Dependability Gauges for Dynamic Systems

R. A. Riemenschneider and Joshua Levy
System Design Laboratory
SRI International
333 Ravenswood Av
Menlo Park, CA 94025
Telephone: 650-8592507,2868
Fax: 650-859-2844
{rar,levy }@sdl.sri.com

Abstract— This paper introduces dependability gaugeswhich approach is to link an abstract architectural model that is proven
measure dependability properties of dynamically evolving sys- secure to the implemented system architecture by a series of
tems. The general concept is illustrated by explaining the details y4nsformations that demonstrably preserve security. This link
of a fault tolerance gauge that we have implemented. . .

allows us to conclude that results obtained from our security
analysis of the abstract model are applicable to the implemen-
I. INTRODUCTION ta’ﬂon as Well(.j Thedsz?)r_rll_e techniqL_Je can be used to establish
. . other system dependability properties.
trlt \:Vlilj sotoln b? i;t]he (;tasf(: E:atrmo)s(it tsi%/stemrz erI1I E? cc_)rr;]- We are building upon this previous research, first, by gen-
structed, at leas part, from pre-existing components. T alizing our approach to dependability properties other than
infrastructure needed to support a component-based Ilfecyg ecurity and, second, by using the transformation chains that
is currently emerging: intercomponent communication mechﬁﬁ ’ ' .
. . k the abstract, analyzable architectural models — one per
nisms (CORBA’.DCOM) and data_ mterchapge formats (XMLde endability property — to the concrete system architecture to
DOM), service discovery mechanisms (Jini, e-Speak), and ev rﬁ

. . . . amically update the abstract models as the running system
higher-level collaboration and delegation mechanisms (SR o . . o
Open Agent Architecture). Volves, making it possible to buildependability gaugethat

. continuously measure dependability properties of an evolvin
But a component-based lifecycle also poses new software y P y prop 9

oS stem.
gineering challenges. Most components developed for the corg

. ;) . . This paper will first describe in more detail what dependabil-
mercial market will not be developed with the high dependab“—y gauges are and how they work, and then describe the first
ity requirements of, e.g., DoD mission-critical applications ira '

mind. So, if developers of highly dependable systems are tgpendabmty gauge we have implemented.

take maximal advantage of the availability of components, one
guestion that must be answered isow can a highly depend-
able system be built from components that may not be dependfhere are two approaches to guaranteeing that a system sat-
able? isfies a dependability constraint. The difference between these
Basing systems on components will also increase the pag@roaches can be illustrated by a simple example. Consider a
of system evolution. Components will quickly be declareg@ystem composed from components with varying security lev-
obsolete, and replaced by new versions. As new versionsét$ and clearances. Security policies for such multilevel sys-
components, offering new capabilities, become available, ust@gs include constraints on communication. For example, a
will naturally want to exploit those capabilities. Other prestypical constraint is that “read-up” is not allowed. That is, a
sures driving evolution — for example, the need to respond @@Mmponent must not read data whose classification is greater
changes in missions — can only intensify as well. Thus, athan the component’s clearance. How can we guarantee that
other question that must be answeredHsw can dependability such constraints are satisfied if the system contains closed-
be maintained when a system is constantly evolving? source components whose security has not been verified? One
Previous SRI research on the design and construction agfproach is to monitor all communication among components
architectures for secure distributed transaction processing Baguntime, and check whether the security policy is satisfied
shown how it is possible to build a secure system from ndt €ach case. In cases where the communication would violate
necessarily-secure components. The primary innovation in dbe security policy, the communication is blocked. An alter-
native approach is to design a system architecture that restricts

The research described in this paper was supported by the Defence Advanced

Research Projects Agency of the U.S. Government under contract F30602-%@-mmumcat|0n among components so as to reduce the need for

C-0199 with the Air Force Research Laboratory. runtime constraint checking. If the architecture is designed so

Il. DESIGNING FORDEPENDABILITY

security gauge fault tolerance gauge safety gauge

that communication channels between components exist only
when communication between those components is consistent @
with the system’s security policy, then no runtime checking of

the security constraints is needed. I

i
=)
=

Our research has explored the latter approach. One product m analysisaol analysisdol
of that research is SDTP [Moricoret al. 97; Gilham, Riemen-
schneider & Stavridou 99], a dynamic architecture for secure I I simple.abstract t _
distributed transaction processing. SDTP was designed by Wit aayzas | =, o™ | st oyt
ing a simple, abstract description of the architecture, show=""™"*" 7 view satety vie
ing that the description guarantees the desired security prop- @ ﬁ ﬁ
erties, successively refining the abstract description until a di- ol blerance.
rectly implementable concrete description results, and ShOWING, .,..cioramirmion % S orented & safeyoriensd
that each refinement step preserves satisfaction of the security Sanstemmating
policy. Refinement steps were the result of applying reusable @ ﬁ
refinement transformations that codify implementation tech-
nigues. Thus, SDTP is an example of how a dependable (in this @ ﬁ ﬁ
case, secure) system can be constructed from not-necessarily-
dependable components, without the overhead of runtime con- O\ozo\
straint checking. TRRAY

IIl. GENERATING DEPENDABILITY GAUGES BY Gosaiptorst ystentuting”

ABSTRACTION

Formal methods, such as model checking and theorem prov-
ing, can be effective for determining whether systems have de-
sired dependability properties. Less formal methods, suchthae system is constantly evolving, there are obvious advantages
simulation, also provide useful information about dependabib applying them at runtime as well. For each dependability
ity, even when incapable of providing definitive answers. Buproperty of interest, an abstract system model that can be an-
for complex systems, these methods cannot be applied direcdllyzed to determine whether the system has the property will
An abstract system model, designed specifically for the pure generated. The abstraction transformation steps will demon-
poses of the particular dependability analysis, must be creatstlably co-preserve dependability. In other words, if the gener-
As much system detail as possible is abstracted away, in ordézd abstract model is dependable, then the more concrete input
to make the analysis more tractable. to the abstraction step must be dependable as well. As the sys-
Model checking fault tolerance of a system provides a goaem evolves, the abstract models will be updated by “replaying”
illustration of the necessity of abstraction. Fault toleranabe derivations that generated them. Thus, the dependability of
means that no combination of system state transitions and faile system can be dynamically reassessed whenever there are
ure transitions can lead to a state where a system cannot sefevant changes in the environment or within the system itself.
ply essential services. Mae models of complex systems will The results of analysis of the abstractions are displayed as de-
have too many states — often, infinitely many — for exhaugendability gauge readings, as shown in Figure 1.
tive state exploration to be feasible. This problem is particu-
larly acute when c’Iosed—source components are mvolved., SINC&\, D EPENDABLE EVOLUTION THROUGH PERPETUAL
such components’ states potentially depend upon the entire his-
tory of their interactions with the system. Of course, for a fault
tolerance analysis, a very simple model of such components idluch as transformations can be used at design time to create
sufficient. Only the component’s external interface protocol afPaseline architecture that has desired dependability properties,
whether it is faulty or nonfaulty is relevant. But, when a systeffiansformations can be used at runtime to ensure continued de-
is constructed from a large number of components with cor@éndability as requirements, the system, and its environment
plex interface protocols in accordance with a complex arctfivolve. The basic idea is that changes in dependability gauge
tectural description, the number of states may still be too larf@adings can trigger application of dependability-enhancing,
for model checking. Boolean abstraction of protocols provégnctionality-preserving architecture transformations.
very useful in such cases, and SRI has developed technique8ny of the following may trigger re-architecting.
for automatically determining relevant predicates for use in thee A change in required dependability levdlhe system ad-
abstraction [Graf & S@i 97; Sadi & Shankar 99]. ministrator may decide that the system should be made
In prior work, our application of abstraction techniques has more (or less) secure, more (or less) fault tolerant, more
been at design time. In the component-based lifecycle, where (or less) safe, etc. Architectural transformations expected

Fig. 1. Dependability Gauges

DESIGN

fault tolerance gauge fault tolerance gauge

fault tolerance-
oriented
abstraction

transformations

@ =
s /
fault tolerance-
oriented nl s n2 S cfp S cfc2
transformations I I / \
< \ n3

system architecture n4
with increased redundancy

evolution transformation:
“increase fult tokrance (whi¢
Q. mantainingsecurity safety,...)”

) ——>

system architecture

cfe3

Q:Ox

— n5

Fig. 2. Re-Architecting to Improve Fault Tolerance I \

né — n7

to have the appropriate effect will be applied, and the re-
sults monitored using the appropriate dependability gauge,
as shown in Figure 2. Other dependability gauges will be

momtored as_well,_t(?.egsure that other dependability Col?{nguage. Figure 3 shows the same architecture, in graphical
'so\tra;]nts rer_na:jn sgtlz '? - ivTh form. This description has been simplified by omission of de-
« A change In desired functionalityrhe system user MAY tail that is irrelevant to the example, including specifications

request that the system provide some additional SEVIG} visible behavior at component interfaces, specifications of

requiring the integration of additional components or th(’?"onnector behavior, and specifications of communication pro-

replaggment loff componl_entslfwnh other compongnts d(()jﬁ‘:‘if)'cols. However, we imagine that every “box” in the description
Ing additional functionality. If a new component is a e%orresponds to a single software component in the implemen-

to the system, or one component is replaced by anthgfion and that every “arrow” corresponds to a single dataflow

that proves less dependable, then the system architec Sth between software components. Thus, the description and
may have to be made more dependable to compens

A e i ided b SDTP K wh & as-implemented archiecture are isomorphic.
N example IS provided by our WOrK, Wneré We rpere are three types of components in this architecture.
showed that a very simple architecture can be used to

. . Yfie noncritical components -Al, n2, ..., n7 — imple-
curely integrate single-level databases that are all at the P P

i ; i ent noncritical functions. This fact is indicated by the value
same level, but substantial architectural complexity mus

Fig. 3. A*“Concrete” Architectural Description (graphical)

: . L their criticality property,0. The three components
be Lnt(;o_d:m?hd Whetn a database at a different level is mtgﬂzl , cfc2 , andcfc3 each independently determine the
grared Into the system. result of performingeritical function _1, identified by

» A change in component availabilitChanges in compo- the requirements as a critical function. We imagine that these

nent availability can also necessitate addition and replalﬁree components are commerical quality, but possibly fault-

ment of system components, and hence changes in sys 5tdhe. The final componentfp , actually provideriti-

archltectur_e. , . cal _function _1 tothe system. Ih2 orn5 calls forcrit-
« A change in the system’s behavior or performaniden- . :
cal _function _1 to be performedcfp relays the request

itoring of dependability gauges may reveal dependabili{% cfcl , cfc2 , andcfc3 . If two of those three components

requirements that were being satisfied but are no longer tr)gt'urn the same result wp , then that result is used tyfp

ing satisfied. Similarly, monitoring of performqnce 93493 the value ofritical _function _1. Note that any one
may reveal that system performance has declined to an Bfccl | cfc2 | andcfe3 can fail providing no result or an

Zﬁng?(;:g)é)érlg\slgl.sjcrﬁhstriﬁtéﬁlstransformatlons can be hcorrect result tefp , and_cfp _V_/iII still provide a correct re-
' sult to the system. (For simplicity of the protocol, we assume
thatcfp is a custom, adequately fault-tolerant component, and
V. DEPENDABILITY GAUGES FORFAULT TOLERANCE that no connectors are fault-prone.) Since each of the four com-
The first dependability gauge suite we have implementg@onentscfcl |, cfc2 |, cfc3 , andcfp contributes to the pro-
measures a simple fault tolerance property. We suppose thiaton of critical functioncritical _function _1, each has
a system’s requirements identify some of the functions pex-non-zero value of itsriticality property. Specifically,
formed by the system as critical, and mandates that, for eag#ch has the valug, indicating that the requirements specify
critical function, some minimum number of failures of compothat one fault must be tolerated.
nents that contribute to that function must be tolerated withoutGiven the small number of components and the simplifi-
loss of functionality. Figure 4 contains a archiectural descripation via omission already performed, further abstraction is
tion of such a system, in the Acme architectural descriptidrardly required to conclude that this architecture satisfies its

system sys = {
component cfp = {
ports { pO; pl; p2; p3; p4; }
property functions_provided = {critical_function_1};
property criticality: int = 1;

component cfcl = {
ports { p; };
property functions_computed = {critical_function_1};
property criticality: int = 1;

h

component cfc2 = {
ports { p; };
property functions_computed = {critical_function_1};
property criticality: int = 1;

b

component cfc3 = {

ports { p; };
property functions_computed = {critical_function_1};
property criticality: int = 1;

component n1 = {
ports { pO; pl; p2; p3; };
property functions_computed = {noncritical_function_1};
property criticality: int = 0;
h
component n2 = {
ports { pO; pl; p2; };
property functions_computed = {noncritical_function_2};
property criticality: int = 0;
b
component n3 = {
ports { pO; pl; p2; p3; p4 }
property functions_computed = {noncritical_function_3};
property criticality: int = 0;
b
component n4 = {
ports { pO; pl;, p2; p3; p4 }
property functions_computed = {noncritical_function_4};
property criticality: int = O;
h
component n5 = {
ports { p0; pl; }
property functions_computed = {noncritical_function_5};
property criticality: int = O;
b
component n6 = {
ports { pO; pl; p2; }
property functions_computed = {noncritical_function_6};
property criticality: int = O;
h
component n7 = {
ports { pO; pl; p2; p3; }
property functions_computed = {noncritical_function_7};
property criticality: int = 0O;

b

connector k1 = { roles { r0; r1; }; }; connector k2 = { roles { r0; r1; }; }
connector k3 = { roles { r0; r1; }; }; connector k10 = { roles { r0; r1; }; %
connector k11 = { roles { r0; r1; }; } connector k12 = { roles { r0; r1; }; }
connector k13 = { roles { r0; r1; }; } connector k14 = { roles { r0; r1; }; }
connector k15 = { roles { r0; r1; }; } connector k16 = { roles { r0; r1; }; }
connector k17 = { roles { 10; r1; }; } connector k18 = { roles { r0; r1; }; }
connector k19 = { roles { r0; r1; }; } connector k20 = { roles { r0; r1; }; }
connector k21 = { roles { r0; r1; }; } connector k22 = { roles { r0; r1; }; }

attachments {
k1.r0 to cfp.p2; k1l.rl to cfcl.p; k2.r0 to cfp.p3; k2.r1 to cfc2.p;
k3.r0 to cfp.p4; k3.rl to cfc3.p; k10.r0 to cfp.p0; k10.r1 to n2.p2;
k11.r0 to n2.p1; k11.rl1 to nl.p2; k12.r0 to nl.p1; k12.r1 to n3.p1;
k13.r0 to nl1.po; k13.r1 to n3.p0; k14.r0 to n2.p0; k14.rl1 to n3.p2;
k15.r0 to n3.p3; k15.r1 to n4.p1; k16.r0 to n3.p4; k16.rl1 to n4.po;
k17.r0 to nl.p3; k17.r1 to n6.p2; k18.r0 to n4.p2; k18.r1 to n5.p1;
k19.r0 to n4.p4; k19.r1 to n6.po; k20.r0 to n4.p3; k20.r1 to n7.po;
k21.r0 to n6.p1; k21.r1 to n7.p1; k22.r0 to cfp.pl; k22.r1 to n5.p0;

Fig. 4. A*“Concrete” Architectural Description (Acme)

transformation bundle_noncritical_components from
system @s = {
component @cl = {

ports {@op; @@psl};

property functions_computed = {@@fnsl};
property criticality: int = O;
c’omponent @c2 = {
ports {@ip; @@psz};
property functions_computed = {@@fns2};

property criticality: int = 0;

connector @k = { roles {@ir; @or}};
attachments {
@k.@ir to @cl.@op;
@k.@or to @c2.@ip;
@@att
k.
@@rest
}

system @s = {
component @&(@cl, @c2) = {
ports {@*(@_(@cl,@@psl), @_(@c2,@@ps2))}
property functions_computed = {@*(@@fnsl, @@fns2)};
property criticality: int = 0;

to

attachments {
@@att
h
@@rest
}
where
map connected_components_to_component with {
[first_component = @cl; first_port = @cl.@op;
connecting_connector = @Kk; first_role = @k.@ir; second_role = @k.@or;
second_component = @c2; second_port = @c2.@ip]
to @&(@cl, @c2);
@.(@cl,@@psl) to @.(@&(@cl,@c2),@_(@cl,@@psl));
} @.(@c2,@@ps2) to @.(@&(@cl,@c2),@_(@c2,@@ps2));

Fig. 5. An Abstraction Transformation that Preserves the Fault-Tolerance Property

fault-tolerance requirement. However, substantial further aimatch to the first pattern, and using the pattern variable values
straction is possible, and will serve to illustrate our genertd generate a description that matches the second pétire.
method for generating maximally abstract descriptions. The ksecond transformation used in abstraction says that multiple
sic idea is to eliminate all information in the specifcation that isonnectors between a pair of components can be collapsed to
irrelevant to determining whether the architecture is adequatelsingle connector. Clearly, neither of these bundling transfor-
fault tolerant. In order to do so, we repeatedly apply the twoations can produce an abstract architectural description that
abstraction transformations. This first, shown in Figure 5, sagatisfies the fault-tolerance requirement from a concrete archi-
that a connected pair of noncritical components can be ctéctural description that does not.

lapsed to a single component. The transformation consists 0{ysing these two abstraction transformations to generate a

two Acme specification patterhand a mapping between thenmaximally abstract description is straightforward: if the first
Applying a transformation to a description consists of finding a

2In general, transformations can contain additional constraints on the descrip-
LAn Acme specification pattern is simply an Acme description with somiéon that must be satisfied in order to have a match, but this feature is not re-
elements replaced by pattern variables, which are written with an i@tahd quired for our example.
some sequences of elements replaced sequence pattern variables, which #fée co-preservation of fault-tolerance could be formally verified by proving
written with an initial@ @Operatorg®., @, and@&are used to systematically that the transformations always produce an abstract architecture whose theory
rename elements to avoid potential name collisions, and the op@ateused s faithfully interpretable in the theory of the concrete architecture [Moriconi,
to concatenate the values of sequence pattern variables.) Qian & Riemenschneider 95; Riemenschneider 97; Riemenschneider 98].

VI. RELATED WORK

cfel Transformational implementation was an outgrowth of ear-

lier work on program synthesis. The basic idea is to formalize
the process of refining a high-level program specification into
executable code. Many of the seminal papers in the field have
n p— cfp p—————9 cfc2 appeared in anthologies [Section V of Agresti 86, Section Il
of Rich & Waters 86, Section 5 of Lowry & McCartney 91].
Experience showed that refinement was a knowledge-intensive
process, and the key to success was to focus on a relatively nar-
row domain. Software architecture is one such domain. At
SRI, we have worked on the formalizing the process of ar-
chitecture refinement since 1992 [Moriconi, Qian & Riemen-
Fig. 6. A “Abstract” Architectural Description (graphical) schneider 95; Moriconiet al. 97; Moriconi & Riemenschnei-

der 97; Riemenschneider 97; Riemenschneider 98; Riemen-

schneider 99; Gilham, Riemenschneider & Stavridou 99; Her-
transformation can be applied to the most abstract descriptiorbéirt, et al. 99]. Recently, we have focused on adapting
is, creating a new “most abstract description”; if the first canneur technology to component-based systems [Riemenschneider
be applied, but the second can, itis; if neither can be applied, ®Stavridou 99]. Although some other researchers have investi-
abstraction process is finished. The end result is the collapsegalted the notion of mappings between architectural descriptions
noncritical components into a single component, critical corat different levels of abstraction [Luckhart, al. 85], none, to
ponents are left alone, and all connected components are singky best of our knowledge, has attempted to formalize the pro-
connected. So, for example, the maximally abstract (for thiess of generating the mappings by using transformations that
fault tolerance property) of the architecture shown in Figureate “correctness preserving”. Conversely, most researchers in-
is shown in Figure 6. vestigating the notion of correct refinement have not focused

In this case, the analysis of the abstract architectural descigp-refinement of architecture. There are a few exceptions (e.g.,
tion is so straightforward that neither a theorem prover nfBroy 92]). Of particular note is the work of Philipps and
a model checker is required to determine whether the fauRumpe at T. U. Munich [Philipps & Rumpe 97], who explic-
tolerance requirement is satisfied: if the criticality level of somigly address the problem of correct architecture refinement and
function isn, then that function must be computed by morthat of Saridakis and Issarny of IRISA [Saridakis & Issarny 99]
than 2n components, so analysis simply consists in countir@n developing dependable architectures by refinement. Neither
the number of components that compute each critical functiogmploys a transformational framework, however.

The feasibility of automatically updating gauges is demon- Abstract interpretation is the general framework for the def-
strated by integrating additional components that redundanffijtion of abstractions of programs. It consists of a mapping
compute a second critical function into the running systerR€tween a concrete and an abstract domain that sends sets of
Thus, the system’s requirements, functionality, and architectfi@NCrete states to single abstract states, together with a map-
are all dynamically modified. Replaying the derivation consis®nd from the basic operations or functions of the concrete sys-
app|y|ng the same abstractions to generate a new maximat@ﬂ'] to functions of the abstract System. While abstract inter-
abstract fault-tolerance model of the system. (“The same dfietation is the basis for static analysis techniques used in com-
stractions” means that the same abstraction transformationsRil@'s; it is not widely used for dependability analysis. It is
applied, in the same order, using pattern variable bindings tiaffact extremely difficult to construct useful and accurate ab-
are almost the same — the sequence pattern variable bindifgctions that automatically preserve the desired dependabil-
may differ — as in the original derivation. If the attempt tdty Properties. Abstract models are usually provided manually,
replay breaks down, the transformation selection strategy ¢t theorem proving is used to check that the abstraction map-
often be used to “fill in the gap€). The analysis of the ab- Ping preserves the properties. Once the preservation property
stract model determines that there are now two critical funi§ €stablished using theorem proving, the abstract model is an-
tions rather than one, and generates a second fault-toleray@ed by model checking. Recently [Graf &i8897; Sadi &

gauge whose reading shows whether the implementation of ffgankar 99], novel techniques for automatic Boolean abstrac-
second critical function is adequately redundant. tion have been developed by SRI. These techniques enable ver-
ification of system temporal properties of infinite state systems
4Discovering the extent to which this approach to replay allows derivations\%'th_oUt manual consFructlon of ar? abstraction. . .
be automatically updated is one of our principal research foci. Another princi- Since the abstraction process introduces loss of information
pal focus is determining when and hQW analyses pgrformed by theorem pl’O\f@gB Co||apsing concrete states into a sing'e abstract State, false
and model checkers can be automatically and efficiently updated. Both deriya- .. .
Regative results may emerge. For instance, a model checker

tion and analysis must be “robust” for automatic updating of dependabili E _
gauge readings. may exhibit an error trace that corresponds to an execution of

cfc3

the abstract program that violates the dependability properties.
However, this error trace may not correspond to an executigm]
trace in the concrete program. This situation indicates that thg]
abstraction is too coarse. That is, too many details were a
stracted away, and the abstraction needs to be refined. Ted$i-
nigues have been developed recently at SRIqiIS29] to use

the error trace to automatically refine the abstraction. The veri-
fication methodology — abstraction followed by successive rd4l
finements based on the results of model checking — was suc-
cessfully used to prove safety properties of several systems, it
cluding a data link protocol used by Philips Corporation in one
of its commercial products. The original proof of the proto-
col required two months of work and was entirely done using
a theorem prover. A Boolean abstraction of the protocol caH!
be automatically generated using the predicates appearing in
the description of the protocol in about a hundred seconds with
SRI's PVS theorem prover. The abstract protocol is then ari€!
alyzed in a few seconds to check that all the safety properties
hold. [9]

VIl. CONCLUSION [10]

Dependability gauges provide a technology to monitor evolv-
ing dependability properties of dynamically evolving syste
Our approach to building dependability gauages applies proxfln]
technology for design time dependability analysis at run-
time. The principal innovation consists of focussing abstractiét!
rather than refinement, and on automatic updating of abstra
tions and analyses developed at design time after making small,
“well structured” changes to architectural requirements and the
system architecture. Our emphasis in the near future will be to
develop a suite of abstraction transformations capable of geriéf!
ating a wide range of dependability gauges, and on developing
and experimenting with technologies to make abstraction and
analysis more robust.

. . 15]

Our dependability gauge technology is complementary to the
more fine-grained runtime analysis that can be performed by
monitoring events at component interfaces and within conndt?
tors. The fault-tolerance gauges in our example provide an ex-
cellent example of the potential synergy. Runtime event mon-
itoring of components’ interface behavior can detect some il
stances of component failure. If failure of a component com-
puting a critical function is observed, and the fault-tolerandél
gauge for that function shows that only a single component
failure can be tolerated, the system, although functioning cgt9]
rectly, is on the verge of failure, and immediate corrective ac-
tion may be needed. If, on the other hand, the fault-tolerance
gauge shows that multiple component failures can be tolerated,
the need for corrective action is less urgent. Thus, the combina-
tion of component runtime behavior gauges and dependability
gauges provides valuable system status information that cannot
be obtained with either technology alone.

REFERENCES

W. W. Agresti, editor,Tutorial: New Paradigms for Software Develop-
ment IEEE Computer Society, 1986.

M. Broy, “Compositional Refinement of Interactive Systems”, Report
Number 89, Digital Systems Research Center, Palo Alto, CA, July, 1992.
F. Gilham, R. A. Riemenschneider, and V. Stavridou, “Secure Interop-
erability of Secure Distributed Databases: An Architecture Verification
Case Study”FM '99, World Congress on Formal Methad%oulouse,
France, September 20-24, 1999.

S. Graf and H. Sili, “Construction of Abstract State Graphs Using PVS”,
Proceedings of the 9th International Conference on Computer-Aided Ver-
ification, CAV '97 Haifa, Israel, 1997.

J. Herbert, B. Dutertre, R. A. Riemenschneider, and V. Stavridou, “A For-
malization of Software ArchitectureEM '99, World Congress on Formal
Methods Toulouse, France, September 20-24, 1999.

6] M.R.Lowry and R. D. McCartney, editordutomating Software Design

AAAI Press/MIT Press, 1991.

D. C. Luckham, L. M. Augustin, J. J. Kenney, J. Vera, D. Bryan, and
W. Mann, “Specification and Analysis of System Architecture using
Rapide”, IEEE Transactions on Software Engineeringl. 21, no. 4,
April, 1995.

M. Moriconi, X. Qian, and R. A. Riemenschneider, “Correct Architecture
Refinement”|EEE Transactions on Software Engineerirgl. 21, no. 4,
April, 1995.

M. Moriconi, X. Qian, R. A. Riemenschneider, and L. Gong, “Secure
Software Architectures”Proceedings of the 1997 IEEE Symposium on
Security and PrivacyOakland, CA, May, 1997.

M. Moriconi and R. A. Riemenschneider, “Introduction tatd 1.0: A
language for specifying software architecture hierarchies”, Technical Re-
port SRI-CSL-97-01, Computer Science Laboratory, SRI International,
Menlo Park, CA, March, 1997.

J. Philipps and B. Rumpe, “Refinement of Information Flow Architec-
tures”,Proceedings of the First IEEE International Conference on Formal
Engineering Methods, ICFEM '9MNovember, 1997.

C. Rich and R. C. Waters, editoReadings in Artificial Intelligence and
Software Engineeringlorgan Kaufmann, 1986.

R. A. Riemenschneider, “A Simplified Method for Establishing the Cor-
rectness of Architectural Refinements”, Working Paper DSA-97-02, De-
pendable System Archiecture Group, Computer Science Laboratory, SRI
International, Menlo Park, CA, November, 1997. Availableh&p:
Ilwww.sdl.sri.com/dsa/publis.html

R. A. Riemenschneider, “Correct Transformatlon Rules for Incremental
Development of Architecture Hierarchies”, Working Paper DSA-98-01,
Dependable System Archiecture Group, Computer Science Laboratory,
SRI International, Menlo Park, CA, February, 1998. Availablatgs:
Ilwww.sdl.sri.com/dsa/publis.html

R. A. Riemenschneider. “Checking the Correctness of Architectural
Transformation Steps via Proof-Carrying Architectures"Software Ar-
chitecture ed. P. Donahoe, Kluwer, 1999.

R. A. Riemenschneider and V. Stavridou. “The Role of Architecture De-
scription Languages in Component-Based Development: The SRI Per-
spective”,1999 International Workshop on Component-Based Software
Engineering Los Angeles, CA, May 17-18, 1999.

7] H. Sddi and N. Shankar, “Abstract and Model-Check While You Prove”,

Proceedings of the 11th International Conference on Computer-Aided
Verification, CAV '99 Trento, Italy, 1999.

H. Sadi, “Modular and Incremental Analysis of Concurrent Software
Systems”Proceedings of the 14th IEEE International Conference on Au-
tomated Software Engineering, ASE ,€coa Beach, FL, 1999.

T. Saridakis and V. Issarny, “Developing Dependable Systems Using Soft-
ware Architecture”, inSoftware Architectureed. P. Donahoe, Kluwer,
1999.

