
From Dependable Computing for Critical Applications{5, Champaign, IL, September 1995, pp. 139{157; Volume 10 ofthe series in Dependable Computing and Fault Tolerant Systems published by IEEE Computer Society Press.Byzantine Agreement with Authentication: Observations andApplications in Tolerating Hybrid and Link Faults�Li Gongy, Patrick Lincoln, and John RushbyComputer Science LaboratorySRI InternationalMenlo Park, California 94025, USAAbstractWe show that the assumptions required of the au-thentication mechanism in Byzantine agreement pro-tocols that use \signed messages" are stronger thangenerally realized, and require more than simple digi-tal signatures. The protocols may fail if these assump-tions are violated. We then present new protocols forByzantine agreement that add authentication to \oralmessage" protocols so that additional resilience is ob-tained with authentication, but with no assumptionsrequired about the security of authentication when thenumber and kind of faults present are within the re-silience of the unauthenticated protocol.Our analysis is performed under a \hybrid" faultmodel that admits manifest (e.g., crash) and symmet-ric faults as well as arbitrary (i.e., Byzantine) faults.We also extend the classical signed messages protocolto this fault model, and show that its fault tolerance ismatched by one of our new protocols. We then explorethe behavior of these various protocols under the com-bination of hybrid processor faults and communica-tions link faults. Using formal state-exploration tech-niques, we examine cases beyond those guaranteed bysimple worst-case bounds and �nd that the resilienceof one of the new protocols exceeds that of the othersin these regions.The new protocols are superior to other known pro-tocols in properties and measures of practical inter-est, and we recommend them for general use. Theyare particularly attractive in security-critical systemswhere authentication may be subjected to sophisticatedcryptographic attack, and in safety-critical embedded�This work was supported in part by the National Aeronau-tics and Space Administration, Langley Research Center, undercontract NAS1-20334, by the Air Force O�ce of Scienti�c Re-search, Air Force Materiel Command, USAF, under contractF49620-95-C0044, and by the National Science Foundation un-der contract CCR-9509931.yLi Gong is now with JavaSoft and can be reached atgong@eng.sun.com

systems where it may be necessary to use very shortsignatures, but where maximum resilience is required.1 IntroductionA fundamental requirement in fault-tolerant sys-tems based on the \state machine" approach [27] isfor replicated processors to reach agreement on thevalues of single-source data, such as sensor samples.In its abstract form, this is the problem of Byzan-tine Agreement (and its variant, the problem of \In-teractive Consistency," also known as \source congru-ence," \distributed consensus," and \reliable multi-cast") [16, 23]. There are two broad classes of proto-cols for achieving Byzantine agreement. Those basedon \oral message" assumptions place no restrictionson what a faulty processor may do; those based on\written message" assumptions disallow faulty pro-cesses making undetectable modi�cations to messagesas they are relayed from one processor to another, andalso disallow processors manufacturing messages thatpurport to come from another processor. It is gener-ally stated that the written messages assumptions canbe satis�ed using cryptographic authentication meth-ods (i.e., \digital signatures"), and protocols based onthese assumptions are therefore often called \signedmessages" or \authenticated" protocols [5, 11, 16].Both oral and written message protocols proceed in\rounds" and the parameters of interest include: howmany faults can be tolerated by a given number ofprocessors, and how many rounds and how many mes-sages are required? Theoretical studies also considerthe size of the messages, or the total number of bitstransmitted. The advantage of written messages pro-tocols is that they can generally withstand more faultsthan oral message protocols, and often require fewermessages. For example, oral message protocols require3t+ 1 processors to withstand t faults, while writtenmessages protocols require only t + 2 (the problem isvacuous unless there are at least two nonfaulty pro-1



cessors). However, both classes of protocols provablyrequire t + 1 rounds in the worst case [5, 11], though\early stopping" protocols (which are most easily con-structed under the written messages assumptions) usefewer rounds when the actual number of faults is lessthan t [2, 7, 8, 10, 12].It would seem that the written messages protocolshave signi�cant advantages over their oral messagecounterparts (e.g., asymptotically, a three-fold advan-tage in number of faults tolerated). However, theseadvantages may not be so signi�cant in practice. Inembedded applications, the most severe practical con-straint on these protocols is the number of rounds: agiven application will generally �x the number r ofrounds it can a�ord (generally two). This, in turn,�xes the number of faults that can be tolerated at r�1,independently of the class of protocols chosen.1 Theclass of protocols does a�ect the number of processorsrequired: e.g., two-round written message protocolsrequire three processors to tolerate a single fault, whileoral message protocols require four. But if other pur-poses (e.g., clock synchronization) already require fouror more processors, there seems no compelling reasonto use written message protocols. In fact, there is anargument against these protocols which Chris Wal-ter, one of the developers of the MAFT architecturefor fault-tolerant ight control [15] expressed to us asfollows: \you have to assume that digital signaturessatisfy the requirements for written messages, and inlife-critical systems we prefer to make as few assump-tions as possible." It turns out that this caution isjusti�ed.In the rest of the paper, we �rst describe the var-ious assumptions that such protocols (we will callthem \authenticated protocols") depend on, highlight-ing the risks in placing the correctness of Byzantineagreement on the e�ectiveness of cryptographic pro-tocols for which currently there is no method of as-surance that is de�nitive and generally accepted. Wenote, however, that authenticated protocols can toler-ate more faults than oral message protocols, and weshow that this advantage is retained when the analysisis extended to a hybrid fault model that counts faultsmore carefully than the purely Byzantine fault model.We then consider the addition of authentication tovariants of the Oral Messages protocol and show thatthis increases the number of faults they can tolerate ifthe assumptions on the authentication mechanism arewarranted, without compromising their innate fault1The small number of rounds and the deterministic processorand communications scheduling used in embedded applicationsalso obviate the bene�ts of early stopping.

tolerance if those assumptions are violated. Assumingauthentication, we show that one of these new proto-cols can tolerate as many hybrid faults as the classicalSigned Messages protocol.We then examine the two-round versions of thevarious protocols under an enlarged fault model thatincludes communications link faults. For many ap-plications, this is the most realistic class of proto-col and fault-model, and we provide evidence, derivedfrom formal state-exploration techniques, that one ofthe authenticated oral message protocols provides thegreatest fault tolerance.2 Byzantine agreement, fault models,and message assumptionsIn the classical Byzantine Generals problem, thereare a number of participants, which we call \proces-sors." A distinguished processor, which we call thetransmitter , possesses a value to be communicated toall the other processors, which we call the receivers .(These correspond to the \Commanding General" and\Lieutenant Generals," respectively, in the terminol-ogy of Lamport, Shostak, and Pease [16].) It is as-sumed that there are point-to-point communicationspaths between each pair of processors. The ByzantineAgreement problem can be studied under several dif-ferent sets of assumptions. We consider both \Oral"and \Written" message assumptions, and a \Hybrid"fault model. The Oral Messages assumptions are thefollowing [16, p. 387].A1: Every message that is sent between nonfaultyprocessors is correctly delivered.A2: The receiver of a message knows who sent it(assumption of private channels).A3: The absence of a message can be detected(assumption of synchrony).Written Messages assumptions add the following tothose of oral messages [16, p. 391].A4(a): Messages sent by a nonfaulty processor (un-der the hybrid fault model|see later|this be-comes a non-arbitrary-faulty processor) cannot bealtered or manufactured by other processors.A4(b): Any nonfaulty receiver can identify the pro-cessor that originated a message, if that proces-sor is nonfaulty (again, under the hybrid faultmodel this becomes a non-arbitrary-faulty pro-cessor). Note that A2 concerns the case of a di-rect path from sender to receiver, whereas A4(b)concerns a message from an \originating sender"2



that is possibly relayed by other processors beforereaching the receiver.There are n processors in total, of which some (pos-sibly including the transmitter) may be faulty. In theclassical Byzantine Generals problem, there are noconstraints other than those given above on the be-havior of faulty processors. This leads to pessimisticestimates of the number of faults that can be toleratedbecause all faults are regarded as the worst possible.We therefore consider a \hybrid" fault model (origi-nally due to Thambidurai and Park [29] and also inves-tigated by Walter, Suri, and Hugue [30]) that distin-guishes certain simpler kinds of fault as well as thosethat are unconstrained. The fault modes we distin-guish for processors are arbitrary-faulty , symmetric-faulty , and manifest-faulty . A manifest fault is onethat can be detected by mechanisms present in allnonfaulty processors (e.g., missing or improperly for-matted messages). The other two fault modes yieldbehaviors that are not detectably bad: a symmet-ric fault presents the same faulty behavior to everynonfaulty processor; an arbitrary fault is completelyunconstrained (i.e., Byzantine) and may present (pos-sibly) di�erent aberrant behaviors to some nonfaultyprocessors, and good behavior to others.The above characterization of the hybrid faultmodel is a generic one; for Byzantine agreement, thecharacterization of fault modes has to be re�ned interms of the processor behaviors relevant to this prob-lem (see [26] for a di�erent characterization in termsrelevant to clock synchronization). The basic step inan agreement protocol is for a processor to transmita value v to several other processors. The interpre-tation of a manifest fault in this context is one thatproduces detectably missing values (e.g., timing, omis-sion, or crash faults), or that produces a value that allnonfaulty recipients can detect as bad (e.g., it failschecksum or format tests). Symmetric faults deliverwrong , rather than missing or manifestly corruptedvalues|but do so consistently, so that all receiversof a given transmission obtain the same wrong valuev0 6= v. Arbitrary faults are unconstrained, and candeliver correct, wrong, or manifestly faulty values inany combination.Under these assumptions, the Byzantine Agree-ment problem is to devise a protocol that will alloweach receiver p to compute an estimate �p of the trans-mitter's value satisfying the following conditions:Agreement: If receivers p and q are nonfaulty,then they agree on the value ascribed to thetransmitter|that is, for all nonfaulty p and q,�p = �q .

Validity: If receiver p is nonfaulty, the value ascribedto the transmitter by p is� The value actually sent, if the transmitter isnonfaulty or symmetric-faulty,� The distinguished value E, if the transmitteris manifest-faulty.All the Byzantine agreement protocols we considerproceed in rounds: in the �rst round, the transmittersends a value to all the other processors; in subsequentrounds, these processors exchange the values receivedamong themselves in order to detect inconsistencies;each receiver then decides on one value among thosereceived and exchanged. How this decision is made,and how the exchanges are done, depends on the pro-tocol considered.Notice that the additional assumptions for writ-ten messages essentially constrain the behavior ofsymmetric- and arbitrary-faulty receivers: under oralmessage assumptions, such receivers can alter or man-ufacture messages purporting to come from other pro-cessors in the later rounds|this is prohibited underwritten messages assumptions. Authenticated proto-cols attempt to satisfy the written messages assump-tions using digital signatures: each processor signsthe messages that it sends. Any receiver can checkthe authenticity of a message and con�rm the identityof its claimed originator by checking the signature.There are several digital signature schemes that pro-vide these basic properties [4, 9, 22, 25]. However, inthe following section we show that these schemes mustbe used very carefully.3 Authentication issuesThe messages that are passed among the pro-cessors in authenticated protocols have the formff: : :fvgp : : :gqgr which symbolizes the value v ina message signed and sent by processor p, receivedsigned and forwarded by processors : : : ; q and �nallyreceived, signed and forwarded by processor r. If pro-cessor p is nonfaulty, then at no stage in the protocolshould there exist ff: : : fv0gp : : :gqgr in which v 6= v0.(This follows because if p is nonfaulty, it would notsend out two di�erent values v and v0, and authen-tication prevents any other processor manufacturingsuch a value.) It is generally assumed that this re-quirement is satis�ed if digital signatures are simplycomputed on and attached to the messages being re-layed. This would be true if a valid message of theform ff: : : fvgp : : :gqgr could only arise once in thelifetime of the protocol. Theoretical examinations ofthese protocols normally consider only a single \run,"3



but in practice they will be called repeatedly (e.g.,to distribute sensor samples at the beginning of everyprocess control cycle). It follows that processor r couldsave a valid message f: : : fv0gp : : :gq from one run ofthe protocol and could then inject the correctly signedmessage ff: : : fv0gp : : :gqgr into a later run, which willcause any nonfaulty receiver to conclude that the orig-inal sender p must be faulty, and thereby defeat theprotocol.We do not need to postulate active, intelligent at-tacks to be concerned about this kind of problem: ahardware \o� by one" fault that causes a message tobe picked up from the wrong bu�er when two agree-ment protocols are in operation simultaneously (aswhen all processors are exchanging sensor data) couldproduce this behavior. A solution to this particularproblem is to include additional information under thedigital signatures that will identify messages as \fresh"(Lamport, Shostak, and Pease suggest sequence num-bers [16, page 400]), but this needs to be done carefullyin order to distinguish this run of the protocol fromothers that may be active simultaneously.In the rest of this section, we discuss this and anumber of other issues requiring care in the imple-mentation of authenticated Byzantine agreement pro-tocols.Signature permutation. The signature sys-tem must not be commutative. Otherwise,8p; q; v; ffvgpgq = ffvgqgp and, if the session initiatoris faulty, another faulty processor can falsely accusea third, but correct, processor of being faulty in aseveral-round protocol.Verifying signature sequences. Verifying a se-quence of t signatures is not trivial. A recipient cantry all possible sequences of t out of n signatures, butthis requires an exponential amount of computation.Or the message can include a hint, such as the iden-tity of the signer, in each stage of the signing, so themessage may look like fq; fp; vgpgq . We can alterna-tively require that a list of hints is attached to eachmessage outside the signatures. However, such hintswill add O(n logn) bits to the message length (in an n-round protocol), thus exceeding the tight lower boundon message bits by Srikanth and Toueg [28, Theorem1] by a factor of n. (In today's practice, a secure dig-ital signature uses about 512 to 1024 bits.) Note thathints are necessary whether the signature system usedis commutative or not. A third approach is to glob-ally order the messages so that a recipient can deducefrom the context which signature sequence should beused for veri�cation.

Processors are assumed to know each others' signa-ture keys. Borcherding [3] investigates the case wherethere is no central authority to distribute these keys,and proposes the notion of \local authentication" toachieve a weaker version of Byzantine agreement.Distinguishing concurrent sessions. Whenmultiple sessions can execute at the same time, it isvital to determine to which run a message belongs.Otherwise, suppose each processor maintains a di�er-ent sensor and all processors are trying to agree onthe values of all sensors, then a faulty processor may\borrow" a signed message from one run and use it inanother. Even a benign processor can possibly makesuch a mistake, as we described previously. One so-lution is to attach a session identi�er, possibly theidentity of the session initiator, to the sensor value.This solution will increase the size of each message byO(logn) bits. This does not exceed the lower boundby Srikanth and Toueg [28] because they already allo-cate O(logn) bits for signatures.Detecting replay attacks. Beside distinguishingconcurrent sessions initiated by di�erent processors,it is equally important to detect any attempt to reusepast messages (from the same initiator) in a new run.The initiator must securely attach a freshness identi-�er to the signed value. For example, the initiator cansign both the freshness identi�er and the value in thesame signature.There are three types of freshness identi�ers, eachof which can be used in more than one way [13]. The�rst is a timestamp, if processors have synchronizedclocks. In this case, the initiator attaches the readingfrom the local clock to the value before signing them.A recipient rejects any message with a timestamp thatis outside an agreed time window relative to the re-cipient's local clock. A signi�cant risk exists when afaulty processor can also have a faulty clock so thatthe processor sends out values signed with timestampsin the future. Even if this processor were to recover,another faulty processor could play back such a mes-sage when the correct time comes. The signi�cance ofthis attack lies in the fact that there is no guaranteethat any correct processor will know the existence ofpreviously signed messages (with future timestamps).To invalidate such messages, a repaired processor canchange its signature key during reintegration.The second type of a freshness identi�er is a randomnumber, also known as a \nonce." Since the noncemust be generated by the processor that is checkingfor freshness, processors must exchange nonces witheach other (thus adding one round to the protocol),4



and the value must be signed with all O(n) nonces,thus increasing the message length signi�cantly.The third type is a counter value. Each proces-sor maintains a monotonic counter, increments thecounter value before initiating a session, and thensigns the value together with the current countervalue. Each processor also maintains a vector times-tamp, noting the last seen counter value from everyother processor, and rejects any value signed with apast counter value. Similar to timestamps, a faultyprocessor may sign \future" counter values, so it isprudent to change to a new signature key after repair.Repair and restart. When a processor fails, itmay lose all its state information, including the cur-rent session and round numbers and freshness identi-�ers. If the failure is arbitrary, then the surviving stateinformation may be wrong. For example, its clock orcounters may be turned back or forward. Moreover,simply asking every processor to reset their countersto zero is vulnerable to replay attacks. Therefore, torestore the synchrony between processors after repair,a repaired processor must use challenge-response (withnonces) to obtain from other processors fresh repliescontaining the current state information. Given theadditional need of assigning a new signature key tothe restarting processor and notifying all other pro-cessors of the corresponding public key, restart can becostly.Message redundancy. A message containing thevalue to be signed must contain su�cient redundancyto protect against forgery. For example, a faulty pro-cessor pmay choose a random number x and broadcastit as fvgp for some value v. Because it is quite possiblethat there is a value v0 such that x = ffv0gqgp, p maye�ectively forge a signature of value v0 signed by q.Or the faulty processor p can simply copy fv0gq froma previous protocol run and broadcast ffv0gqgp. Anyprocessor r who further signs ffv0gqgp is also spoofed.There are many ways to introduce redundancy intothe messages. One is to attach a checksum of a suf-�cient length to the original value. The size of themessage will thus increase, perhaps by 128 bits (thesize of a typical one-way hash function output) or atleast O(logn) bits. Note that including a unique iden-ti�er of the current run does not provide su�cient re-dundancy because a randomly selected value x can beof the form fid; vgq, and if id is for a future run, anattack can still happen in the future.3.1 Practical implicationsWe have shown that authentication using digitalsignatures needs to be managed very carefully if it isto be secure against attack. How signi�cant are these

threats? There are two main classes of applicationsfor authenticated Byzantine agreement protocols: se-cure systems that must maintain coordination in theface of capture and active subversion of system compo-nents (e.g., the AT&T \Rampart" architecture [24]),and safety-critical embedded control systems (e.g., theMAFT architecture for aircraft ight control [15]).Sophisticated cryptographic and other attacks are agiven in the �rst class of applications, so our concernabout the security of authentication needs no furtherjusti�cation here (the literature is replete with brokencryptographic protocols [1, 21]).Intelligent malicious attack is not considered a se-rious possibility in embedded systems, and the argu-ment in these cases is a little di�erent. Byzantine-resilient architectures are attractive in these contextsbecause they simplify the case for assurance and cer-ti�cation: instead of a collection of fault-tolerancemechanisms to counter speci�c failure modes, and forwhich it is necessary to provide evidence of coverageand noninterference, we have a single mechanism thatcan withstand any kind of fault, up to some num-ber, and it is only necessary to provide evidence forcorrectness and for the estimated overall fault arrivalrate. Written message protocols compromise the pu-rity of this position: faulty processors can no longerdo absolutely anything , but are constrained by cer-tain assumptions. Real processors can do absolutelyanything when faulty, and in implementations usingsigned messages, it is the authentication mechanismthat constrains them within the assumed fault mode.For certi�cation, it is therefore necessary to providestrong evidence that the authentication mechanismdoes accomplish this: broken authentication is not justanother fault to be tolerated, it is a violation of theassumptions under which correctness of the protocol|and hence of the entire architecture|is established.We have seen that cryptographically strong au-thenticated protocols require even small data mes-sages to be encapsulated in large signature andfreshness-indicating wrappers, and to carry variouskey-management indicators. Hence, embedded sys-tems may prefer to dispense with truly secure au-thenticated protocols and to use short keyed check-sums (Lamport, Pease, and Shostak suggest a suit-able checksum algorithm [16, page 400]), with �xedkeys and simple sequence-numbers to indicate fresh-ness. The authentication assumptions may sometimesfail to hold in this arrangement. In the following sec-tions we present and study protocols that take ad-vantage of authentication if it is present, but that re-tain Byzantine resilience even when signatures may be5



forged. Since checksums will only rarely be \forged"by random malfunctions, these protocols are very wellsuited to the needs of embedded systems.The discussion has so far focussed on authenticationfailure in one direction: failure to adequately constrainthe behavior of a faulty processor. Authentication canalso fail in the other direction: causing good messagesto be rejected as bad. There are two ways this cancome about: the authentication mechanism may bealgorithmically incorrect or nonrobust (e.g., vulnera-ble to loss of crypto-synch), or a hardware fault mightdamage a key. The issues enumerated earlier in thissection are intended to help designers avoid the �rstof these dangers; the second is more likely, but lessserious, because it is just another fault, and will betolerated to the same extent as other faults.4 Signed messages with hybrid faultsWe have argued that great care in implementa-tion is necessary in order to satisfy the assumptionsof the authenticated protocols. This care would bejusti�ed if the authenticated protocols had signi�cantadvantages over oral message protocols. However, forthe case of practical importance|that is, two-roundprotocols|there appears little to choose between thetwo classes of protocols: the signed message proto-col SM(1) and the oral messages protocol OM(1) ofLamport, Pease, and Shostak [16] both require tworounds2, and both tolerate only a single arbitraryfault. The di�erence is that OM(1) requires four pro-cessors, while SM(1) requires but three. However, avariation on OM(1) called OMH(1) [19] that oper-ates under the Hybrid fault model can tolerate a arbi-trary, s symmetric, and m manifest faults simultane-ously, provided n, the number of processors, satis�esn > 2a+2s+m+1 and a � 1. Thus, OMH(1) appearsto tolerate more faults than SM(1) under certain cir-cumstances. Of course, this comparison is unfair be-cause the analysis for OMH(1) considers the hybridfault model, whereas that for SM(1) treats all faultsas arbitrary. So one item that warrants examinationis the behavior of SM(1) under the hybrid fault model.The classical signed messages protocol, SM(r) pro-ceeds as follows [16, p. 391]:SM(r)The transmitter sends a signed message toeach receiver. Each receiver adds its sig-nature to the message and sends it to theother receivers who add their signatures and2The parameter r to these protocols starts at zero, so thatthe number of rounds is r + 1.

send it to the others, and so on for r rounds.When all the exchanges are completed, eachreceiver discards any improperly signed mes-sages, extracts the values sent by the trans-mitter from those that remain and applies adeterministic choice function to those values.Note that if the transmitter is not arbitrarily-faulty,the set of values considered in the choice will be a sin-gleton. Lamport, Pease and Shostak show [16, Theo-rem 2] that SM(r) can tolerate up to r faulty proces-sors, the optimal result [6, 11].To extend SM(r) and its analysis to the hybrid faultmodel is straightforward: the hybrid protocol SMH(r)simply recognizes and discards manifest-faulty val-ues. Authentication prevents symmetric-faulty re-ceivers from injecting correctly signed new values, sothese receivers either duplicate other messages (whichis harmless), or they introduce incorrectly signed mes-sages, which will be discarded. Thus, messages fromboth manifest- and symmetric-faulty receivers eitherduplicate existing values or are ignored; hence theyplay no part in the protocol and it is as if these proces-sors were absent. It follows that only arbitrary-faultyprocessors need be counted in the fault-tolerance cal-culation. Thus, by direct analogy with the correspond-ing result (Theorem 2, page 393) in [16], we have thefollowing result.Theorem 1 For any r, Protocol SMH(r) satis�es Va-lidity and Agreement provided r � a, where a is thenumber of arbitrary-faulty processors.The result is somewhat vacuous unless there are atleast two nonfaulty processors, so we also have n >a + s + m + 1, and r � a. This may be comparedwith OMH(r), where we have n > 2a+2s+m+r andr � a.It can be seen that OMH(r) and SMH(r) have thesame fault tolerance with regard to rounds, but thatSMH(r) requires considerably fewer processors thanOMH(r) (or, equivalently, can tolerate more faults fora given number of processors). However, this increasedfault tolerance is obtained at the cost of depending onauthentication: if the authentication assumptions failfor any reason, then SMH(r) may fail altogether.5 Combining authentication and oralmessagesThe idea of examining SM(r) under the hybrid faultmodel suggests the dual inquiry: examining oral mes-sage protocols in the presence of authentication. Itturns out that this yields protocols that combine theadvantages of the two classes of protocols with few6



of their disadvantages. As noted in the discussionof SMH(r), authentication turns symmetric-faulty re-ceivers into manifest-faulty ones: they can only gen-erate messages that are improperly signed. In orderto exploit this in an oral messages protocol, we needa protocol that has the capability to discard bad mes-sages. The classical protocol OM(r) does not do this,but our hybrid protocol OMH(r) does. It thereforeseems the most promising place to start.The protocol OMH(r) [19] is our modi�ed and for-mally veri�ed [17] version of Thambidurai and Park'sprotocol Z(r) [29], which is in turn a modi�cation ofthe r+1-round oral messages protocol OM(r) of Lam-port, Shostak, and Pease [16]. The key idea in bothZ(r) and OMH(r) is to introduce a distinguished valueE to record receipt of manifest-faulty messages. Evalues are ignored in the majority vote that each pro-cessor uses to decide its �nal value. In Z(r), E isused to record both manifest-faulty messages and thereport of such messages relayed by another processor.This leads to confusion when there is a manifest-faultytransmitter and an arbitrary- or symmetrically-faultyreceiver; Z(1) can fail in this circumstance, and thisleads to more complex failures in the r > 1 cases.OMH(r) repairs this problem by treating the reportof manifest-faulty values di�erently than those valuesthemselves: R(E) indicates the report of E, R(R(E))the report of a report, and so on. An inverse functionUnR is used to \strip o�" these Rs at a later stagein the protocol. Only E (not R(E), R(R(E)), etc.) isignored in the majority vote.As noted in the previous section, OMH(r) is ableto tolerate a arbitrary, s symmetric, and m manifestfaults simultaneously, provided n, the number of pro-cessors, satis�es n > 2a+ 2s+m+ r and r � a. Thisis optimal when only arbitrary faults are present (wehave a = r, s = m = 0, so that n > 3a, satisfying thelower bound established by Pease, Shostak, and Lam-port [23]). Separate analysis shows that the protocolis also optimal when only manifest faults are present,and the obtained bound is n > m [18]. When onlysymmetric faults are present, however, the protocol isde�nitely suboptimal, in that additional rounds canreduce its resilience. For example, in OMH(0) (wherereceivers simply accept whatever value they obtainfrom the transmitter), the number of symmetric-faultyreceivers is irrelevant. In OMH(1), however, where re-ceivers relay information to each other and take themajority of the values obtained, one symmetric-faultyreceiver can defeat the protocol unless n � 4.Suppose now that we use digital signatures to addauthentication to OMH(r), thereby creating a proto-

col we can call OMHA(r). First, as Lamport, Shostak,and Pease observe [16, p.393], there is no point au-thenticating the �nal step in the protocol (i.e., theOMH(0) round), because we have point-to-point com-munications and the communication port on which amessage arrives serves to authenticate it (this is As-sumption A2); thus OMHA(0) is the same as OMH(0).For the general case, we simply modify OMH(r) sothat processors sign all messages that they send, andimproperly signed messages are treated by their re-ceivers as E.Notice that as long as authentication does not intro-duce faults (i.e., as long as a properly signed messagecannot be mistakenly considered improperly signed),then OMHA(r) must have at least the fault toleranceof OMH(r), and this is independent of the crypto-graphic strength of the signature scheme. However, ifwe make the usual assumptions about the strength ofthe signature scheme, then authentication reduces theseverity of faults that can be introduced by receivers.In particular, a symmetric-faulty receiver cannot in-ject a completely false value into the exchanges: atworst, it can inject an E or R(E) value; similarly,an arbitrary-faulty receiver can selectively inject Eand R(E), or can pass on the true value that it re-ceived. (Faulty processors cannot inject R(R(E)) etc.,because this would require anR(E) correctly signed byanother processor.) Unfortunately, the residual abil-ity to inject R(E) is su�cient to limit the numberand combination of faults that can be tolerated byOMHA(r) to be no better, in the worst case, than forOMH(r).This disappointing result suggests considerationof a protocol ZA(r), derived from Thambidurai andPark's protocol Z(r) in the same way that OMHA(r)is derived from OMH(r). Since Z(r) and ZA(r) lackthe E, R(E) distinctions of OMH(r) and OMHA(r), itfollows that symmetric-faulty receivers are reduced tomanifest-faulty in ZA(r). Similarly, arbitrary-faultyreceivers are reduced to manifest-faulty or \nonfaultywith communications link faults," which is a case con-sidered in Section 6. Furthermore, authenticationovercomes the bug in Z(r); this bug arises in Z(1) whenan arbitrary- or symmetric-faulty receiver injects spu-rious values into the exchanges under a manifest-faultytransmitter: the E values from the transmitter, andthose relayed by good receivers, are ignored in the ma-jority votes, which are therefore won by the spuriousvalues injected by the faulty receiver. ZA(r) elimi-nates this bug because it prevents the faulty receiversmanufacturing the spurious values that other proces-7



sors will incorporate in their majority votes. ProtocolZA(r) is de�ned as follows.ZA(0)1. The transmitter sends its value to every receiver.2. Each receiver uses the value received from thetransmitter, or uses the value E if a missing ormanifestly erroneous value is received.ZA(r), r > 01. The transmitter signs and sends its value to everyreceiver.2. For each p, let vp be the value receiver p obtainsfrom the transmitter, or E if no value, or a man-ifestly bad value, or incorrectly signed value isreceived.Each receiver p acts as the transmitter in ProtocolZA(r � 1) to communicate the value vp to theother n� 2 receivers.3. For each p and q, let vq be the value receiver preceived from receiver q in step (2) (using Proto-col ZA(r � 1)), or else E if no such value, or amanifestly bad value, or incorrectly signed valuewas received. Each receiver p calculates the ma-jority value among all non-E values vq received;if no such majority exists, the receiver uses somearbitrary, but functionally determined value.We have the following results, where a, s, andm arethe numbers of arbitrary-, symmetric-, and manifest-faulty processors, respectively, and n is the total num-ber of processors.Lemma 1 If signatures are secure, then for any a, s,m and r, Protocol ZA(r) satis�es Validity.Proof: In the �rst round, the transmitter signs andsends its value to all receivers. Validity assumes anonfaulty transmitter, so all nonfaulty receivers willobtain the correct value in this round. The receiversexchange values in subsequent rounds, and faulty re-ceivers may inject faulty values into this process. How-ever, authentication prevents the injection of any cor-rectly signed value other than that sent by the originaltransmitter. Thus the only values entering the major-ity vote will be this value and, possibly, E. Since allgood receivers obtained at least one copy of the valuev directly from the transmitter, and some combinationof vs and Es from other receivers, the hybrid majoritywill always be v. 2

Theorem 2 If signatures are secure, then for any r,Protocol ZA(r) satis�es conditions Validity and Agree-ment if r � a.Proof: The proof is by induction on r. In the basecase r = 0 there can be no arbitrary-faulty processors,since r � a. If there are no arbitrary-faulty processorsthen the previous lemma ensures that ZA(0) satis�esAgreement, and Validity follows. We therefore assumethat the theorem is true for ZA(r�1) and prove it forZA(r), r > 0.First consider the case in which the transmitteris not arbitrary-faulty. Then Validity is ensured byLemma 1, and Agreement follows from Validity. Nowconsider the case where the transmitter is arbitrary-faulty. There are at most a arbitrary-faulty proces-sors, and the transmitter is one of them, so at mosta� 1 of the receivers are arbitrary-faulty. At the nextstage, we have one less round to perform, and one lessarbitrary fault to tolerate. Since we assume r � a, wealso know r�1 � a�1, and we may therefore apply theinduction hypothesis to conclude that ZA(r � 1) sat-is�es conditions Agreement and Validity. Hence, foreach q, any two nonfaulty receivers get the same valuefor vq in step (3). (This follows from Validity if one ofthe two receivers is processor q, and from Agreementotherwise). Hence, any two nonfaulty receivers get thesame vector of values v1; : : : ; vn�1, and therefore ob-tain the same value hybrid-majority(v1 ; : : : ; vn�1) instep (3) (since this value is functionally determined),thereby ensuring Agreement. 2Theorem 2 shows that ZA(r) has the same (opti-mal) fault tolerance as SMH(r) when signatures aresecure; however, ZA(r) has the signi�cant advantagethat it is not totally broken if authentication fails.In the presence of authentication failure, ZA(r) re-verts to, at worst, the fault tolerance of Z(r). Tobe sure, Z(r) is vulnerable to certain con�gurationsof two faults no matter how many rounds and re-ceivers are used (that is why we developed OMH(r)),but in the important case r = 1, its failure mode isvery precisely characterized (manifest-faulty receiverand at least one symmetric-fault or arbitrary-faultyreceiver|the latter is required to break Agreement).An alternative is to use the protocol OMHA(r), whosefallback, OMH(r) is fully robust against arbitrary andmanifest faults, but whose resilience in the presenceof working authentication is inferior to that of ZA(r).Table 1 compares the various protocols we have dis-cussed in terms of worst-case bounds.8



Protocol Authentication AssumptionsViolated SoundSM(r) a = s = 0, n > m+1 n > a+s+m+1, r � aSMH(r) a = s = 0, n > m+1 n > a+s+m+1, r � aOM(r) n > 2a+2s+2m+r, r � a n > 2a+2s+2m+r, r � a (same)OMH(r) n > 2a+2s+m+r, r � a n > 2a+2s+m+r, r � a (same)OMHA(r) n > 2a+2s+m+r, r � a n > 2a+2s+m+r, r � a (same)Z(r) n > 2a+2s+m+r, r � ay n > 2a+2s+m+r, r � ay (same)ZA(r) n > 2a+2s+m+r, r � ay n > a+s+m+1, r � ay Z(1) also fails with a manifest-faulty transmitter and one symmetric-or arbitrary-faulty receiver; Z(r), r > 1, fails in additional cases.Table 1: Comparison of Byzantine Agreement Protocols6 Link faultsCommunications failures represent an importantclass of faults; we call them link faults, with the char-acterization that when a nonfaulty processor sends itsvalue v to a nonfaulty recipient over a faulty link, thevalue received may be either v or E.Because they arise frequently in practice (wires andconnectors are prone to noise and breakage), it is de-sirable to tolerate link faults e�ciently. Notice thata link fault is not attributed to a processor; thus, aprocessor at the receiving end of a faulty link may benonfaulty and the protocol must ensure that it satis�esthe Agreement and Validity conditions. The di�cultyin extending Byzantine agreement protocols to linkfaults is due to the fact that these faults do introduceasymmetry and are therefore as expensive to tolerateas arbitrary failures in the worst case.We can observe that ZA(r) achieves Validity in thepresence of link faults and hybrid processor faults, pro-vided that there is path of length r + 1 links or lessfrom the transmitter to each nonfaulty receiver thatpasses through only nonfaulty processors and goodlinks. SMH(r) has the same bounds on Validity asZA(r), while that of OMHA(r) is worse and di�cultto characterize. We can also observe that for Agree-ment, a link fault is as disruptive, in the worst case, asan arbitrary fault at either the sender or receiver onthe link. Thus, if link faults are attributed to eithertheir sender or receiver, and l is the minimum numberof processors needed to account for all such faults, thenZA(r) will achieve Agreement provided r � a+l. Simi-lar worst case bounds apply for Agreement in SMH(r),while OMHA(r) requires n > 2a+2s+m+ r+2l andr � a+ l.

7 Examining fault tolerance usingstate-exploration techniquesThe worst-case bounds given above are based onrather crude ways of counting faults: there are manyscenarios for the behavior of a system with, say, onearbitrary-faulty and one manifest-faulty processor andtwo link faults, but the worst-case analyses treat themall alike. It is therefore interesting to enquire how wellthe protocols perform under more �ne-grained analysisand, in particular, how they perform in regions beyondthose characterized by the simple worst-case bounds.Simulation could be used to sample the behaviorof the protocols, but a more attractive alternative isto use a formal state-exploration tool to examine theirbehavior in speci�c con�gurations under all scenarios.The idea is to model the system as the compositionof two concurrent processes: one that injects faultsand one that tolerates or diagnoses them. A state-exploration tool will then systematically explore allpossible scenarios for their interaction.We have used the Mur� (pronounced \Murphy")system from David Dill's group at Stanford [20] forthis purpose. Essentially, we provided Mur� programsfor the OMH(1), OMHA(1), Z(1), ZA(1), and SMH(1)protocols in the n = 5 case, and caused Mur� to non-deterministically perform a symbolic \fault injection"(of both link faults and hybrid processor faults) andthen run the protocols. By exploring all di�erent runs(there are over 20,000 of them), Mur� essentially un-dertakes exhaustive fault injection on these protocols(the process takes a couple of minutes on a Sparc10). Of course, it would be straightforward to write aprogram to do this, but we consider the use of formalstate-exploration tools a very promising and general9



technique for the examination of algorithms for faulttolerance and diagnosis.Our experiments con�rmed the worst-case boundson fault tolerance claimed for the various protocolsin the case n = 5 and r = 1, and rediscovered theknown vulnerability of Z(1) to manifest-faulty trans-mitters [19]. That is to say, exhaustive search of allfault con�gurations satisfying the bounds claimed inTable 1 for the case of n = 5 and r = 1 found no vi-olations of Validity nor of Agreement, except for theknown cases in Z(1).However, much more interesting results were ob-tained when we allowed fault-injection to continue be-yond the simple characterizations of worst-case faulttolerance for the protocols concerned. For example,although no �ve-processor, two-round protocol canwithstand two link faults in the worst case, we foundZA(1) does tolerate two such faults in most cases.We therefore used our Mur� fault-injection system tocount how many scenarios caused each protocol to failwith and without the assumption of secure authenti-cation.Protocol Authentication AssumptionsViolated SoundOMH(1) 25 25OMHA(1) 25 23Z(1) 24 24ZA(1) 24 12SMH(1) 43 13Table 2: Percentage of fault con�gurations in a 5-plexwhere each protocol failsTable 2 compares the various protocols we have dis-cussed, using exhaustive state exploration to calculatethe percentage of fault con�gurations that caused theprotocols to fail. Overall, it seems that ZA(1) is themost resilient of these protocols under the combinationof hybrid and link faults, though more experiments areneeded to con�rm this.Fault con�gurations consist of an assignment offault class (good, manifest, symmetric, or arbitrary)to each processor, and an assignment of up to threefaulty links between processors. We excluded con�g-urations with link faults emanating from arbitrary ormanifestly faulty transmitters, or arriving at faulty re-ceivers (such link faults have no real impact on systembehavior). For each con�guration, we tested whetherany scenario of messages by the faulty processors couldcause good receivers to disagree or cause a good re-

ceiver to fail to agree with the transmitter. For eachprotocol, we then calculated the percentage of all faultcon�gurations for which such failure was possible.The newest release of the Mur� system automati-cally detects and exploits symmetry in appropriatelywritten speci�cations, reducing the search space dra-matically. For example, the con�guration where allprocessors are good except that the third receiver ismanifest-faulty is isomorphic to the case when all pro-cessors are good except the second receiver, and Mur�only explores one of these alternatives. Symmetriesare used in the assignment of faulty links as well asin the assignment of behaviors to processors. Be-cause of these symmetry reductions, not all con�g-urations are counted individually, so the numbers inTable 2 should be taken to indicate relative, not ab-solute, performance. We further reduced the set ofcon�gurations to require at least one good receiver,since otherwise validity and agreement are triviallysatis�ed. We excluded symmetric-faulty processorssending manifestly bad (E) values, since this wouldamount to the same thing as a manifest fault, and wealso excluded the case of a symmetric-faulty transmit-ter since there is very little di�erence between this caseand that when the transmitter is good. However, wedid allow an arbitrary-faulty transmitter to behave inany way, including the possibility of behaving as good,symmetric- or manifest-faulty, as well as sending var-ious combinations of good, wrong, and E values.For the authenticated protocols, faulty receiverswere not allowed to send data values other than thatreceived from the transmitter. Thus for algorithmZA(1) arbitrary-faulty receivers are only able to sendmanifestly bad (E) values or the correct value. In algo-rithm OMHA(1), arbitrary-faulty receivers also havethe opportunity to send R(E) and, as discussed ear-lier, this is the main source of brittleness of OMHA(1).We further make the assumption in these experimentsthat authentication never leads to good processors dis-carding good messages. These factors, taken together,signi�cantly reduce the total number of con�gurationsthat need to be considered, but do not e�ect the rel-ative numbers of con�gurations where the various al-gorithms behave acceptably.The table shows that the authenticated protocolZA(1) wrings the maximum fault tolerance from agiven amount of redundant hardware, and outper-forms the classical Signed Messages protocol whetheror not signatures are secure (dramatically so if signa-tures are insecure). ZA(1) is also superior in overallresilience to OMHA(1). This is not to say that ZA(1)is uniformly superior to OMHA(1). Consider a good10



transmitter with link faults to all receivers except p,and p has a link fault to receiver q. Under ZA(1), qdecides on E and all the other receivers decide on thevalue sent by the transmitter to p, thereby violatingAgreement. Under OMHA(1) all receivers settle onE.Note that we are testing the fault tolerance of theseprotocols well beyond their usually claimed fault tol-erance: only approximately �ve percent of all faultcon�gurations we studied fall within the worst-casebounds of the protocols. Thus, all these protocols arefar more tolerant of faults than their simple worst-casebounds would suggest.8 ConclusionThe assumptions required of the authenticationmechanism in Byzantine agreement protocols that use\signed messages" are stronger than generally real-ized, and require that digital signatures are used withgreat care. Violation of these assumptions can causethe protocols to fail. We have presented new proto-cols that combine authentication with \oral messages"protocols so that additional resilience is obtained whenthe authentication assumptions are sound, but the re-silience of the unauthenticated protocol is retainedwhen authentication assumptions are violated.When the authentication assumptions are sound,one of these new protocols, called ZA(r), matches thefault tolerance of the classical signed messages proto-col under a hybrid fault model, and surpasses it whencommunications link faults are considered. ZA(r) alsoperforms well overall when authentication assump-tions are violated, but has an unfortunate \hole" in itsworst-case bound (it is vulnerable when the transmit-ter is manifest-faulty). Another of the new protocols,OMHA(r) may be preferred if this case is consideredimportant, though it is less resilient to link faults thanZA(r).These new protocols are superior to other knownprotocols in properties and measures of practical in-terest, and we recommend them for general use. Theyare particularly attractive in security-critical systemswhere authentication may be subjected to sophisti-cated cryptographic attack, and in safety-critical em-bedded systems where maximum resilience is requiredbut where only short or cryptographically weak signa-tures (e.g., checksums) may be feasible. Selection ofthe most suitable protocol for a given system must ob-viously depend on the expected modes and frequenciesof faults, and the consequences of system failure.Our use of the state-exploration system Mur� toperform symbolic \fault injection" is, we believe,

novel. It suggests a very promising new applicationarea for this class of formal methods tools, and onethat we intend to pursue in future work.AcknowledgmentsOur understanding of these topics has bene�t-ted greatly from discussions with Chris Walter andMichele Hugue (both then with Allied Signal). Com-ments by the anonymous reviewers were also veryhelpful. Malte Borcherding of the University of Karl-sruhe pointed out some errors in the original paper.ReferencesPapers by SRI authors can generally be retrievedfrom http://www.csl.sri.com/fm.html.[1] Mart��n Abadi and Roger Needham. Prudent engi-neering practice for cryptographic protocols. In Pro-ceedings of the Symposium on Research in Securityand Privacy, pages 122{136, Oakland, CA, May 1994.IEEE Computer Society.[2] Birgit Baum-Waidner. Byzantine agreement with aminimum number of messages both in the faultlessand worst case. In Fault Tolerant Computing Sympo-sium 23 [14], pages 554{563.[3] Malte Borcherding. E�cient failure discovery withlimited authentication. In 15th International Confer-ence on Distributed Computing Systems, pages 78{82,Vancouver, Canada, May 1995. IEEE Computer So-ciety.[4] W. Di�e and M.E. Hellman. New directions in cryp-tography. IEEE Transactions on Information Theory,IT-22(6):644{650, November 1976.[5] D. Dolev and H. R. Strong. Authenticated algorithmsfor Byzantine agreement. SIAM Journal on Comput-ing, 12(4):656{666, November 1983.[6] Danny Dolev and R�udiger Reischuk. Bounds on in-formation exchange for Byzantine agreement. Journalof the ACM, 32(1):191{204, January 1985.[7] Danny Dolev, R�udiger Reischuk, and H. RaymondStrong. Early stopping in Byzantine agreement. Jour-nal of the ACM, 37(4):720{741, October 1990.[8] Klaus Echtle. Fault masking with reduced redundantcommunication. In Fault Tolerant Computing Sympo-sium 16, pages 178{183, Vienna, Austria, July 1986.IEEE Computer Society.[9] T. ElGamal. A public key cryptosystem and a sig-nature scheme based on discrete logarithms. IEEETransactions on Information Theory, IT-31(4):469{472, July 1985.[10] Paul D. Ezhilchelvan. Early stopping algorithms fordistributed agreement under fail-stop, omission, andtiming fault types. In 6th Symposium on Reliabilityin Distributed Software and Database Systems, pages201{212, Williamsburg, VA, March 1987. IEEE Com-puter Society.11



[11] M. Fischer and N. Lynch. A lower bound for thetime to assure interactive consistency. InformationProcessing Letters, 14:183{186, 1982.[12] F. Di Giandomenico, M. L. Guidotti, F. Grandoni,and L. Simoncini. A graceful dependable algorithmfor Byzantine agreement. In 6th Symposium on Reli-ability in Distributed Software and Database Systems,pages 188{200, Williamsburg, VA, March 1987. IEEEComputer Society.[13] L. Gong. Variations on the themes of message fresh-ness and replay. In Proceedings of the Computer Secu-rity Foundations Workshop VII, pages 131{136, Fran-conia, NH, June 1993. IEEE Computer Society.[14] Fault Tolerant Computing Symposium 23, Toulouse,France, June 1993. IEEE Computer Society.[15] R. M. Kieckhafer, C. J. Walter, A. M. Finn, and P. M.Thambidurai. The MAFT architecture for distributedfault tolerance. IEEE Transactions on Computers,37(4):398{405, April 1988.[16] Leslie Lamport, Robert Shostak, and Marshall Pease.The Byzantine Generals problem. ACM Transactionson Programming Languages and Systems, 4(3):382{401, July 1982.[17] Patrick Lincoln and John Rushby. Formal veri�cationof an algorithm for interactive consistency under ahybrid fault model. In Costas Courcoubetis, editor,Computer-Aided Veri�cation, CAV '93, volume 697of Lecture Notes in Computer Science, pages 292{304,Elounda, Greece, June/July 1993. Springer-Verlag.[18] Patrick Lincoln and John Rushby. Formal veri�cationof an algorithm for interactive consistency under ahybrid fault model. Technical Report SRI-CSL-93-2, Computer Science Laboratory, SRI International,Menlo Park, CA, March 1993. Also available as NASAContractor Report 4527, July 1993.[19] Patrick Lincoln and John Rushby. A formally veri�edalgorithm for interactive consistency under a hybridfault model. In Fault Tolerant Computing Symposium23 [14], pages 402{411.[20] Ralph Melton and David L. Dill. Mur� AnnotatedReference Manual. Computer Science Department,Stanford University, Stanford, CA, March 1993.[21] Judy H. Moore. Protocol failures in cryptosystems.Proceedings of the IEEE, 76(5):594{602, May 1988.[22] National Institute of Standards and Technology. Thedigital signature standard. Communications of theACM, 37(7):36{40, July 1992.[23] M. Pease, R. Shostak, and L. Lamport. Reachingagreement in the presence of faults. Journal of theACM, 27(2):228{234, April 1980.[24] Michael Reiter. A secure group membership proto-col. In Proceedings of the Symposium on Research inSecurity and Privacy, pages 176{189, Oakland, CA,May 1994. IEEE Computer Society.

[25] R.L. Rivest, A. Shamir, and L. Adleman. A methodfor obtaining digital signatures and public-key cryp-tosystems. Communications of the ACM, 21(2):120{126, February 1978.[26] John Rushby. A formally veri�ed algorithm for clocksynchronization under a hybrid fault model. In Thir-teenth ACM Symposium on Principles of DistributedComputing, pages 304{313, Los Angeles, CA, August1994. Association for Computing Machinery.[27] Fred B. Schneider. Implementing fault-tolerant ser-vices using the state machine approach: A tutorial.ACM Computing Surveys, 22(4):299{319, December1990.[28] T.K. Srikanth and S. Toueg. Simulating authenticatedbroadcasts to derive simple fault-tolerant algorithms.Distributed Computing, 2(2):80{94, 1987.[29] Philip Thambidurai and You-Keun Park. Interactiveconsistency with multiple failure modes. In 7th Sym-posium on Reliable Distributed Systems, pages 93{100, Columbus, OH, October 1988. IEEE ComputerSociety.[30] C. J. Walter, N. Suri, and M. M. Hugue. Continual on-line diagnosis of hybrid faults. In F. Cristian, G. LeLann, and T. Lunt, editors, Dependable Computingfor Critical Applications|4, volume 9 of DependableComputing and Fault-Tolerant Systems, pages 233{249. Springer-Verlag, Vienna, Austria, January 1994.The views and conclusions contained herein are those of the authorsand should not be interpreted as necessarily representing the o�cialpolicies or endorsements, either expressed or implied, of the AirForce O�ce of Scienti�c Research or the U.S. Government.

12


