
Dependability Gauges for Dynamic Systems

R. A. Riemenschneider and Joshua Levy
System Design Laboratory

SRI International

333 Ravenswood Av

Menlo Park, CA 94025

Telephone: 650-859-{2507,2868}
Fax: 650-859-2844

{rar,levy }@sdl.sri.com

Abstract— This paper introduces dependability gauges, which
measure dependability properties of dynamically evolving sys-
tems. The general concept is illustrated by explaining the details
of a fault tolerance gauge that we have implemented.

I. I NTRODUCTION

It will soon be the case that most systems will be con-
structed, at least in part, from pre-existing components. The
infrastructure needed to support a component-based lifecycle
is currently emerging: intercomponent communication mecha-
nisms (CORBA, DCOM) and data interchange formats (XML,
DOM), service discovery mechanisms (Jini, e-Speak), and even
higher-level collaboration and delegation mechanisms (SRI’s
Open Agent Architecture).

But a component-based lifecycle also poses new software en-
gineering challenges. Most components developed for the com-
mercial market will not be developed with the high dependabil-
ity requirements of, e.g., DoD mission-critical applications in
mind. So, if developers of highly dependable systems are to
take maximal advantage of the availability of components, one
question that must be answered is:How can a highly depend-
able system be built from components that may not be depend-
able?

Basing systems on components will also increase the pace
of system evolution. Components will quickly be declared
obsolete, and replaced by new versions. As new versions of
components, offering new capabilities, become available, users
will naturally want to exploit those capabilities. Other pres-
sures driving evolution — for example, the need to respond to
changes in missions — can only intensify as well. Thus, an-
other question that must be answered is:How can dependability
be maintained when a system is constantly evolving?

Previous SRI research on the design and construction of
architectures for secure distributed transaction processing has
shown how it is possible to build a secure system from not-
necessarily-secure components. The primary innovation in our

The research described in this paper was supported by the Defence Advanced
Research Projects Agency of the U.S. Government under contract F30602-00-
C-0199 with the Air Force Research Laboratory.

approach is to link an abstract architectural model that is proven
secure to the implemented system architecture by a series of
transformations that demonstrably preserve security. This link
allows us to conclude that results obtained from our security
analysis of the abstract model are applicable to the implemen-
tation as well. The same technique can be used to establish
other system dependability properties.

We are building upon this previous research, first, by gen-
eralizing our approach to dependability properties other than
security and, second, by using the transformation chains that
link the abstract, analyzable architectural models — one per
dependability property — to the concrete system architecture to
dynamically update the abstract models as the running system
evolves, making it possible to builddependability gaugesthat
continuously measure dependability properties of an evolving
system.

This paper will first describe in more detail what dependabil-
ity gauges are and how they work, and then describe the first
dependability gauge we have implemented.

II. D ESIGNING FORDEPENDABILITY

There are two approaches to guaranteeing that a system sat-
isfies a dependability constraint. The difference between these
approaches can be illustrated by a simple example. Consider a
system composed from components with varying security lev-
els and clearances. Security policies for such multilevel sys-
tems include constraints on communication. For example, a
typical constraint is that “read-up” is not allowed. That is, a
component must not read data whose classification is greater
than the component’s clearance. How can we guarantee that
such constraints are satisfied if the system contains closed-
source components whose security has not been verified? One
approach is to monitor all communication among components
at runtime, and check whether the security policy is satisfied
in each case. In cases where the communication would violate
the security policy, the communication is blocked. An alter-
native approach is to design a system architecture that restricts
communication among components so as to reduce the need for
runtime constraint checking. If the architecture is designed so

that communication channels between components exist only
when communication between those components is consistent
with the system’s security policy, then no runtime checking of
the security constraints is needed.

Our research has explored the latter approach. One product
of that research is SDTP [Moriconi,et al.97; Gilham, Riemen-
schneider & Stavridou 99], a dynamic architecture for secure
distributed transaction processing. SDTP was designed by writ-
ing a simple, abstract description of the architecture, show-
ing that the description guarantees the desired security prop-
erties, successively refining the abstract description until a di-
rectly implementable concrete description results, and showing
that each refinement step preserves satisfaction of the security
policy. Refinement steps were the result of applying reusable
refinement transformations that codify implementation tech-
niques. Thus, SDTP is an example of how a dependable (in this
case, secure) system can be constructed from not-necessarily-
dependable components, without the overhead of runtime con-
straint checking.

III. G ENERATING DEPENDABILITY GAUGES BY

ABSTRACTION

Formal methods, such as model checking and theorem prov-
ing, can be effective for determining whether systems have de-
sired dependability properties. Less formal methods, such as
simulation, also provide useful information about dependabil-
ity, even when incapable of providing definitive answers. But,
for complex systems, these methods cannot be applied directly.
An abstract system model, designed specifically for the pur-
poses of the particular dependability analysis, must be created.
As much system detail as possible is abstracted away, in order
to make the analysis more tractable.

Model checking fault tolerance of a system provides a good
illustration of the necessity of abstraction. Fault tolerance
means that no combination of system state transitions and fail-
ure transitions can lead to a state where a system cannot sup-
ply essential services. Naı̈ve models of complex systems will
have too many states — often, infinitely many — for exhaus-
tive state exploration to be feasible. This problem is particu-
larly acute when closed-source components are involved, since
such components’ states potentially depend upon the entire his-
tory of their interactions with the system. Of course, for a fault
tolerance analysis, a very simple model of such components is
sufficient. Only the component’s external interface protocol and
whether it is faulty or nonfaulty is relevant. But, when a system
is constructed from a large number of components with com-
plex interface protocols in accordance with a complex archi-
tectural description, the number of states may still be too large
for model checking. Boolean abstraction of protocols proves
very useful in such cases, and SRI has developed techniques
for automatically determining relevant predicates for use in the
abstraction [Graf & Säıdi 97; Säıdi & Shankar 99].

In prior work, our application of abstraction techniques has
been at design time. In the component-based lifecycle, where

complex, implementation-level
description of system “wiring”

fault tolerance-
oriented
abstraction
transformations

simple, abstract,
analyzable
fault tolerance
view

analysis tool

fault tolerance gauge

security-oriented
abstraction transformations

simple, abstract,
analyzable

security view

analysis tool

security gauge

safety-oriented
abstraction transformations

simple, abstract,
analyzable
safety view

analysis tool

safety gauge

Fig. 1. Dependability Gauges

the system is constantly evolving, there are obvious advantages
to applying them at runtime as well. For each dependability
property of interest, an abstract system model that can be an-
alyzed to determine whether the system has the property will
be generated. The abstraction transformation steps will demon-
strably co-preserve dependability. In other words, if the gener-
ated abstract model is dependable, then the more concrete input
to the abstraction step must be dependable as well. As the sys-
tem evolves, the abstract models will be updated by “replaying”
the derivations that generated them. Thus, the dependability of
the system can be dynamically reassessed whenever there are
relevant changes in the environment or within the system itself.
The results of analysis of the abstractions are displayed as de-
pendability gauge readings, as shown in Figure 1.

IV. D EPENDABLE EVOLUTION THROUGH PERPETUAL

DESIGN

Much as transformations can be used at design time to create
a baseline architecture that has desired dependability properties,
transformations can be used at runtime to ensure continued de-
pendability as requirements, the system, and its environment
evolve. The basic idea is that changes in dependability gauge
readings can trigger application of dependability-enhancing,
functionality-preserving architecture transformations.

Any of the following may trigger re-architecting.
• A change in required dependability level.The system ad-

ministrator may decide that the system should be made
more (or less) secure, more (or less) fault tolerant, more
(or less) safe, etc. Architectural transformations expected

system architecture

fault tolerance-
oriented

abstraction
transformations

fault tolerance gauge

system architecture
with increased redundancy

updated
fault tolerance-
oriented
abstraction
transformations

fault tolerance gauge

“increase fault tolerance (while
 maintaining security, safety, …)”

evolution transformation:
**

Fig. 2. Re-Architecting to Improve Fault Tolerance

to have the appropriate effect will be applied, and the re-
sults monitored using the appropriate dependability gauge,
as shown in Figure 2. Other dependability gauges will be
monitored as well, to ensure that other dependability con-
straints remain satisfied.

• A change in desired functionality.The system user may
request that the system provide some additional service,
requiring the integration of additional components or the
replacement of components with other components offer-
ing additional functionality. If a new component is added
to the system, or one component is replaced by another
that proves less dependable, then the system architecture
may have to be made more dependable to compensate.
An example is provided by our SDTP work, where we
showed that a very simple architecture can be used to se-
curely integrate single-level databases that are all at the
same level, but substantial architectural complexity must
be introduced when a database at a different level is inte-
grated into the system.

• A change in component availability.Changes in compo-
nent availability can also necessitate addition and replace-
ment of system components, and hence changes in system
architecture.

• A change in the system’s behavior or performance.Mon-
itoring of dependability gauges may reveal dependability
requirements that were being satisfied but are no longer be-
ing satisfied. Similarly, monitoring of performance gauges
may reveal that system performance has declined to an un-
satisfactory level. Architectural transformations can be ap-
plied to address such problems.

V. DEPENDABILITY GAUGES FORFAULT TOLERANCE

The first dependability gauge suite we have implemented
measures a simple fault tolerance property. We suppose that
a system’s requirements identify some of the functions per-
formed by the system as critical, and mandates that, for each
critical function, some minimum number of failures of compo-
nents that contribute to that function must be tolerated without
loss of functionality. Figure 4 contains a archiectural descrip-
tion of such a system, in the Acme architectural description

n6 n7

n2 cfp

cfc1

cfc2

cfc3

n1

n3

n4 n5

Fig. 3. A “Concrete” Architectural Description (graphical)

language. Figure 3 shows the same architecture, in graphical
form. This description has been simplified by omission of de-
tail that is irrelevant to the example, including specifications
of visible behavior at component interfaces, specifications of
connector behavior, and specifications of communication pro-
tocols. However, we imagine that every “box” in the description
corresponds to a single software component in the implemen-
tation and that every “arrow” corresponds to a single dataflow
path between software components. Thus, the description and
the as-implemented archiecture are isomorphic.

There are three types of components in this architecture.
The noncritical components —n1 , n2 , . . . , n7 — imple-
ment noncritical functions. This fact is indicated by the value
of their criticality property,0. The three components
cfc1 , cfc2 , and cfc3 each independently determine the
result of performingcritical function 1, identified by
the requirements as a critical function. We imagine that these
three components are commerical quality, but possibly fault-
prone. The final component,cfp , actually providescriti-
cal function 1 to the system. Ifn2 or n5 calls forcrit-
ical function 1 to be performed,cfp relays the request
to cfc1 , cfc2 , andcfc3 . If two of those three components
return the same result tocfp , then that result is used bycfp
as the value ofcritical function 1. Note that any one
of cfc1 , cfc2 , andcfc3 can fail, providing no result or an
incorrect result tocfp , andcfp will still provide a correct re-
sult to the system. (For simplicity of the protocol, we assume
thatcfp is a custom, adequately fault-tolerant component, and
that no connectors are fault-prone.) Since each of the four com-
ponentscfc1 , cfc2 , cfc3 , andcfp contributes to the pro-
vision of critical functioncritical function 1, each has
a non-zero value of itscriticality property. Specifically,
each has the value1, indicating that the requirements specify
that one fault must be tolerated.

Given the small number of components and the simplifi-
cation via omission already performed, further abstraction is
hardly required to conclude that this architecture satisfies its

system sys = {
component cfp = {

ports { p0; p1; p2; p3; p4; };
property functions_provided = {critical_function_1};
property criticality: int = 1;

};
component cfc1 = {

ports { p; };
property functions_computed = {critical_function_1};
property criticality: int = 1;

};
component cfc2 = {

ports { p; };
property functions_computed = {critical_function_1};
property criticality: int = 1;

};
component cfc3 = {

ports { p; };
property functions_computed = {critical_function_1};
property criticality: int = 1;

};
component n1 = {

ports { p0; p1; p2; p3; };
property functions_computed = {noncritical_function_1};
property criticality: int = 0;

};
component n2 = {

ports { p0; p1; p2; };
property functions_computed = {noncritical_function_2};
property criticality: int = 0;

};
component n3 = {

ports { p0; p1; p2; p3; p4 };
property functions_computed = {noncritical_function_3};
property criticality: int = 0;

};
component n4 = {

ports { p0; p1; p2; p3; p4 };
property functions_computed = {noncritical_function_4};
property criticality: int = 0;

};
component n5 = {

ports { p0; p1; };
property functions_computed = {noncritical_function_5};
property criticality: int = 0;

};
component n6 = {

ports { p0; p1; p2; };
property functions_computed = {noncritical_function_6};
property criticality: int = 0;

};
component n7 = {

ports { p0; p1; p2; p3; };
property functions_computed = {noncritical_function_7};
property criticality: int = 0;

};

connector k1 = { roles { r0; r1; }; }; connector k2 = { roles { r0; r1; }; };
connector k3 = { roles { r0; r1; }; }; connector k10 = { roles { r0; r1; }; };
connector k11 = { roles { r0; r1; }; }; connector k12 = { roles { r0; r1; }; };
connector k13 = { roles { r0; r1; }; }; connector k14 = { roles { r0; r1; }; };
connector k15 = { roles { r0; r1; }; }; connector k16 = { roles { r0; r1; }; };
connector k17 = { roles { r0; r1; }; }; connector k18 = { roles { r0; r1; }; };
connector k19 = { roles { r0; r1; }; }; connector k20 = { roles { r0; r1; }; };
connector k21 = { roles { r0; r1; }; }; connector k22 = { roles { r0; r1; }; };

attachments {
k1.r0 to cfp.p2; k1.r1 to cfc1.p; k2.r0 to cfp.p3; k2.r1 to cfc2.p;
k3.r0 to cfp.p4; k3.r1 to cfc3.p; k10.r0 to cfp.p0; k10.r1 to n2.p2;
k11.r0 to n2.p1; k11.r1 to n1.p2; k12.r0 to n1.p1; k12.r1 to n3.p1;
k13.r0 to n1.p0; k13.r1 to n3.p0; k14.r0 to n2.p0; k14.r1 to n3.p2;
k15.r0 to n3.p3; k15.r1 to n4.p1; k16.r0 to n3.p4; k16.r1 to n4.p0;
k17.r0 to n1.p3; k17.r1 to n6.p2; k18.r0 to n4.p2; k18.r1 to n5.p1;
k19.r0 to n4.p4; k19.r1 to n6.p0; k20.r0 to n4.p3; k20.r1 to n7.p0;
k21.r0 to n6.p1; k21.r1 to n7.p1; k22.r0 to cfp.p1; k22.r1 to n5.p0;

};
}

Fig. 4. A “Concrete” Architectural Description (Acme)

transformation bundle_noncritical_components from
system @s = {

component @c1 = {
ports {@op; @@ps1};
property functions_computed = {@@fns1};
property criticality: int = 0;

};
component @c2 = {

ports {@ip; @@ps2};
property functions_computed = {@@fns2};
property criticality: int = 0;

};
connector @k = { roles {@ir; @or}};
attachments {

@k.@ir to @c1.@op;
@k.@or to @c2.@ip;
@@att

};
@@rest

}
to

system @s = {
component @&(@c1, @c2) = {

ports {@*(@_(@c1,@@ps1), @_(@c2,@@ps2))};
property functions_computed = {@*(@@fns1, @@fns2)};
property criticality: int = 0;

};
attachments {

@@att
};
@@rest

}
where

map connected_components_to_component with {
[first_component = @c1; first_port = @c1.@op;

connecting_connector = @k; first_role = @k.@ir; second_role = @k.@or;
second_component = @c2; second_port = @c2.@ip]

to @&(@c1, @c2);
@.(@c1,@@ps1) to @.(@&(@c1,@c2),@_(@c1,@@ps1));
@.(@c2,@@ps2) to @.(@&(@c1,@c2),@_(@c2,@@ps2));

}

Fig. 5. An Abstraction Transformation that Preserves the Fault-Tolerance Property

fault-tolerance requirement. However, substantial further ab-
straction is possible, and will serve to illustrate our general
method for generating maximally abstract descriptions. The ba-
sic idea is to eliminate all information in the specifcation that is
irrelevant to determining whether the architecture is adequately
fault tolerant. In order to do so, we repeatedly apply the two
abstraction transformations. This first, shown in Figure 5, says
that a connected pair of noncritical components can be col-
lapsed to a single component. The transformation consists of
two Acme specification patterns1 and a mapping between then.
Applying a transformation to a description consists of finding a

1An Acme specification pattern is simply an Acme description with some
elements replaced by pattern variables, which are written with an initial@, and
some sequences of elements replaced sequence pattern variables, which are
written with an initial@@. (Operators@., @, and@&are used to systematically
rename elements to avoid potential name collisions, and the operator@*is used
to concatenate the values of sequence pattern variables.)

match to the first pattern, and using the pattern variable values
to generate a description that matches the second pattern.2 The
second transformation used in abstraction says that multiple
connectors between a pair of components can be collapsed to
a single connector. Clearly, neither of these bundling transfor-
mations can produce an abstract architectural description that
satisfies the fault-tolerance requirement from a concrete archi-
tectural description that does not.3

Using these two abstraction transformations to generate a
maximally abstract description is straightforward: if the first

2In general, transformations can contain additional constraints on the descrip-
tion that must be satisfied in order to have a match, but this feature is not re-
quired for our example.

3The co-preservation of fault-tolerance could be formally verified by proving
that the transformations always produce an abstract architecture whose theory
is faithfully interpretable in the theory of the concrete architecture [Moriconi,
Qian & Riemenschneider 95; Riemenschneider 97; Riemenschneider 98].

cfp

cfc1

cfc2

cfc3

n

Fig. 6. A “Abstract” Architectural Description (graphical)

transformation can be applied to the most abstract description, it
is, creating a new “most abstract description”; if the first cannot
be applied, but the second can, it is; if neither can be applied, the
abstraction process is finished. The end result is the collapse all
noncritical components into a single component, critical com-
ponents are left alone, and all connected components are singly
connected. So, for example, the maximally abstract (for this
fault tolerance property) of the architecture shown in Figure 3
is shown in Figure 6.

In this case, the analysis of the abstract architectural descrip-
tion is so straightforward that neither a theorem prover nor
a model checker is required to determine whether the fault-
tolerance requirement is satisfied: if the criticality level of some
function isn, then that function must be computed by more
than 2n components, so analysis simply consists in counting
the number of components that compute each critical function.

The feasibility of automatically updating gauges is demon-
strated by integrating additional components that redundantly
compute a second critical function into the running system.
Thus, the system’s requirements, functionality, and architecture
are all dynamically modified. Replaying the derivation consists
applying the same abstractions to generate a new maximally-
abstract fault-tolerance model of the system. (“The same ab-
stractions” means that the same abstraction transformations are
applied, in the same order, using pattern variable bindings that
are almost the same — the sequence pattern variable bindings
may differ — as in the original derivation. If the attempt to
replay breaks down, the transformation selection strategy can
often be used to “fill in the gaps”.4) The analysis of the ab-
stract model determines that there are now two critical func-
tions rather than one, and generates a second fault-tolerance
gauge whose reading shows whether the implementation of the
second critical function is adequately redundant.

4Discovering the extent to which this approach to replay allows derivations to
be automatically updated is one of our principal research foci. Another princi-
pal focus is determining when and how analyses performed by theorem provers
and model checkers can be automatically and efficiently updated. Both deriva-
tion and analysis must be “robust” for automatic updating of dependability
gauge readings.

VI. RELATED WORK

Transformational implementation was an outgrowth of ear-
lier work on program synthesis. The basic idea is to formalize
the process of refining a high-level program specification into
executable code. Many of the seminal papers in the field have
appeared in anthologies [Section V of Agresti 86, Section III
of Rich & Waters 86, Section 5 of Lowry & McCartney 91].
Experience showed that refinement was a knowledge-intensive
process, and the key to success was to focus on a relatively nar-
row domain. Software architecture is one such domain. At
SRI, we have worked on the formalizing the process of ar-
chitecture refinement since 1992 [Moriconi, Qian & Riemen-
schneider 95; Moriconi,et al. 97; Moriconi & Riemenschnei-
der 97; Riemenschneider 97; Riemenschneider 98; Riemen-
schneider 99; Gilham, Riemenschneider & Stavridou 99; Her-
bert, et al. 99]. Recently, we have focused on adapting
our technology to component-based systems [Riemenschneider
& Stavridou 99]. Although some other researchers have investi-
gated the notion of mappings between architectural descriptions
at different levels of abstraction [Luckham,et al. 85], none, to
the best of our knowledge, has attempted to formalize the pro-
cess of generating the mappings by using transformations that
are “correctness preserving”. Conversely, most researchers in-
vestigating the notion of correct refinement have not focused
on refinement of architecture. There are a few exceptions (e.g.,
[Broy 92]). Of particular note is the work of Philipps and
Rumpe at T. U. Munich [Philipps & Rumpe 97], who explic-
itly address the problem of correct architecture refinement and
that of Saridakis and Issarny of IRISA [Saridakis & Issarny 99]
on developing dependable architectures by refinement. Neither
employs a transformational framework, however.

Abstract interpretation is the general framework for the def-
inition of abstractions of programs. It consists of a mapping
between a concrete and an abstract domain that sends sets of
concrete states to single abstract states, together with a map-
ping from the basic operations or functions of the concrete sys-
tem to functions of the abstract system. While abstract inter-
pretation is the basis for static analysis techniques used in com-
pilers, it is not widely used for dependability analysis. It is
in fact extremely difficult to construct useful and accurate ab-
stractions that automatically preserve the desired dependabil-
ity properties. Abstract models are usually provided manually,
and theorem proving is used to check that the abstraction map-
ping preserves the properties. Once the preservation property
is established using theorem proving, the abstract model is an-
alyzed by model checking. Recently [Graf & Saı̈di 97; Säıdi &
Shankar 99], novel techniques for automatic Boolean abstrac-
tion have been developed by SRI. These techniques enable ver-
ification of system temporal properties of infinite state systems
without manual construction of an abstraction.

Since the abstraction process introduces loss of information
by collapsing concrete states into a single abstract state, false
negative results may emerge. For instance, a model checker
may exhibit an error trace that corresponds to an execution of

the abstract program that violates the dependability properties.
However, this error trace may not correspond to an execution
trace in the concrete program. This situation indicates that the
abstraction is too coarse. That is, too many details were ab-
stracted away, and the abstraction needs to be refined. Tech-
niques have been developed recently at SRI [Saı̈di 99] to use
the error trace to automatically refine the abstraction. The veri-
fication methodology — abstraction followed by successive re-
finements based on the results of model checking — was suc-
cessfully used to prove safety properties of several systems, in-
cluding a data link protocol used by Philips Corporation in one
of its commercial products. The original proof of the proto-
col required two months of work and was entirely done using
a theorem prover. A Boolean abstraction of the protocol can
be automatically generated using the predicates appearing in
the description of the protocol in about a hundred seconds with
SRI’s PVS theorem prover. The abstract protocol is then an-
alyzed in a few seconds to check that all the safety properties
hold.

VII. C ONCLUSION

Dependability gauges provide a technology to monitor evolv-
ing dependability properties of dynamically evolving systems.
Our approach to building dependability gauages applies proven
technology for design time dependability analysis at run-
time. The principal innovation consists of focussing abstraction
rather than refinement, and on automatic updating of abstrac-
tions and analyses developed at design time after making small,
“well structured” changes to architectural requirements and the
system architecture. Our emphasis in the near future will be to
develop a suite of abstraction transformations capable of gener-
ating a wide range of dependability gauges, and on developing
and experimenting with technologies to make abstraction and
analysis more robust.

Our dependability gauge technology is complementary to the
more fine-grained runtime analysis that can be performed by
monitoring events at component interfaces and within connec-
tors. The fault-tolerance gauges in our example provide an ex-
cellent example of the potential synergy. Runtime event mon-
itoring of components’ interface behavior can detect some in-
stances of component failure. If failure of a component com-
puting a critical function is observed, and the fault-tolerance
gauge for that function shows that only a single component
failure can be tolerated, the system, although functioning cor-
rectly, is on the verge of failure, and immediate corrective ac-
tion may be needed. If, on the other hand, the fault-tolerance
gauge shows that multiple component failures can be tolerated,
the need for corrective action is less urgent. Thus, the combina-
tion of component runtime behavior gauges and dependability
gauges provides valuable system status information that cannot
be obtained with either technology alone.

REFERENCES

[1] W. W. Agresti, editor,Tutorial: New Paradigms for Software Develop-
ment, IEEE Computer Society, 1986.

[2] M. Broy, “Compositional Refinement of Interactive Systems”, Report
Number 89, Digital Systems Research Center, Palo Alto, CA, July, 1992.

[3] F. Gilham, R. A. Riemenschneider, and V. Stavridou, “Secure Interop-
erability of Secure Distributed Databases: An Architecture Verification
Case Study”,FM ’99, World Congress on Formal Methods, Toulouse,
France, September 20-24, 1999.

[4] S. Graf and H. Säıdi, “Construction of Abstract State Graphs Using PVS”,
Proceedings of the 9th International Conference on Computer-Aided Ver-
ification, CAV ’97, Haifa, Israel, 1997.

[5] J. Herbert, B. Dutertre, R. A. Riemenschneider, and V. Stavridou, “A For-
malization of Software Architecture”,FM ’99, World Congress on Formal
Methods, Toulouse, France, September 20-24, 1999.

[6] M. R. Lowry and R. D. McCartney, editors,Automating Software Design,
AAAI Press/MIT Press, 1991.

[7] D. C. Luckham, L. M. Augustin, J. J. Kenney, J. Vera, D. Bryan, and
W. Mann, “Specification and Analysis of System Architecture using
Rapide”, IEEE Transactions on Software Engineering, vol. 21, no. 4,
April, 1995.

[8] M. Moriconi, X. Qian, and R. A. Riemenschneider, “Correct Architecture
Refinement”,IEEE Transactions on Software Engineering, vol. 21, no. 4,
April, 1995.

[9] M. Moriconi, X. Qian, R. A. Riemenschneider, and L. Gong, “Secure
Software Architectures”,Proceedings of the 1997 IEEE Symposium on
Security and Privacy, Oakland, CA, May, 1997.

[10] M. Moriconi and R. A. Riemenschneider, “Introduction to SADL 1.0: A
language for specifying software architecture hierarchies”, Technical Re-
port SRI-CSL-97-01, Computer Science Laboratory, SRI International,
Menlo Park, CA, March, 1997.

[11] J. Philipps and B. Rumpe, “Refinement of Information Flow Architec-
tures”,Proceedings of the First IEEE International Conference on Formal
Engineering Methods, ICFEM ’97, November, 1997.

[12] C. Rich and R. C. Waters, editors,Readings in Artificial Intelligence and
Software Engineering, Morgan Kaufmann, 1986.

[13] R. A. Riemenschneider, “A Simplified Method for Establishing the Cor-
rectness of Architectural Refinements”, Working Paper DSA-97-02, De-
pendable System Archiecture Group, Computer Science Laboratory, SRI
International, Menlo Park, CA, November, 1997. Available athttp:
//www.sdl.sri.com/dsa/publis.html .

[14] R. A. Riemenschneider, “Correct Transformation Rules for Incremental
Development of Architecture Hierarchies”, Working Paper DSA-98-01,
Dependable System Archiecture Group, Computer Science Laboratory,
SRI International, Menlo Park, CA, February, 1998. Available athttp:
//www.sdl.sri.com/dsa/publis.html .

[15] R. A. Riemenschneider. “Checking the Correctness of Architectural
Transformation Steps via Proof-Carrying Architectures”, inSoftware Ar-
chitecture, ed. P. Donahoe, Kluwer, 1999.

[16] R. A. Riemenschneider and V. Stavridou. “The Role of Architecture De-
scription Languages in Component-Based Development: The SRI Per-
spective”,1999 International Workshop on Component-Based Software
Engineering, Los Angeles, CA, May 17-18, 1999.

[17] H. Säıdi and N. Shankar, “Abstract and Model-Check While You Prove”,
Proceedings of the 11th International Conference on Computer-Aided
Verification, CAV ’99, Trento, Italy, 1999.

[18] H. Säıdi, “Modular and Incremental Analysis of Concurrent Software
Systems”,Proceedings of the 14th IEEE International Conference on Au-
tomated Software Engineering, ASE ’99, Cocoa Beach, FL, 1999.

[19] T. Saridakis and V. Issarny, “Developing Dependable Systems Using Soft-
ware Architecture”, inSoftware Architecture, ed. P. Donahoe, Kluwer,
1999.

