitter in its state.In the absence of faults, OM(0) ensures that all receivers store the value sent bythe transmitter.To specify and prove this in PVS, we import the untimed system speci�cation,and introduce the nonempty type value of values. We then posit the function valthat extracts values from a processor's state, and functions encode, and decodethat convert values to and from messages; we require that decode is a left inverseof encode.OM_zero: THEORYBEGINIMPORTING untimed_systemvalue: TYPE+v: VAR values: VAR stateval: [state -> value]encode: [value -> mess]decode: [mess -> value]code_ax: AXIOM decode(encode(v)) = vWe can then identify the transmitter as a distinguished processor, thereceivers are all the other processors, and we assert that the transmitter hasoutgoing connections to all receivers.



28 transmitter: procreceivers: setof[proc] = remove(transmitter, fullset[proc])rcvr: VAR (receivers)connectivity: AXIOM out_nbrs(transmitter) = receiversIn all states, the transmitter takes the value stored in its state, and encodes itin a message that is sent to all receivers.alg_send_ax: AXIOM msg(transmitter)(s, rcvr) = encode(val(s))This axiom generates a TCC requiring us to demonstrate that all receivers areamong the out-nbrs of the transmitter. This obligation is discharged by the proofcommand (STEW :LEMMAS ("connectivity")).In their computation phase, all receivers take the message received from thetransmitter and store it in their state in such a way that the value representedequals the decoded message.alg_trans_ax: AXIOM FORALL rcvr, s, (i: inputs(rcvr)):val(trans(rcvr)(s, i)) = decode(i(transmitter))This axiom generates a TCC requiring us to demonstrate that all receivers havethe transmitter among their in-nbrs. This obligation is discharged by the proofcommand (STEW :LEMMAS ("connectivity" "channels match")).The property required of this algorithm, after one round, is that all processorshave the same value in their state as the transmitter had initially.works: THEOREM FORALL (ginit:global_init):val(run(ginit)(1)(rcvr)) = val(ginit(transmitter))This challenge theorem is proved automatically in PVS using the single command(grind :theories "OM zero").



Systematic Formal Veri�cation for Time-Triggered Algorithms 29A.1.3 LaTEX-printed Speci�cationOM zero : theorybeginimporting untimed systemvalue : type+v : var values : var stateval : [state! value]encode : [value! mess]decode : [mess! value]code ax : axiom decode(encode(v)) = vtransmitter : procreceivers : setof[proc] = (fullset[proc] n ftransmitterg)rcvr : var (receivers)connectivity : axiom out nbrs(transmitter) = receiversalg send ax : axiom msg(transmitter)(s; rcvr) = encode(val(s))alg trans ax : axiom8 rcvr; s; (i : inputs(rcvr)) : val(trans(rcvr)(s; i)) = decode(i(transmitter))works : theorem8 (ginit : global init) : val(run(ginit)(1)(rcvr)) = val(ginit(transmitter))end OM zeroEncouraged that our speci�cation of untimed systems meets this simple chal-lenge, we proceed to the speci�cation of time-triggered systems.A.2 Time-Triggered Synchronous SystemsDevelopment of the time-triggered system model in Section 3.2 builds on that ofthe untimed systemmodel. The formal speci�cation of time-triggered systems simi-larly begins by importing the theory untimed systems, then introduces clocktimeand realtime (modeled by the natural and real numbers, respectively), declaressome variables, and then introduces the clock function C(p, t), which correspondsto Cp(t) of Section 3.2 (Page 9) and represents the value of p's clock at realtime t.



30time_triggered_system: THEORYBEGINIMPORTING untimed_systemp, q: VAR procs: VAR stateclocktime: TYPE = natrealtime: TYPE = realT: VAR clocktimet, t1, t2: VAR realtimeC(p, t): clocktimeNext, we introduce uninterpreted constants rho and Sigma corresponding to � and� of Section 3.2, and three axioms corresponding to the Assumptions 1 to 3 thatwere presented on Page 9.monotone_clock: AXIOM t1 < t2 => C(p, t1) < C(p, t2)rho: fx: real | 0 < x AND x < 1gdrift_rate: AXIOM (1 - rho) * (t1 - t2) <= C(p, t1) - C(p, t2)AND C(p, t1) - C(p, t2) <= (1 + rho) * (t1 - t2)Sigma: clocktimeclock_sync: AXIOM abs(C(p, t) - C(q, t)) < SigmaThe declaration of rho generates a TCC to ensure that its type is not empty. Thisis discharged by exhibiting the value 1/2.The uninterpreted function sched(r) gives the clocktime at which executionof round r should begin. The axiom monotone sched ensures that this functionis monotone increasing. The function dur(r) is de�ned to be the duration ofthe r'th round, while the uninterpreted functions D(r) and P(r) respectively givethe clocktime o�sets into round r at which each processor sends its messages andstarts its computation phase. Notice that these o�sets are functions of the round,thereby generalizing the treatment in Section 3.2 (Page 10), where they were �xedconstants. The axioms constraint1 and constraint2 specify the correspondingconstraints from Section 3.2 (Pages 10 and 12, respectively).



Systematic Formal Veri�cation for Time-Triggered Algorithms 31i, j, r: VAR roundsched(r): clocktimemonotone_sched: AXIOM i < j IMPLIES sched(i) < sched(j)dur(r): clocktime = sched(r + 1) - sched(r)D(r): clocktimeP(r): clocktimeconstraint1: AXIOM 0 < D(r) AND D(r) < P(r) AND P(r) < dur(r)constraint2: AXIOM D(r) >= SigmaThe de�nition of dur(r) generates a TCC to ensure that its value is nonnegative;this obligation is discharged by appeal to monotone sched.From constraint1 and monotone sched, the following lemma can be estab-lished by induction on the di�erence between j and i.comp_phase: LEMMA i < j => sched(i) + P(i) < sched(j)This result states that the computation phase for round i starts strictly earlierthan the start of any round greater than i.The processors of the time-triggered system schedule their actions according tothe passage of clocktime. Thus, given a global initial state ginit and clocktime T,we need to model the state of processor p at that time: the uninterpreted functionttss(ginit)(p)(T) is used for this purpose (ttss stands for\time-triggered sys-tem state"). The uninterpreted predicates sent and recv are used to model thesending and receipt of messages just as in Section 3.2 (Page 11).ginit: VAR global_initttss(ginit)(p)(T): statesent(p, (q:(out_nbrs(p))), m, t): boolrecv(q, (p:(in_nbrs(q))), m, t): boolThe properties of these three uninterpreted functions are speci�ed axiomat-ically, as follows. The state of processor p at the start of round r isttss(ginit)(p)(sched(r)), so the message m that it should send to processorq in that round will be msg(p)(ttss(ginit)(p)(sched(r)), q). This messageshould be sent at clocktime sched(r)+D(r); we denote the corresponding realtimeby sendtime(p, r).sendtime(p, r): realtimesendtime_ax: AXIOM C(p, sendtime(p, r)) = sched(r) + D(r)



32The following axiom then speci�es that the predicate sent(p, q, m, t) shouldbe true when m and t have the values just identi�ed.comm_phase1: AXIOMFORALL (q: (out_nbrs(p))): sent(p, q, m, sendtime(p, r))WHERE m = msg(p)(ttss(ginit)(p)(sched(r)), q)It is also necessary to specify that the predicate is true only in thiscircumstance|that is, only correct messages are sent, and only at the correcttime.comm_phase2: AXIOMFORALL (q: (out_nbrs(p))): sent(p, q, m, t)=> EXISTS r: t = sendtime(p, r)AND m = msg(p)(ttss(ginit)(p)(sched(r)), q)Sending and reception of messages are related by the max delay axiom, whichcorresponds to Assumption 4 on Page 11 in Section 3.2. In the following speci-�cation of this axiom, delta, the maximum delay, is some nonnegative realtimeconstant and delay is the subtype of realtime comprising those times between 0and delta, inclusive. The declaration of delta generates an existence TCC toensure that its type is not empty; this is discharged by exhibiting the value 0.delta: fx: realtime | 0 <= xgdelay: TYPE = fx: realtime | 0 <= x AND x <= deltagd: VAR delaymax_delay: AXIOMsent(p, q, m, t) IFF EXISTS (d: delay): recv(q, p, m, t + d)It is convenient to separate the equivalence in this axiom into two implications,speci�ed by the following lemmas, whose proofs are trivial.max_delay1: LEMMAsent(p, q, m, t) => EXISTS (d: delay): recv(q, p, m, t + d)max_delay2: LEMMArecv(q, p, m, t) => EXISTS (d: delay): sent(p, q, m, t - d)The max delay axiom and its lemmas generate TCCs to ensure that p is amongthe in-nbrs of q or, dually, that q is among the out-nbrs of p; these are dischargedby appeal to the channels match axiom.Next, we specify the remaining constraint from Section 3.2 (Page 12).constraint3: AXIOM P(i) > D(i) + Sigma + (1 + rho) * delta



Systematic Formal Veri�cation for Time-Triggered Algorithms 33The nonlinear product in constraint3 complicates theorem proving (PVS hasdecision procedures for linear arithmetic only), so it is convenient to establish thefollowing lemmas.rho_prop1: LEMMA (1 - rho) * d >= 0rho_prop2: LEMMA (1 + rho) * d >= 0constraint3_lemma: LEMMA P(i) > D(i) + Sigma + (1 + rho) * dThe �rst two follow from the type constraints on rho by the PVS prelude for-mula pos times ge; the third follows from constraint3 using the prelude formulaboth sides times pos le2.Next, we introduce a predicate in comm phase(t, p, r) that is true when therealtime t is in the communication phase for round r on processor p.in_comm_phase(t, p, r): bool =sched(r) <= C(p, t) AND C(p, t) < sched(r) + P(r)A straightforward proof appealing to drift rate, clock sync, constraints 1and 2, constraint3 lemma, and rho props 1 and 2 then establishes the followinglemma, which ensures that a message sent by processor p in round r and subjectto a delay d arrives at processor p while that processor is in its communicationphase for the same round.arrival_prop: LEMMA in_comm_phase(sendtime(q, r)+d, p, r)(This is a formal restatement of the formula (1) on Page 12 of Section 3.2.)Using arrival prop, comm phase1, and max delay1, we can then prove thefollowing lemma, which establishes that processor p will receive some message mfrom processor q during the communication phase of the r'th round.recv_prop: LEMMA FORALL r, p, (q: (in_nbrs(p))):EXISTS (m: mess), (t: realtime):in_comm_phase(t, p, r) AND recv(p, q, m, t)The function ttin speci�es the message available to processor p at clocktime Tfrom processor q. The signature of this function is speci�ed as followsttin(p)(T)((q: (in_nbrs(p)))): Mand its interpretation is supplied by the following axiom.



34 ttin_ax: AXIOM sched(r) + P(r) <= T AND T < sched(r + 1)=> FORALL (q: (in_nbrs(p))):ttin(p)(T)(q) = epsilon! (m):EXISTS t: in_comm_phase(t, p, r) AND recv(p, q, m, t)This axiom uses Hilbert's " operator (represented in PVS by epsilon) to say thatif T is in the computation phase for round r, then the message ttin(p)(T)(q)is the one received from q during the communication phase for that round|orone of them if more than one was received, or an arbitrary message if none wasreceived. To rule out these latter possibilities, we will need to demonstrate thatthe time-triggered system is su�ciently well-behaved that exactly one message isreceived by p from q.We can predicate this demonstration on the assumption that thestate of the time-triggered system at the start of the r'th round (i.e.,ttss(ginit)(q)(sched(r))) is the same as that of the untimed system at thatpoint (i.e., run(ginit)(r)(q)|call this s), since this will be proved in the maintheorem. What we then need to show is that at the start of the computation phasefor round r (i.e., at time sched(r)+P(r)), ttin(p)(sched(r)+P(r))(q) has thesame value as the message sent by q to p in the untimed system (i.e., msg(q)(s,p)). The necessary demonstration is therefore encoded in the following lemma.ttin_prop: LEMMAFORALL (q: (in_nbrs(p))): LET s = run(ginit)(r)(q) INttss(ginit)(q)(sched(r)) = sIMPLIES ttin(p)(sched(r)+P(r))(q) = msg(q)(s ,p)This is proved straightforwardly, using the formulas ttin ax, constraint1,max delay2, comm phase2, arrival prop, recv prop, and comp phase. Thelemma generates a TCC to ensure that p is among the out-nbrs of q; as usual,this is discharged by appeal to the channels match axiom.The state of a processor p is unspeci�ed during its computation phase, but attime sched(r) (i.e., the end of the r-1'st computation phase) it has the valuethat results from applying its transition function trans(p) to its state at the timewhen the computation phase began (i.e., in state ttss(ginit)(p)(T), where T issched(r - 1) + P(r-1)), and the array of incoming messages available at thattime (i.e., ttin(p)(T')). (In the special case r = 0, the state is ginit(p).) Thisis speci�ed by the following axiom. (This axiom generates a TCC to ensure thatthe occurence of r-1 is nonnegative; this obligation is discharged automatically bythe default proof strategy.)ttss_start: AXIOM ttss(ginit)(p)(sched(r))= IF r = 0 THEN ginit(p)ELSE trans(p)(ttss(ginit)(p)(T), ttin(p)(T))WHERE T = sched(r - 1) + P(r-1)ENDIF



Systematic Formal Veri�cation for Time-Triggered Algorithms 35The state of each processor is held constant during the communication phase of around, as speci�ed in the following axiom.ttss_comm: AXIOM sched(r) <= T AND T <= sched(r) + P(r)=> ttss(ginit)(p)(T) = ttss(ginit)(p)(sched(r))Using ttss start, ttss comm, constraint1, and ttin prop, we can establishthe following lemma (which is the antecedent to ttin prop) by straightforwardinduction on r.Main_Lemma: LEMMA ttss(ginit)(p)(sched(r)) = run(ginit)(r)(p)We can now de�ne gs(r), the global start time for round r as in formulas (3)and (4) on Page 14 of Section 3.3.gs(r): realtimegs_ax: AXIOM (FORALL q: C(q, gs(r)) >= sched(r))AND (EXISTS p: C(p, gs(r)) = sched(r))If gi is some initial global state then gu(r), the global state of the untimed systemat the start of round r is given by run(gi)(r). Similarly, gt(t)(p), processor p'scomponent of the global state of the time-triggered system at realtime t is givenby ttss(gi)(p)(C(p, t)). These de�nitions are recorded as follows.gi: global_initgt(t)(p): state = ttss(gi)(p)(C(p, t))gu(r): global_state = run(gi)(r)The global state of the time-triggered system at time gs(r) is therefore gt(gs(r)),and our desired theorem can then be speci�ed as follows.Theorem_1: THEOREM gt(gs(r)) = gu(r)This is proved straightforwardly using gs ax, Main Lemma, ttss comm, clock sync,constraint3, and rho prop2.



36A.2.1 LaTEX-printed Speci�cationtime triggered system : theorybeginimporting untimed systemp; q : var procs : var statem : var messclocktime : type = natrealtime : type = realT : var clocktimet; t1; t2 : var realtimeC(p; t) : clocktimemonotone clock : axiom t1 < t2 ) C(p; t1) < C(p; t2)� : fx : real j 0 < x ^ x < 1gdrift rate : axiom(1 � �)� (t1 � t2) � C(p; t1) � C(p; t2)^C(p; t1) � C(p; t2) � (1 + �)� (t1 � t2)� : clocktimeclock sync : axiom abs(C(p; t) � C(q; t)) < �i; j; r : var roundsched(r) : clocktimemonotone sched : axiom i < j � sched(i) < sched(j)dur(r) : clocktime = sched(r + 1) � sched(r)D(r) : clocktimeP (r) : clocktimeconstraint1 : axiom 0 < D(r)^D(r) < P (r) ^ P (r) < dur(r)constraint2 : axiom D(r) � �sendtime(p; r) : realtimesendtime ax : axiom C(p; sendtime(p; r)) = sched(r) + D(r)in comp phase(t; p; r) : bool =let T = C(p; t) in sched(r) + P (r) � T ^ T < sched(r + 1)



Systematic Formal Veri�cation for Time-Triggered Algorithms 37comp phase : lemma i < j ) sched(i) + P (i) < sched(j)ginit : var global initttss(ginit)(p)(T ) : statesent(p; (q : (out nbrs(p))); m; t) : boolrecv(q; (p : (in nbrs(q))); m; t) : boolcomm phase1 : axiom8 (q : (out nbrs(p))) : sent(p; q;m; sendtime(p; r))where m = msg(p)(ttss(ginit)(p)(sched(r)); q)comm phase2 : axiom8 (q : (out nbrs(p))) :sent(p; q;m; t))9r : t = sendtime(p; r)^m = msg(p)(ttss(ginit)(p)(sched(r)); q)� : fx : realtime j 0 � xgdelay : type = fx : realtime j 0 � x ^ x � �gd : var delaymax delay : axiom8 p; (q : (out nbrs(p))); m; t :sent(p; q;m; t), 9 (d : delay) : recv(q; p;m; t + d)max delay1 : lemma8 p; (q : (out nbrs(p))); m; t :sent(p; q;m; t)) 9 (d : delay) : recv(q; p;m; t + d)max delay2 : lemma8 q; (p : (in nbrs(q))); m; t :recv(q; p;m; t)) 9 (d : delay) : sent(p; q;m; t � d)constraint3 : axiom P (i) > D(i) + � + (1 + �)� �rho prop1 : lemma (1 � �)� d � 0rho prop2 : lemma (1 + �)� d � 0constraint3 lemma : lemma P (i) > D(i) + � + (1 + �)� din comm phase(t; p; r) : bool = let T = C(p; t) in sched(r) � T ^ T < sched(r) + P (r)arrival prop : lemma in comm phase(sendtime(q; r) + d; p; r)recv prop : lemma8 r; p; (q : (in nbrs(p))) :9 (m : mess); (t : realtime) : in comm phase(t; p; r)^ recv(p; q;m; t)ttin(p)(T )((q : (in nbrs(p)))) : messttin ax : axiom



38 sched(r) + P (r) � T ^ T < sched(r + 1))8(q : (in nbrs(p))) :ttin(p)(T )(q) ="! (m) : 9 t : in comm phase(t; p; r)^ recv(p; q;m; t)ttin prop : lemma8 (q : (in nbrs(p))) :let s = run(ginit)(r)(q)in ttss(ginit)(q)(sched(r)) = s)ttin(p)(sched(r) + P (r))(q) = msg(q)(s; p)ttss start : axiomttss(ginit)(p)(sched(r)) =if r = 0 then ginit(p) else trans(p)(ttss(ginit)(p)(T ); ttin(p)(T ))where T = sched(r � 1) + P (r � 1)endifttss comm : axiomsched(r) � T ^ T � sched(r) + P (r))ttss(ginit)(p)(T ) = ttss(ginit)(p)(sched(r))Main Lemma : lemma ttss(ginit)(p)(sched(r)) = run(ginit)(r)(p)gs(r) : realtimegs ax : axiom(8 q : C(q; gs(r)) � sched(r)) ^ (9 p : C(p; gs(r)) = sched(r))gi : global initgt(t)(p) : state = ttss(gi)(p)(C(p; t))gu(r) : global state = run(gi)(r)Theorem 1 : theorem gt(gs(r)) = gu(r)end time triggered systemB OM(1) As a Functional Program in PVSThe main additional detail needed to turn the treatment of Section 4 into validPVS is to provide de�nitions or axioms for themaj (majority) function. In previoustreatments of Oral Messages algorithms [26{28,34], we have speci�ed this functionaxiomatically; here, however, a constructive de�nition is preferred because it allowsgreater automation in the proofs. The de�nition is based on the MJRTY algorithmof Boyer and Moore [4]; its formalization in PVS is due to Shankar.77See Shankar's Lecture 5 for the 1996 Marktoberdorf Summer School at URL http://www.csl.sri.com/~shankar/marktoberdorf/marktoberdorf.html.



Systematic Formal Veri�cation for Time-Triggered Algorithms 39B.1 MJRTY in PVSMJRTY, discovered by Boyer and Moore in 1981 [3] but not published until tenyears later [4], is a linear-time algorithm for �nding the majority among valuesin an array, if such a majority (i.e., a value held by more than half the locationsin the array) exists. The idea is to pair o� and eliminate dissimilar values; thesurviving value (if any) is the only candidate for the majority, and a second scanof the array is needed to check whether it does indeed have a majority.This idea can be converted to the following pseudocode for calculating the ma-jority candidate cand and its lead over all other values in the array poll (withindices 0: : :n-1).cand, lead := poll[0], 1;FOR i = 1 TO n - 1 DOIF poll[i] = candTHEN lead := lead + 1ELSIF lead > 0THEN lead := lead - 1ELSE cand, lead := poll[i], 1ENDIFWe can convert this imperative program into a recursive function mjrty that re-turns the pair (cand, lead) as its value. The recursive function examines thearray entries in the opposite order to the imperative program, but is otherwise afairly direct transliteration.mjrty(poll, i): RECURSIVE [T, nat] =IF i > 0THEN LET (cand, lead) = mjrty(poll, i - 1) INIF poll(i) = cand THEN (cand, lead + 1)ELSIF lead > 0 THEN (cand, lead - 1)ELSE (poll(i), 1)ENDIFELSE (poll(0), 1) ENDIFMEASURE iThe candidate majority value is obtained by projecting the �rst element from thepair returned by mjrty(poll, n-1).One complication, however, is that the maj function we actually require musttake an additional participants argument to indicate those members of the arraythat are to be considered in the majority vote. We can easily modify the core ofthe function (in the scope the LET) to be conditioned on participants(i), butmust be careful with the base case i = 0, since this might not be a member ofparticipants. A more uniform treatment is possible if we allow the index i to gofrom 0 to n (rather than n-1) and then access the array at location i-1 as follows.



40preamble: : :mjrty(poll, participants, i): RECURSIVE [T, nat] =IF i > 0THEN (LET (cand, lead) = mjrty(poll, participants, i - 1) INIF member(i - 1, participants)THEN IF poll(i - 1) = cand THEN (cand, lead + 1)ELSIF lead > 0 THEN (cand, lead -1)ELSE (poll(i - 1), 1) ENDIFELSE (cand, lead) ENDIF)ELSE (noname, 0) ENDIFMEASURE imaj(participants, poll): T = PROJ_1(mjrty(poll, participants, n))The preamble declarations are shown below.mjrty[T: NONEMPTY_TYPE, n: posnat]: THEORYBEGINcand, X: VAR Tindex: TYPE = below[n]p: VAR indexvector: TYPE = [index -> T]poll, v, v1, v2: VAR vectorparticipants: VAR setof[index]i: VAR upto[n]lead: VAR natnoname: TThe declaration mjrty generates four TCCs: three are subtype TCCs to ensurethat the instances of i - 1 are nonnegative, and the other is a termination TCC.All are proved automatically by the default strategies.In order to tell whether the value returned by maj really does have a majority,we need to count the number of times that value occurs in the array among theparticipants. Because mjrty is de�ned by recursion, it is likely that veri�cationof its properties will require proof by induction (on i), so the counting functionshould also be parameterized by i. This leads to the following speci�cation. Here,cardinality is the name of the standard PVS library containing cardinality func-tions, and fincardi is the cardinality function for the �rst i members of an arrayon a �nite type.



Systematic Formal Veri�cation for Time-Triggered Algorithms 41IMPORTING cardinality@finite_cardinality[below[n], n, id[below[n]]],cardinality@card_set[below[n], n, id[below[n]]]count_votes(poll, participants, X, i): nat =fincardi((LAMBDA p: member(p, participants) AND poll(p) = X), i)The key property of mjrty is captured in the following invariant. The lemmais proved automatically by the command (induct-and-simplify "i").invariant(poll, participants, i): bool =LET (cand, lead) = mjrty(poll, participants, i)IN FORALL X:2 * count_votes(poll, participants, X, i)<= fincardi(participants, i)+ IF X = cand THEN lead ELSE -lead ENDIFinvariant_holds: LEMMA invariant(poll, participants, i)It is then easy to establish that no value other than the candidate returned bymjrty can be a majority.correctness_step2: LEMMALET (cand, lead) = mjrty(poll, participants, i)IN X /= candIMPLIES 2 * count_votes(poll, participants, X, i)<= fincardi(participants, i)This is proved automatically from the previous lemma by the command (stew:lemmas "invariant holds"). See [37] for a description of the STEW strategy(which simply introduces the given lemmas and calls grind).It then follows (by (stew :lemmas "correctness step2")) that if there is amajority value, then it is the one produced by maj.maj_correctness: LEMMA2 * count_votes(poll, participants, X, n) > fincard(participants)IMPLIES maj(participants, poll) = XFinally, we can establish that the value of maj depends only on values of elementsamong the participants.maj_ext: LEMMA(FORALL p: member(p, participants) IMPLIES v1(p) = v2(p))IMPLIES maj(participants, v1) = maj(participants, v2)This is proved by expanding the de�nition of maj and applying induction to es-tablish equality of the values of mjrty thereby revealed.



42B.1.1 LaTEX-printed Speci�cationmjrty[T : nonempty type; n : posnat] : theorybegincand; X : var Tindex : type = below[n]p : var indexparticipants : var setof[index]vector : type = [index ! T ]poll; v; v1; v2 : var vectori : var upto[n]lead : var natnoname : Tmjrty(poll; participants; i) : recursive [T; nat] =if i > 0 thenlet (cand; lead) = mjrty(poll; participants; i � 1) inif (i � 1 2 participants)then if poll(i � 1) = candthen (cand; lead + 1)elsif lead > 0then (cand; lead � 1)else (poll(i � 1); 1)endifelse (cand; lead)endifelse (noname; 0)endifmeasure imaj(participants; v) : T = PROJ 1(mjrty(v; participants; n))importing cardinality@�nite cardinality[below[n]; n; id[below[n]]];cardinality@card set[below[n]; n; id[below[n]]]count votes(poll; participants; X; i) : nat =�ncardi((� p : participants(p) ^ poll(p) = X); i)invariant(poll; participants; i) : bool =let (cand; lead) = mjrty(poll; participants; i)in 8 X :2� count votes(poll; participants; X; i)��ncardi(participants; i) + if X = cand then lead else � lead endifinvariant holds : lemma invariant(poll; participants; i)correctness step2 : lemma



Systematic Formal Veri�cation for Time-Triggered Algorithms 43let (cand; lead) = mjrty(poll; participants; i)in X 6= cand �2� count votes(poll; participants; X; i) ��ncardi(participants; i)maj correctness : lemma2� count votes(poll; participants; X; n) > �ncard(participants) �maj(participants; poll) =Xmaj ext : lemma(8 p : (p 2 participants) � v1(p) = v2(p)) �maj(participants; v1) = maj(participants; v2)end mjrtyB.2 Specifying and Verifying OM(1)The properties required of OM(1) hold only if n, the number of processors,is greater than 3. We therefore undertake speci�cation of OM(1) in PVS in thecontext of a theory in which n is constrained to have the appropriate type and V, thetype of values, is uninterpreted. We can then import the corresponding instanceof the mjrty theory, and introduce the types processors, and pset (for processorset). The uninterpreted constant ok identi�es the set of nonfaulty processors. Weneed to ensure that this set includes at least n-1 processors (i.e., at most oneprocessor may be faulty); this constraint is encoded in the axiom max faults.OM_one[V: TYPE+, n: above(3)]: THEORYBEGINIMPORTING mjrty[V, n]v: VAR Vprocessors: type = below(n)T, p, q: VAR processorspset: TYPE = setof[processors]fullpset: pset = fullset[processors]ok: psetmax_faults: AXIOM fincard(ok) >= n-1Next, we import the appropriate instances of the library theories dealing withcardinality reasoning for �nite types, axiomatize the send function, and then spec-ify OM1 in essentially the same manner as (7) on Page 18.



44 IMPORTING cardinality@card_set[processors, n, id[processors]],cardinality@finite_cardinality[processors, n, id[processors]],card_set_more[processors, n, id[processors]]rounds: TYPE = upto(1)r: VAR roundssend: [rounds, V, processors, processors -> V]send_ax: AXIOM ok(p) AND ok(q) IMPLIES send(r, v, q, p) = vOM1(T, v)(p): V =maj(remove(T,fullpset), LAMBDA q: send(1, send(0, v, T, q), q, p))Speci�c instances of the Agreement property, such as the following, can bechecked automatically by the proof command (grind :rewrites ("send ax")).Agreement_instance: LEMMAn = 4 AND ok(2) AND ok(3) AND (ok(0) OR ok(1))IMPLIES OM1(1, t)(2) = OM1(1, t)(3)Such speci�c instances as this could be examined by running OM1 as a functionalprogram|in fact, theorem proving and, in particular, rewriting is essentially be-ing used as an execution mechanism in this case. A less speci�c instance of theValidity property can be constructed by �xing the number of processors at 4, but(implicitly) universally quantifying over the identity of the processors concerned,as follows.Validity_instance:LEMMA n = 4 AND ok(p) AND ok(T) IMPLIES OM1(T, v)(p) = vExecution would test only speci�c instances of a conjecture such as this, but thegeneral case is proved automatically by the proof command(STEW :REWRITES ("send ax") :LEMMAS ("max faults")).The fully general cases of Agreement and Validity each require a lemma.a: VAR [processors -> V]ok_maj: LEMMA(FORALL p: ok(p) AND member(p, remove(q, fullpset)) => a(p) = v)IMPLIES maj(remove(q, fullpset), a) = vValidity: THEOREM ok(p) AND ok(T) IMPLIES OM1(T, v)(p) = v



Systematic Formal Veri�cation for Time-Triggered Algorithms 45Here, ok maj says that if all the nonfaulty (i.e., ok) processors among the re-ceivers (i.e., in remove(q, fullpset)) agree on a value (i.e., v), than that valuehas a majority. Given this lemma (whose proof is a cardinality argument basedon max faults), the general Validity theorem is proved automatically by thecommand(STEW :THEORIES ("OM_one") :EXCLUDE ("maj"):LEMMAS ("ok_maj") :LAZY-MATCH T)The lemma one fault needed for Agreement states that if processor p is faulty,then any other processor q must be nonfaulty. This follows by a cardinality argu-ment from the max faults axiom.one_fault: LEMMA NOT ok(p) AND q /= p => ok(q)Agreement: THEOREM ok(p) AND ok(q)IMPLIES FORALL (T: processors): OM1(T, v)(p) = OM1(T, v)(q)The theorem Agreement is proved by cases according to whether or not T is faulty.If it is not (i.e., if it is ok), then the result follows from Validity; otherwise, itfollows from maj ext and one fault.(SKOSIMP*)(CASE "ok(T!1)")(("1" (GRIND :DEFS NIL :REWRITES (("Validity"))))("2"(GRIND :THEORIES ("OM_one") :EXCLUDE "maj")(USE "maj_ext")(REDUCE)(USE "one_fault" :IF-MATCH ALL)(REDUCE)))The theory OM one generates nine TCCs to check that the various literal constantsappearing in its formulas satisfy their subtype constraints. All are proved auto-matically by PVS's default strategy.



46B.2.1 LaTEX-printed Speci�cationOM one[V : type+; n : above(3)] : theorybeginimporting mjrty[V; n]v : var Vprocessors : type = below(n)T; p; q : var processorspset : type = setof[processors]fullpset : pset = fullset[processors]ok : psetmax faults : axiom �ncard(ok) � n � 1importing cardinality@�nite cardinality[processors; n; id[processors]];cardinality@card set[processors; n; id[processors]];card set more[processors; n; id[processors]]rounds : type = upto(1)r : var roundssend : [rounds; V; processors; processors! V ]send ax : axiom ok(p) ^ ok(q) � send(r; v; q; p) = vOM1(T; v)(p) : V = maj((fullpset n fTg); � q : send(1; send(0; v; T; q); q; p))Agreement instance : lemman = 4 ^ ok(2)^ ok(3)^ (ok(0)_ ok(1)) �8v : OM1(1; v)(2) = OM1(1; v)(3)Validity instance : lemma n = 4 ^ ok(p)^ ok(T ) � OM1(T; v)(p) = va : var [processors! V ]ok maj : lemma(8 p : ok(p)^ (p 2 (fullpset n fqg))) a(p) = v) �maj((fullpset n fqg); a) = vValidity : theorem ok(p)^ ok(T ) � OM1(T; v)(p) = vone fault : lemma :ok(p)^ q 6= p) ok(q)Agreement : theorem ok(p)^ ok(q) � 8 T; v : OM1(T; v)(p) = OM1(T; v)(q)end OM one


