
The Formal Semantis of PVS1Sam Owre and Natarajan Shankarowre�sl.sri.om shankar�sl.sri.omURL: http://www.sl.sri.om/sri-sl-fm.htmlSRI InternationalComputer Siene LaboratoryMenlo Park CA 94025 USATehnial Report CSL-97-2RAugust 1997, Revised Marh 1999

1Funded by National Aeronautis and Spae Administration Contrat NAS1-18969, Task 11 and National Siene Foundation Grant CCR 9300444.



ii



AbstratA spei�ation language is a medium for expressing what is omputedrather than how it is omputed. Spei�ation languages share some featureswith programming languages but are also di�erent in several important ways.For our purpose, a spei�ation language is a logi within whih the behaviorof omputational systems an be formalized. Although a spei�ation an beused to simulate the behavior of suh systems, we mainly use spei�ations tostate and prove system properties with mehanial assistane.We present the formal semantis of the spei�ation language of SRI'sPrototype Veri�ation System (PVS). This spei�ation language is based onthe simply typed lambda alulus. The novelty in PVS is that it ontains veryexpressive language features whose stati analysis (e.g., typeheking) requiresthe assistane of a theorem prover. The formal semantis illuminates several ofthe design onsiderations underlying PVS, partiularly the interation betweentheorem proving and typeheking.

iii



iv



Contents
1 Introdution 11.1 Real versus Idealized PVS . . . . . . . . . . . . . . . . . . . . 21.2 Semanti Preliminaries . . . . . . . . . . . . . . . . . . . . . . 31.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 51.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 The Simple Type Theory 92.1 Contexts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102.2 Type Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102.3 Semantis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122.4 Some Syntati Operations . . . . . . . . . . . . . . . . . . . . 162.5 Type De�nitions . . . . . . . . . . . . . . . . . . . . . . . . . 172.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 Adding Subtypes 203.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294 Dependent Types 304.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405 Theories and Parametri Theories 415.1 Theories without Parameters . . . . . . . . . . . . . . . . . . . 415.2 Constant De�nitions . . . . . . . . . . . . . . . . . . . . . . . 455.3 Parametri Theories . . . . . . . . . . . . . . . . . . . . . . . 455.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486 Conditional Expressions and Logial Connetives 496.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52v



7 Proof Theory of PVS 537.1 PVS Proof Rules . . . . . . . . . . . . . . . . . . . . . . . . . 537.1.1 Strutural Rules . . . . . . . . . . . . . . . . . . . . . . 537.1.2 Cut Rule . . . . . . . . . . . . . . . . . . . . . . . . . . 547.1.3 Propositional Axioms . . . . . . . . . . . . . . . . . . . 547.1.4 Context Rules . . . . . . . . . . . . . . . . . . . . . . . 557.1.5 Conditional Rules . . . . . . . . . . . . . . . . . . . . . 557.1.6 Equality Rules . . . . . . . . . . . . . . . . . . . . . . 557.1.7 Boolean Equality Rules . . . . . . . . . . . . . . . . . . 567.1.8 Redution Rules . . . . . . . . . . . . . . . . . . . . . 567.1.9 Extensionality Rules . . . . . . . . . . . . . . . . . . . 567.1.10 Type Constraint Rule . . . . . . . . . . . . . . . . . . 577.2 Soundness of the Proof Rules . . . . . . . . . . . . . . . . . . 577.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 608 Conlusion 61Bibliography 64

vi



Chapter 1IntrodutionPVS is a system for speifying and verifying properties of digital hardwareand software systems. The spei�ation language of PVS is designed to admitsuint, readable, and logially meaningful spei�ations. The PVS spei�a-tion language is designed for e�etive proof onstrution rather than eÆientexeution. The design onsiderations underlying the language are thereforesomewhat di�erent from those of a orresponding programming language. Forexample, the language ontains onstruts that an be statially typehekedonly with the assistane of a theorem prover. This is aeptable beause thePVS spei�ation language is intended for use in onjuntion with powerfulsupport for automated theorem proving. The logi of PVS is based on a sim-ply typed higher-order logi with funtion, reord, and produt types, andreursive type de�nitions. This type system is extended with subtypes thatare analogous to subsets, and with dependently typed funtions, reords, andproduts. The resulting type system has several advantages. It is possible, forinstane, to statially ensure that all array referenes are within their respe-tive array bounds. PVS spei�ations are organized into theories that an beparametri in types as well as individuals. While the semantis of the simplytyped fragment is straightforward, the extensions suh as subtyping, depen-dent typing, and (theory-level) parametriity do pose signi�ant hallenges.This report presents a onise but idealized de�nition of the PVS spei�a-tion language and its intended formal set-theoreti semantis. It is neitheran overview of the PVS language nor a guide to the Prototype Veri�ationSystem (see the PVS user manuals [OSRSC98℄).The primary purpose of the formal semantis is as a useful referene for thedevelopers and users of PVS. The idealized ore of the spei�ation languageas presented here serves as a suint foundation for studying the expressive1



2 Chapter 1. Introdutionpower of the language. Pertinent questions about PVS are answered diretlyby the formal semantis presented here:1. What is the semanti ore of the language, and what is just syntatisugar?2. What are the rules for determining whether a given PVS expression iswell typed?3. How is subtyping handled, and in partiular, how are proof obligationsorresponding to subtypes generated?4. What is the meaning, in set-theoreti terms, of a PVS expression orassertion?5. Are the type rules sound with respet to the semantis?6. Are the proof rules sound with respet to the semantis?7. What is the form of dependent typing used by PVS, and what kinds oftype dependenies are disallowed by the language?8. What is the meaning of theory-level parametriity, and what, if any, arethe semanti limits on suh parameterization?9. What language extensions are inompatible with the referene semantisgiven here?Chapter 8 summarizes the answers to these questions.1.1 Real versus Idealized PVSThe semanti treatment in this report is inomplete in some important ways.It does not treat the nonlogial parts of the language. In partiular, it ignoresarithmeti and reursive de�nitions. It also omits abstrat datatypes [OS97℄.These will be treated in a future expanded version.The present semantis also makes several idealizations from the real PVSfor the purpose of larity. While the semanti treatment is not omprehensive,the idealization of PVS used here is faithful to the implemented form of PVS.1. No name resolution. All names must be in fully resolved form with theirtheory name and atual parameters. We regard name resolution as aonveniene provided by the PVS type heker and not an operation



1.2. Semanti Preliminaries 3with any semanti relevane. A tehnial desription of name resolutionin PVS will be given elsewhere.2. No overloading. As with name resolution, overloading is a syntationveniene with no semanti import.3. No IMPORTINGs. The importing of theories is a hint to name resolution.The semanti de�nition assumes that all instanes of theories delaredprior to the present one are visible.4. Variable delarations ignored. All variables must be loally delared.Global variable delarations are regarded as a syntati onveniene.5. No reords. These are ignored in the semanti treatment sine produttypes apture all the semantially essential features of reords.1.2 Semanti PreliminariesThe PVS spei�ation language is based on higher-order logi. This meansthat variables an range over individuals (suh as numbers) as well as funtions,funtions of funtions, and so on. As is well known, some type distintion isneeded; otherwise, it is easy to obtain a ontradition by de�ning the prediateN(P ) as :(P (P )) so that both N(N) and :N(N) hold. In the theory oftypes [Chu40℄, the universe is strati�ed into distint types so that a prediatean be applied only to a lower type and thus annot be applied to itself.Types also serve as a powerful mehanism for deteting syntati and se-manti errors through typeheking. This role of types is best exempli�ed bytheir use in various programming languages suh as Algol, Ada, and ML, andis also heavily emphasized in the PVS type system.The desirability for strong typing in a spei�ation logi is not widely a-epted. Fraenkel et al [FBHL84℄ express the opinion that suh typing is repug-nant in a mathematial logi sine it onstrains expressiveness by not allowingindividuals of di�ering types to be treated uniformly. Lamport [Lam94℄ arguesthat type orretness is like any other program property and should be estab-lished by means of a proof rather than by syntati restraints. Lamport andPaulson [LP97℄ analyze the tradeo�s between typed and untyped spei�ationlanguages. We laim that1. Types impose a useful disipline on the spei�ation.2. Types lead to easy and early detetion of a large lass of syntati andsemanti errors.



4 Chapter 1. Introdution3. Type information is useful in mehanized reasoning.The semantis of a higher-order logi is given by mapping the well-formedtypes of the logi to sets, and the well-formed terms of the logi to elementsof the sets representing their type. The set onstrutions we use an be for-malized within Zermelo-Fraenkel set theory with the axiom of hoie (ZFC).The intended interpretation of a funtion type in higher-order logi is that itrepresents the set of all funtions from the set representing the domain type tothe set representing the range types.1 PVS also has prediate subtypes thatare to be interpreted over the subsets of the set representing the parent type.The semantis of PVS will be given by onsidering a sequene of inreas-ingly expressive fragments of PVS. The semantis of eah fragment of PVSwill be presented in three steps. The �rst step is to de�ne a set-theoretiuniverse ontaining enough sets to represent the PVS types. The seond stepis to de�ne a typeheking operation that determines whether a given PVSexpression is well typed. The third step is to de�ne a semanti funtion thatassigns a representation in the semanti universe to eah well-typed PVS typeand term.We �rst lay out the ZFC set onstrutions needed for de�ning the semantisof PVS. The base types in PVS onsist of the Booleans bool and the realnumbers real. The Booleans an be modeled by any two-element set, say 2onsisting of the elements 0 and 1, where 0 is the empty set and the onlyelement of the set 1. The real numbers an be aptured by means of Dedekinduts or Cauhy sequenes, and we label this set R.To de�ne the semantis, we need a universe that ontains the sets 2 andR and is losed under Cartesian produts (written as X � Y ) and power sets(written as }(X)). Note that funtions are modeled as graphs, that is, setsof ordered pairs, so that a funtion type [A!B℄ is represented by a subset ofthe powerset }([[A℄℄ � [[B℄℄) of the Cartesian produt of the sets [[A℄℄ and [[B℄℄representing A and B, respetively. A set F that is a subset of X � Y is thegraph of a funtion with domain X and range Y if for every x 2 X there isa y 2 Y suh that hx; yi 2 F , and whenever hx; yi 2 F and hx; y0i 2 F , wehave y = y0. For suh a set F , Funtion(F ) holds and dom(F ) = X. Theset of graphs of total funtions from a set Y to a set X is represented as XY .1It is only in the standard model of higher-order logi that the funtion type is requiredto represent the set of all funtions from the domain set to the range set. Higher-orderlogi an be interpreted in general models where the funtion type an be interpreted inany manner as long as it satis�es the various axioms suh as appliation, abstration, andextensionality [And86℄. Higher-order logi is omplete with respet to the general modelsinterpretation so that a statement that is valid in all models is provable. It is, however,inomplete with respet to the standard model.



1.3. Related Work 5If F is the graph of a funtion and t an element in its domain, then F (t)represents the result of applying the funtion F to t. At the semanti level, afuntion F will never be applied to an argument t outside dom(F ), beause inthe PVS language, a funtion appliation is typeheked so that the argumentexpression has the same type as the domain type of the funtion expression.We an model the entire type universe of the simply typed fragment ofPVS by the set U , whih is de�ned umulatively by starting from the basesets 2 and R, and inluding the Cartesian produts, the funtion spaes, andsubsets of previously inluded sets, at eah stage. Cartesian produts are usedto model produts in PVS, and funtion spaes model funtion types. Subsetsare needed to model prediate subtypes. It is suÆient to iterate these stagesup to the ordinal !.De�nition 1.1 (type universe)U0 = f2;RgUi+1 = Ui [ fX � Y j X; Y 2 Uig [ fXY j X; Y 2 Uig [ [X2Ui }(X)U! = [i2!UiU = U!We refer to U as the basi universe.2 The semanti de�nitions below willassign a set in U to eah PVS type and an element in SU to eah well-typedterm of PVS. The rank of a set X in U is the least i suh that X 2 Ui. Thenotion of rank plays an important role in the semantis of dependent typesand parametri theories.1.3 Related WorkThere is a long history of work in spei�ation languages. Many ideas sim-ilar to those underlying the PVS spei�ation language also our in otherspei�ation languages.The wide-spetrum languages are typially based on set theory or higher-order logi. The language VDM is one of the earliest suh spei�ation for-malisms [Jon90℄. It is based on a �rst-order logi with partial funtions aug-mented with datatype axioms. The datatype theories in VDM inlude those2The inlusion of XY in U is atually redundant but aids larity.



6 Chapter 1. Introdutionfor �nite sets, maps, sequenes, and reursive datatypes suh as lists and trees.VDM has a notion of datatype invariants that yields a simple form of prediatesubtyping. Operations on state are spei�ed in terms of pre-ondition/post-ondition pairs. Spei�ations are strutured into parameterized modules. Inontrast to VDM, the PVS language is based on stritly typed higher-orderlogi with a built-in notion of prediate subtyping and dependent typing. Theresulting PVS logi is more ompat in that many of the datatypes that arepresented axiomatially in VDM an be de�ned within PVS. There is no built-in notion of state in PVS sine it is possible to use the higher-order logi ofPVS to de�ne a variety of state-based formalisms, inluding various linear andbranhing-time temporal logis. VDM uses a 3-valued logi for the logial on-netives in order to deal with partial funtions, whereas PVS uses a lassial2-valued logi and prediate subtyping to assign a type to a partial funtionas a total funtion on its domain of de�nition. Jones [Jon90℄ provides only aninformal semantis for VDM. The RAISE system is a omprehensive toolsetbased on the ideas of VDM [RAISE92℄.The Z spei�ation language [Spi88℄ is another wide-spetrum languagebased on a typed �rst-order set theory. A Z spei�ation is a olletionof shemas onsisting of delarations of types and onstants aompaniedwith invariants. Z shemas an either speify datatype invariants or pre-ondition/post-ondition onstraints. A shema alulus is used to ombineshemas using logial onnetives. Spivey [Spi88℄ presents a formal semantisfor Z without giving a proof system or a soundness proof. Spivey's treat-ment of partial funtions in the Z semantis employs the ommonly usedonvention that f(a) when a is not in the domain of a is some arbitrarilyhosen value. This is �ne for most purposes but an be onfusing when deal-ing with reursively de�ned partial funtions. For example, the de�nitionbad(x) = 1 + bad(x) is everywhere unde�ned but admitting it as an axiomleads to an immediate ontradition. Z also laks any mehanism for onser-vative extensions suh as de�nitional priniples for onstants and datatypes sothat the onsisteny of Z spei�ation has to be demonstrated by exhibiting amodel.Algebrai spei�ation languages like OBJ [FGJM85℄ and Larh [GH93℄provide an equational/rewriting framework for speifying datatypes and op-erations on datatypes. OBJ has many of the same theory parameterizationmehanisms as PVS. The subsort mehanism in OBJ is also similar exeptthat it is handled by introduing retrats or runtime heks rather than proofobligations generated by the type heker. The OBJ logi is quite restritedompared to PVS sine it is based on a �rst-order, equational framework withan initial semantis where two ground terms are distint unless they an be



1.4. Outline 7proved equal. OBJ has very limited support for proof development and isprimarily intended as an exeutable spei�ation language.The spei�ation languages that are loser to PVS are those that a-ompany various automated proof heking systems. The losest of these isEhdm [EHDM93℄, whih employs a similar higher-order logi with subtypingand proof obligation generation. Ehdm laks many of the features of PVS:subtyping is restrited to type delarations and there is no dependent typing.Higher-order logi is used by other systems suh as HOL [GM93℄ andTPS [AMCP84℄. Both HOL and TPS employ simply typed higher-order logiwithout features suh as subtyping, dependent typing, or parametri theories.Andrews [And86℄ gives a thorough aount of the semanti aspets of higher-order logi. The formal semantis of the HOL logi are arefully outlined (byPitts) in the book by Gordon and Melham [GM93℄.Systems like Coq [DFH+91℄ and Nuprl [CAB+86℄ are based on intuitionistihigher-order logis. Coq allows quanti�ation over types, whereas Nuprl hasquanti�ation over a hierarhy of type universes. Both logis admit dependenttyping. The set-theoreti semantis of dependently typed intuitionisti typetheories has been studied by Dybjer [Dyb91℄ and Howe [How91, How96℄. Notsurprisingly, their semanti treatment of dependent typing is similar to theone given here but they do not delimit the possible dependenies as is donewith the PVS semantis. The PVS semantis presented here learly spei�esthe kind of type dependenies that are disallowed in the logi. Dybjer andHowe also do not address subtyping but do desribe the semantis of languagefeatures missing in PVS (type universes in the ase of Howe, and indutivefamilies in the ase of Dybjer). Dybjer does not identify the universe overwhih terms and types are interpreted. Howe requires an in�nite sequene ofinaessible ardinals for his universe onstrution.1.4 OutlineIn Chapter 2, we de�ne the syntax and semantis of the simply typed fragmentof PVS. Type de�nitions are also introdued in this hapter along with thede�nition of de�nitional equivalene on types. Chapter 3 adds subtyping tothe simply typed fragment and spei�es the additional type rules and semantide�nitions that are needed. Chapter 4 extends the language with dependentfuntion and produt types. Theories and parametri theories are introduedinto the language in Chapter 5. The type rules and semantis for onditionalexpressions and the logial onnetives de�ned using onditional expressions



8 Chapter 1. Introdutionare introdued in Chapter 6. Chapter 7 spei�es the axioms and inferenerules of PVS.



Chapter 2The Simple Type TheoryPVS is a strongly typed spei�ation language. The simply typed fragment in-ludes types onstruted from the base types by the funtion and produt typeonstrutions, and expressions onstruted from the onstants and variablesby means of appliation, abstration, and tupling. Expressions are hekedto be well typed under a ontext , whih is a partial funtion that assigns akind (one of TYPE, CONSTANT, or VARIABLE) to eah symbol, and a type tothe onstant and variable symbols. We use the metavariables �, �, and �to range over ontexts. The metavariables A, B, and T range over PVS typeexpressions, the metavariables r and s range over symbols (identi�ers), themetavariables x and y range over PVS variables, and the metavariables a, b,f , and g range over PVS terms. Given a ontext � and a symbol s, we saythat �(s) is unde�ned if s is not delared in �.The pretypes of the simple type theory inlude the base types suh as booland real. A funtion pretype from domain pretype A to range pretype B isonstruted as [A!B℄. A produt pretype of A1; A2 is onstruted as [A1; A2℄.A type is a pretype that has been typeheked in a given ontext. Types inthe simple type theory are simple enough that the only distintion betweenpretypes and types is that the symbols in a type must be appropriately delaredin the given ontext.Example 2.1 (pretypes) bool, real, [bool; real℄, [[real; bool℄!bool℄.The preterms of the language onsist of the onstants, variables, pairs,projetions, appliations, and abstrations. The metavariables  and d rangeover onstants. Pairs are of the form (a1; a2) where eah ai is a preterm.Appliations have the form f a where f and a are preterms. A pair projetionis an expression of the form pi a, where i 2 f1; 2g. Lambda abstrations have9



10 Chapter 2. The Simple Type Theorythe form �(x:T ): a, where T is a pretype and a is a preterm. Parentheses areused for disambiguation. A term is a preterm that has been typeheked in agiven ontext.Example 2.2 (preterms) TRUE, : TRUE, � (x : bool): :(x),p2 (TRUE; FALSE), (TRUE; � (x : bool) : : (: x)).2.1 ContextsA ontext is a sequene of delarations, where eah delaration is either atype delaration s : TYPE, a onstant delaration  : T where T is a type,or a variable delaration x : VAR T . Preterms and pretypes are typehekedwith respet to a given ontext. The empty ontext is represented as fg. Thewell-formedness rules for ontexts are presented below. A ontext an alsobe applied as a partial funtion so that for a symbol s with delaration D,(�; s:D)(s) = D and (�; s:D)(r) = �(r) for r 6= s. If s is not delared in �,then �(s) is unde�ned. If � is a ontext, then for any symbol s, the kind ofthe symbol s in � is given by kind(�(s)). If the kind of s in � is CONSTANT orVARIABLE, then the type(�(s)) is the type assigned to s in �.Example 2.3 (ontext)bool : TYPE; TRUE : bool; FALSE : bool; x : VAR [[bool; bool℄!bool℄2.2 Type RulesThe type rules for the simple type theory are given by a reursively de�nedpartial funtion � that assigns1. A type �(�)(a) to a preterm a that is well typed with respet to a ontext�.2. The keyword TYPE as the result of �(�)(A) when A is a well-formed typeunder ontext �.3. The keyword CONTEXT as the result of �(�)(�) when � is a well-formedontext under ontext �. The ontext � is empty for the simply typedfragment so that typeheking is always invoked as �()(�).Otherwise, � is unde�ned in the ase of an ill-typed preterm or an ill-formedtype or ontext.



2.2. Type Rules 11The type rules are given by the reursive de�nition for � . Typehekingin PVS assigns a \anonial" type to a preterm. Customarily, type rules arepresented as inferene rules, but a funtional presentation is more appropriatefor PVS sine1. The type assignment is deterministi. A term an, in general, thoughnot in the simply typed fragment, be assigned a number of types but italways has at most one anonial type.2. The soundness proof need only show that the meaning of the term is anelement of the meaning of its anonial type. Thus, only the anonialtype derivation for a term has to be shown sound and not every validtype derivation.3. The meaning of a term is therefore given by reursion on the term itselfand not on its typing derivation. There is no need to show separately thatthis meaning is oherent , that is, independent of the typing derivation.A funtional presentation of the type rules also leads to natural and straight-forward soundness arguments. Note that the well-formedness rules for ontextsand types are trivial in the simply typed situation but beome more mean-ingful when the type theory is extended. Note also that in the type rules forexpressions and types, the well-formedness of the relevant ontext is not ex-pliitly heked. These rules do preserve the well-formedness of the ontext ineah reursive all so that if the initial ontext is well formed, then so is everyintermediate one.De�nition 2.4 (type rules)�()(fg) = CONTEXT�()(�; s : TYPE) = CONTEXT; if �(s) is unde�nedand �()(�) = CONTEXT�()(�; :T ) = CONTEXT; if �() is unde�ned,�(�)(T ) = TYPE;and �()(�) = CONTEXT�()(�; x: VAR T ) = CONTEXT; if �(x) is unde�ned,�(�)(T ) = TYPE;and �()(�) = CONTEXT�(�)(s) = TYPE; if kind(�(s)) = TYPE�(�)([A!B℄) = TYPE; if �(�)(A) = �(�)(B) = TYPE



12 Chapter 2. The Simple Type Theory�(�)([A1; A2℄) = TYPE; if �(�)(Ai) = TYPE for 1 � i � 2�(�)(s) = type(�(s));if kind(�(s)) 2 fCONSTANT; VARIABLEg�(�)(f a) = B; if �(�)(f) = [A!B℄ and �(�)(a) = A�(�)(�(x:T ): a) = [T!�(�; x: VAR T )(a)℄; if �(x) is unde�nedand �(�)(T ) = TYPE�(�)((a1; a2)) = [�(�)(a1); �(�)(a2))℄�(�)(pi a) = Ti; where�(�)(a) = [T1; T2℄In the type rule for lambda abstration, the onstraint that �(x) must beunde�ned an be satis�ed by suitably renaming the bound variable sine wetreat terms as equivalent modulo the renaming of bound variables.Example 2.5 (type rules) Let 
 label the ontext bool : TYPE, TRUE : bool,FALSE : bool �()(fg) = CONTEXT�()(
) = CONTEXT�(
)([[bool; bool℄!bool℄) = TYPE�(
)((TRUE; FALSE)) = [bool; bool℄�(
)(p2(TRUE; FALSE)) = bool�(
)(�(x : bool): TRUE) = [bool!bool℄
2.3 SemantisReall that a preterm a with a type assigned by � under ontext � is said to bea term of type �(�)(a) in the ontext �. If  is an assignment for the symbolsdelared in ontext �, the semantis of the simple type theory of PVS is givenby mapping a type T to a (possibly empty) setM(� j )(T ), and a term a withassigned type T to an element of the set M(� j )(T ) in the basi universeU . The assignment  is a list of bindings of the form fs1  t1g : : :fsn  tng.The appliation of an assignment  to a symbol s is suh that fs tg(s) ist, whereas fr tg(s) is (s) when r 6� s.



2.3. Semantis 13The meaning funtion M returns the meaning of a well-formed type Aand a well-formed expression a in the ontext � under an assignment  asM(� j )(A) and M(� j )(a),respetively. The meanings of type names,onstants, and variables delared in � are obtained from the assignment .A funtion type is mapped to the orresponding funtion spae. A produttype is mapped to the orresponding Cartesian produt. An appliationterm is interpreted by means of set-theoreti funtion appliation. A lambdaabstration yields the graph of the orresponding funtion. A pair expressionis mapped to the orresponding set-theoreti ordered pair.De�nition 2.6 (meaning funtion)M(� j )(s) = (s);if kind(�(s)) 2 fTYPE; CONSTANT; VARIABLEgM(� j )([A!B℄) = M(� j )(B)M(� j )(A)M(� j )([T1; T2℄) = M(� j )(T1)�M(� j )(T2)M(� j )(f a) = (M(� j )(f))(M(� j )(a))M(� j )(�(x:T ): a) = fhy; zi j y 2 M(� j )(T );z =M(�; x: VAR T j fx yg)(a)gM(� j )((a1; a2)) = hM(� j )(a1);M(� j )(a2)iM(� j )(pi a) = ti; whereM(� j )(a) = ht1; t2iExample 2.7 (meaning funtion) Let ! be an assignment for the ontext
 in Example 2.5, of the formfbool 2gfTRUE 1gfFALSE 0gthen M(
 j !)([bool; bool℄) = 2� 2M(
 j !)((TRUE; FALSE)) = h1; 0iM(
 j !)(�(x: bool): TRUE) = fh0; 1i; h1; 1igDe�nition 2.8 (satisfation) A ontext assignment  is said to satisfy aontext � (in symbols  j= �) i�1. (bool) = 2;



14 Chapter 2. The Simple Type Theory2. (TRUE) = 1;3. (FALSE) = 0;4. (s) 2 U whenever kind(�(s)) = TYPE, and5. (s) 2 M(� j )(type(�(s)))whenever kind(�(s)) 2 fCONSTANT; VARIABLEg.Example 2.9 (satisfation)1. The assignment ! satis�es ontext 
.2. The assignment !fone  1gfzero  0g satis�es the ontext
; one : TYPE; zero : one.We need one useful proposition that asserts that typing judgements arenot invalidated when the ontext is extended.Proposition 2.10 If �()(�) = �()(�0) = CONTEXT and � is a pre�x of �0,then for all pretypes A, �(�)(A) = TYPE implies �(�0)(A) = TYPE, and for allpreterms a, �(�)(a) = A implies �(�0)(a) = A.The following theorems follow from the indution suggested by the de�ni-tions of � and M. The �rst of these is straightforward and is given withoutproof.Theorem 2.11 (type onstrution) If �()(�) = CONTEXT and �(�)(a) =A, then �(�)(A) = TYPE.Theorem 2.12 (type soundness) If �()(�) = CONTEXT,  satis�es �, and�(�)(A) = TYPE, thenM(� j )(A) 2 U .Proof. The proof is by indution on the struture of the pretype A. Reallthat if X 2 U , then for some i, X 2 Ui. This yields three ases:1. A � s: By De�nition 2.4, �(s) is de�ned and kind(�(s)) is TYPE. Thenby De�nition 2.6,M(� j )(s) is (s), and by De�nition 2.8, (s) 2 U .



2.3. Semantis 152. A � [B!C℄: We then have that �(�)(B) = �(�)(C) = TYPE. Letting XlabelM(� j )(B), and Y labelM(� j )(C), we have by the indutionhypothesis that X 2 U and Y 2 U . Let j be the least rank suhthat M(� j )(B) 2 Uj and M(� j )(C) 2 Uj. By De�nition 2.6,M(� j )(A) = Y X , and heneM(� j )(A) 2 Uj+1 by De�nition 1.1.3. A � [A1; A2℄: Again by De�nition 2.4 and the indution hypothesis, wehave for eah i 2 f1; 2g, thatM(� j )(Ai) 2 U . Let j be the least ranksuh that for i 2 f1; 2g, M(� j )(Ai) 2 Uj. Then, it is easy to verifyfrom De�nition 1.1 thatM(� j )(A) 2 Uj+1.Theorem 2.13 (term soundness) If �()(�) = CONTEXT,  satis�es �, and�(�)(a) is de�ned and equal to A, thenM(� j )(a) 2 M(� j )(A).Proof. The proof is by indution on the struture of preterms.1. a � s: By De�nition 2.4, we have that type(�(s)) = A. By De�nitions 2.6and 2.8, we have thatM(� j )(a) = (s) and (s) 2 M(� j )(A).2. a � (f b): By De�nition 2.4, �(�)(f) = [B!A℄, and �(�)(b) = B,for some B suh that �(�)(B) = TYPE. Let M(� j )(A) be X andM(� j )(B) be Y , then by De�nitions 2.4 and 2.6, and the indu-tion hypothesis, we have M(� j )(f) 2 XY and M(� j )(b) 2Y . It therefore follows by De�nition 2.6 that M(� j )((f b)) =(M(� j )(f))(M(� j )(b)), and heneM(� j )((f b)) 2 X.3. a � (�(x:C): b): By De�nition 2.4, we have that �(�)(a) is [C!B℄,where �(�; x: VAR C)(b) is B. Let X be M(� j )(C), and Y beM(�; x: VAR C j fx  ug))(B). By the indution hypothesis, wehave that for any u 2 Y , M(�; x: VAR C j fx  ug)(b) 2 X. SineM(� j )(a) is fhu; vi j u 2 X; v =M(�; x: VAR C j fx ug)(b)g, wehave thatM(� j )(a) 2 XY .4. a � (a1; a2): By De�nition 2.4, �(�)(a) = [A1; A2℄, where �(�)(ai) =Ai for i 2 f1; 2g. By the indution hypothesis, M(� j )(ai) 2M(� j )(Ai) for i 2 f1; 2g. By De�nition 2.6, M(� j )(a) =hM(� j )(a1);M(� j )(a2)i and hene M(� j )(a) is an elementofM(� j )(A) whih isM(� j )(A)�M(� j )(An).



16 Chapter 2. The Simple Type Theory5. a � pi b: In this ase, we know by De�nition 2.4 that �(�)(b) = [A1; A2℄with i 2 f1; 2g, and �(�)(a) = Ai. By the indution hypothesis,M(� j )(b) = ht1; t2i, and by De�nition 2.6, M(� j )(a) = ti andM(� j )(�(�)(b)) =M(� j )(A1)�M(� j )(A2), heneM(� j )(a) 2M(� j )(Ai).These three theorems (2.11, 2.12, and 2.13) are the key invariants thatmust be satis�ed by the semantis when the language is extended below withtype de�nitions, subtypes, dependent types, and parametri theories.2.4 Some Syntati OperationsWe �rst de�ne the operation of olleting the free variables of a term a in agiven ontext � as FV (�)(a), and then de�ne the operation of substitution.De�nition 2.14 (free variables)FV (�)(s) = � fsg; if kind(�(s)) = VARIABLE;; otherwiseFV (�)(f a) = FV (�)(f) [ FV (�)(a)FV (�)(�(x:T ): a) = FV (�; x: VAR T )(a)� fxgFV (�)((a1; a2)) = FV (�)(a1) [ FV (�)(a2)FV (�)(pi a) = FV (�)(a)De�nition 2.15 (substitution)s[a1=x1; : : : ; an=xn℄ = � ai; if for some minimal i; s � xis; otherwise(f a)[a1=x1; : : : ; an=xn℄ = (f [a1=x1; : : : ; an=xn℄a[a1=x1; : : : ; an=xn℄)(�(y:T ): a)[a1=x1; : : : ; an=xn℄ = (�(y0:T ): a[y0=y; a1=x1; : : : ; an=xn℄);where y0 is a fresh variable(b1; b2)[a1=x1; : : : ; an=xn℄ = (b1[a1=x1; : : : ; an=xn℄;b2[a1=x1; : : : ; an=xn℄)(pi a)[a1=x1; : : : ; an=xn℄ = (pi a[a1=x1; : : : ; an=xn℄)



2.5. Type De�nitions 17Reall that terms are treated as syntatially equivalent modulo alphaonversion. The above de�nitions must be extended as more features areadded to the language.2.5 Type De�nitionsHere we enrih ontexts so that type symbols may have de�nitions. PVS doesnot allow reursive type de�nitions1 so a type delaration/de�nition in a on-text may use only the symbols delared in the prior part of the ontext. Themain di�erene in the extended language is that type names an have de�-nitions. In suh ases, the de�nitions rather than the type names are usedto determine the atual type of an expression. In other words, two type ex-pressions are treated as the same if they are de�nitionally equivalent . Mostother spei�ation languages tend to employ the weaker notion of name equiv-alene where syntatially di�erent types are treated as distint even whentheir de�nitions oinide.To aommodate type de�nitions, a ontext an ontain type delarationsof the form s : TYPE = T , where T is a type. If ontext � ontains suha delaration for s, then de�nition(�(s)) is T . To extend � to handle typede�nitions under de�nitional equivalene, we must ensure that � returns theanonial form of a type where all de�ned types have been replaed by theirde�nitions. The operation Æ(�)(T ) returns the expanded form of a type relativeto the ontext �.De�nition 2.16 (expanded type)Æ(�)(s) = s; if de�nition(�(s)) is emptyÆ(�)(s) = Æ(�)(de�nition(�(s))); if de�nition(�(s)) is nonemptyÆ(�)([A!B℄) = [Æ(�)(A)!Æ(�)(B)℄Æ(�)([T1; T2℄) = [Æ(�)(T1); Æ(�)(T2)℄The typing rules are augmented to return the type in expanded form. Themain issue here is to determine that the de�nition part of a type delarationin a ontext is well formed relative to the preeding ontext. We also needto ensure that � returns the expanded form of the type orresponding to apreterm.1For the moment, we are not onsidering the PVS DATATYPE mehanism, whih is a formof reursive type de�nition [OS97℄. Reursive datatypes in the ontext of the HOL proofheking system are desribed by Melham [Mel89℄.



18 Chapter 2. The Simple Type TheoryDe�nition 2.17 (type rules with type de�nitions)�()(�; s : TYPE = T ) = CONTEXT; if �(s) is unde�ned;�()(�) = CONTEXT;and �(�)(T ) = TYPE�(�)(s) = Æ(�)(type(�(s)));if kind(�(s)) 2 fCONSTANT; VARIABLEgNote that the Æ operator is idempotent, and �(�)(a) for a term a alwaysreturns an expanded type, that is, Æ(�(�)(a)) = �(�)(a).We do not need to update the de�nition of M from De�nition 2.6 sinethe syntax for terms is unhanged, but we do need to revise the notion of asatisfying ontext assignment (from De�nition 2.8) to respet the type de�ni-tions.De�nition 2.18 (satisfation with type de�nitions) An assignment satis�es a ontext � if in addition to the onditions in De�nition 2.8, wheneverkind(�(s)) = TYPE and de�nition(�(s)) (abbreviated as T ) is nonempty, then(s) =M(� j )(T ).Theorems 2.11 and 2.12 and 2.13 ontinue to hold under these extensions,and the proofs are easily adapted to the modi�ed de�nitions.Example 2.19 (type de�nition) Let 
0 be the ontext
; boolop: TYPE = [[bool; bool℄!bool℄;_: boolop. Then�()(
0) = CONTEXTÆ(
0)(boolop) = [[bool; bool℄!bool℄;�(
0)(_) = [[bool; bool℄!bool℄
2.6 SummaryWe have de�ned the simply typed fragment of PVS by introduing the syn-tax for pretypes and preterms, the type rules and semantis for well-formedontexts, types, and terms. The type rules are presented in a novel funtionalstyle where eah well-formed ontext is assigned the label CONTEXT, eah well-formed type is assigned the label TYPE, and eah well-formed term is assigned



2.6. Summary 19a anonial type. The semantis takes a satisfying assignment for a ontextand maps a well-formed type to a set and a well-formed term to an elementof the set orresponding to its anonial type. We then de�ned the syntatioperations of olleting the free variables in an expression and for substitutingterms for variables in an expression.The simple type theory is then extended with type de�nitions. With thisextension, two type expressions are treated as equivalent if they are identialafter all type de�nitions have been expanded. The operation Æ returns theexpanded form of a given type expression.



Chapter 3Adding SubtypesSubtyping is one of the main features of the PVS spei�ation language.1 Sub-typing in PVS orresponds to the set-theoreti notion of a subset. It raisesseveral deliate issues that were absent in the language presented thus far. Inthe simply typed fragment, eah type orresponds to a set of values that issomehow struturally di�erent from the set of values for another type so thata term has at most one type. Subtyping makes it possible to introdue thenatural numbers as a subtype of the reals, and to treat the primes, the evennumbers, and the odd numbers as subtypes of the natural numbers. Withsubtyping, a term an obviously have several possible types, but the type-heking funtion � may return only a single type. We onstrain � to returna natural anonial type of an expression that is given by the delarations ofthe symbols in the expression. If the expression is used in a ontext wherethe expeted type is a supertype of its anonial type, then the type orret-ness is straightforward. If the expeted type is a subtype that is ompatiblewith the anonial type of the expression, then typeheking generates proofobligations asserting that the expression satis�es the prediate onstraints im-posed by the expeted type. Two types are ompatible if they have equivalentmaximal supertypes. Type equivalene in the presene of subtypes is not asimple notion. Subtyping also introdues the possibility of types being empty.Typed lambda aluli with possibly empty types have been studied by Meyer,Mithell, Moggi, and Statman [MMMS90℄. This hapter introdues prediatesubtypes and de�nes the notions of ompatibility and type equivalene priorto presenting the type rules and semantis.We restrit our attention to ontexts � that extend the delarations:bool : TYPE,1The form of subtyping used in PVS is derived from a suggestion of Friedrih von Henke.20



21TRUE : bool,FALSE : bool,boolop : [[bool; bool℄!bool℄,: : [bool!bool℄,_ : boolop,^ : boolop,� : boolopWe will abuse PVS notation to employ the ustomary in�x forms of operationslike _, ^, and �. The pretype orresponding to a prediate subtype has theform fx:T j ag where x is a symbol, T is a pretype, and a is a preterm.A prediate type in PVS is a funtion type where the range is the primitivetype bool. A prediate is a term that has a prediate type. If a is a termof type bool, then we an de�ne the subtype fx:T j ag onsisting of thoseelements e of T satisfying a[e=x℄ (e substituted for x in a). Sine the elementsof the subtype fx:T j ag satisfy the prediate �(x:T ): a, we all this type aprediate subtype to distinguish it from other forms of subtyping. Universalquanti�ation 8(x:T ): a is just an abbreviation for the term (�(x:T ): a) =(�(x:T ): TRUE). Although we use the equality prediate in the de�nition ofuniversal quanti�ation and in the de�nitions below, the atual introdutionof equality is deferred to a later setion following the introdution of parametritheories. The equality between PVS terms of funtion type is to be interpretedas extensional equality. Note that the `=' symbol is used both for the formalequality symbol in the language and for metatheoreti equality.Our �rst step will be to de�ne the notion of a maximal supertype of a giventype as �(T ). Amaximal type T is one suh that �(T ) = T . In a given ontext,we will apply � only to the expanded form (given by Æ) of a type expression.De�nition 3.1 (maximal supertype)�(s) = s�(fx:T j ag) = �(T )�([A!B℄) = [A!�(B)℄�([A1; A2℄) = [�(A1); �(A2)℄Note that sine subtypes orrespond to subsets, in taking the maximal super-type of a funtion type, the domain type is held �xed. In most type theo-ries with subtypes, the rule for subtyping between funtion types [A!B℄ and[A0!B0℄ requires showing that A0 is a subtype of A, and B is a subtype of B0.



22 Chapter 3. Adding SubtypesSubtyping between funtion types is therefore said to be ontravariant in thedomain type and ovariant in the range type. Subtyping on funtion types inPVS is ovariant in the range type but is neither ovariant nor ontravariantin the domain type. This means that the funtion type [nat!nat℄ is not asupertype of the funtion type [int!nat℄. Suh a subtyping relation wouldviolate extensionality . Two funtions on nat are extensionally equal whenthey return equal values when applied to equal arguments in nat. Considertwo funtions in [nat!nat℄: abs whih returns the absolute value, and idnatwhih behaves as an identity funtion on natural numbers and returns 0 other-wise. These two funtions will be erroneously identi�ed if they an be viewedas being of type [nat!nat℄, and the subset interpretation of subtypes wouldbe lost.We will also employ a weaker supertype �0(T ) or the diret supertype, thatonly onsiders supertypes of expliitly given subtypes of the form fx:T j ag.De�nition 3.2 (diret supertype)�0(fx:T j ag) = �0(T )�0(T ) = T; otherwiseExample 3.3 (maximal supertype) Given a ontext ontaining the dela-rationsint: TYPE;0: int;�: [[int; int℄!bool℄;nat: TYPE = fi: int j 0 � ignatinjetion: TYPE = ff : [nat!nat℄ j 8(i; j: nat): f(i) = f(j) � i = jgwe have�(natinjetion) = �([nat!nat℄)= [nat!�(nat)℄= [nat!int℄�0(natinjetion) = [nat!nat℄Note that �(�(A)) = �(A). Note also that a maximal supertype is never asubtype. We an in fat ollet the prediates that onstrain a type A relativeto its maximal supertype �(A) as �(A).



23De�nition 3.4 (subtype onstraints)�(s) = �(x: s): TRUE�(fy:T j ag) = �(x:�(T )): (�(T )(x) ^ a[x=y℄)�([A!B℄) = �(x: [A!�(B)℄): (8(y:A): �(B)(x(y)))�([A1; A2℄) = �(x: [�(A1); �(A2)℄): (�(A1)(p1 x) ^ �(A2)(p2 x))Observe that in De�nition 3.4, if �(�)(A) = TYPE, then �(�)(�(A)) =[�(A)!bool℄.2Example 3.5 (subtype onstraints)�(nat)= �(j: int): 0 � j�([nat!nat℄)= �(g: [nat!int℄): 8(i: nat): (�(j: int): 0 � j)(g(i))�(natinjetion)= �(f : [nat!int℄): �([nat!nat℄)(f)^ (8(i; j: nat): f(i) = f(j) � i = j)= �(f : [nat!int℄):(�(g: [nat!int℄): 8(i: nat): (�(j: int): 0 � j)(g(i)))(f)^ (8(i; j: nat): f(i) = f(j) � i = j)Observe that �(�(A)) is essentially equivalent to �(x:�(A)): TRUE.Sine the subtype fx:T j p(x)^ q(x)g an also be written as fx:T j q(x)^p(x)g, we need a notion of equivalene between types. One way to do this is tomake types \�rst-lass" and to allow expliit theorems to be proved about typeequivalene and subtyping. Sine this would be a fairly drasti extension to thespei�ation language, we have designed the PVS type system so as to avoid2This is somewhat triky in the ase of �(fy:T j ag) sine in a[x=y℄, x has type�(T ), whereas y has type T . As shown in Chapter 6, the type rules for onjun-tion are suh that �(�; x: VAR �(T ))(�(T )(x) ^ a) redues to �(�; x: VAR �(T ))(�(T )(x))and �(�; x: VAR �(T ); �(T )(x))(a[x=y℄) where the �rst onjunt is added to theontext as a ontextual assumption. One an then show by indution that�(�; x: VAR �(T ); �(T )(x))(a[x=y℄) = �(�; y: VAR T )(a).



24 Chapter 3. Adding Subtypesany �rst-lass treatment of types. It turns out that all the needed propertiesabout types (suh as equality and subtyping) an be obtained by generatingordinary proof obligations rather than by expliitly proving theorems abouttypes.We introdue below a metatheoreti operation that generates the proofobligations needed to establish that two (maximal) types are equivalent. Thisequivalene is denoted by ' and is applied only to maximal types and re-turns a list of the proof obligations that must be proved. Note the invariantin the de�nition below that the arguments to ' are always maximal. Thede�nition of ' makes use of the PVS equality prediate that will be intro-dued later. A list of formulas is represented as a1; : : : ; an. Given two suhlists a1; : : : ; am and b1; : : : ; bn, the onatenation of these two lists is writtenas a1; : : : ; am ; b1; : : : ; bn.De�nition 3.6 (type equivalene proof obligations)(s ' s) = TRUE([A!B℄ ' [A0!B0℄) = ((�(A) ' �(A0)); (�(A) = �(A0)); (B ' B0))3([A1; A2℄ ' [B1; B2℄) = ((A1 ' B1); (A2 ' B2))(A ' B) = FALSE; otherwise
Example 3.7 (type equivalene) Building on the ontext given in Exam-ple 3.3, if we have the following variants of nat and natinjetion:NAT: TYPE = fi: int j i � 0 � i = 0gNATinjetion: TYPE = ff : [NAT!NAT℄ j 8(i; j: NAT): f(i) = f(j) � i = jgwe get�([natinjetion!natinjetion℄) = [natinjetion![nat!int℄℄�([NATinjetion!NATinjetion℄) = [NATinjetion![NAT!int℄℄�([natinjetion!natinjetion℄) ' �([NATinjetion!NATinjetion℄)= (�(natinjetion) ' �(NATinjetion));(�(natinjetion) = �(NATinjetion));([nat!int℄ ' [NAT!int℄)3The type orretness of the proof obligation (�(A) = �(A0)) depends on the prior proofobligations �(A) ' �(A0).



25(�(natinjetion) = �(NATinjetion))= ( �(f : [nat!int℄): (�(g: [nat!int℄): 8(i: nat): 0 � g(i))(f)^ (8(i; j: nat): f(i) = f(j) � i = j)= �(f : [NAT!int℄):(�(g: [NAT!int℄): 8(i: NAT): g(i) � 0 � g(i) = 0)(f)^ (8(i; j: NAT): f(i) = f(j) � i = j) )([nat!int℄ ' [NAT!int℄)= (int ' int);(�(i: int): 0 � i) = (�(i: int): i � 0 � i = 0); (int ' int)A basi question during typeheking is whether two types are ompatible,that is, have the same maximal supertype. Two types are said to be om-patible if the type equivalene proof obligations on their respetive maximalsupertypes are provable. The provability of a formula a under ontext � isrepresented as `� a.De�nition 3.8 (ompatible) Two types A and B are said to be ompatiblein ontext � (in notation, (A � B)�) if `� a, for eah a in (�(A) ' �(B)).4We now extend the de�nition of Æ to the ase of subtypes so that it leavesthe prediate unhanged but expands the de�nition of the supertype.De�nition 3.9 (expanded type with subtypes)Æ(�)(fx:T j ag) = fx: Æ(�)(T ) j agWe now extend the de�nition � to the ase of subtypes. Here we ould fore� to always return a maximal supertype but this is not done in De�nition 3.10sine it would weaken the soundness theorem without signi�antly simplify-ing the de�nition of the type rules. The typeheking of ontexts has to bemodi�ed to generate a nonemptiness proof obligation for the type of any on-stant delaration. A onstant of an empty type would lead to an inonsistentontext, and this would mean that onstant delarations are not onservativeextensions. This modi�ation to De�nition 2.4 is not needed for soundnesssine an inonsistent ontext makes soundness trivial. It is needed to show4The PVS proof rules are desribed in Chapter 7.



26 Chapter 3. Adding Subtypesthat onstant delarations and de�nitions are onservative extensions. Notethat with subtypes, the type rule for an appliation is modi�ed to hek thatthe domain type of the funtion is ompatible with the type of its argument,and that the argument satis�es any onstraints imposed by the domain typeof the funtion. The ase of projetion expressions is also not straightforwardsine the argument type an be a subtype of a tuple type. In this ase, we usethe diret supertype (see De�nition 3.2) whih must be a tuple type.De�nition 3.10 (type rules with subtypes)�()(�; :T ) = CONTEXT; if �() is unde�ned;�(�)(T ) = TYPE;�()(�) = CONTEXT; and`� (9(x:T ): TRUE)�(�)(fx:T j ag) = TYPE; if �(x) is unde�ned;�(�)(T ) = TYPE; and �(�; x: VAR T )(a) = bool�(�)(f a) = B; where �0(�(�)(f)) = [A!B℄;�(�)(a) = A0;(A � A0)�;`� �(A)(a)�(�)(pi a) = Ai; where �0(�(�)(a)) = [A1; A2℄Example 3.11 (typeheking subtypes) Let � ontain the above delara-tions of int, nat, 0, �, and natinjetion.�(�)(fi: int j 0 � ig)= TYPE�(�)((�(f : natinjetion): f(0))(�(i: nat): i))= Æ(�)(nat); if(natinjetion � [nat!nat℄)�;`� 8(j; k: nat): (�(i: nat): i)(j) = (�(i: nat): i)(k) � j = k;(int � nat)�; and`� 0 � 0



27Only one additional lause to De�nition 2.6 is needed to apture the se-mantis of prediate subtypes.De�nition 3.12 (meaning funtion with subtypes)M(� j )(fx:T j ag)= fy 2 M(� j )(T ) j M(�; x: VAR T j fx yg)(a) = 1gExample 3.13 (semantis of prediate subtypes) If we assign the usualtruth table interpretation to the Boolean funtion �:M(� j )(ff : [bool!bool℄ j 8(x: bool): x � f(x)g)= ffh0; 0i; h1; 1ig; fh0; 1i; h1; 1igg:The following useful propositions are easily proved from the de�nitionsgiven above. Proposition 3.14 asserts that the maximal supertype of a type iswell typed. Proposition 3.15 asserts that the denotation of a type is a subsetof the denotation of its maximal supertype. Proposition 3.16 asserts that ifall the proof obligations in (A ' A0) are valid relative to a given assignment for ontext �, then the denotations of A and A0 under  are equal.Proposition 3.14 If �()(�) = CONTEXT and �(�)(A) = TYPE, then�(�)(�(A)) = TYPE.Proposition 3.15 If �()(�) = CONTEXT, �(�)(A) = TYPE, and  satis�es �,then1. M(� j )(A) �M(� j )(�(A)) and2. M(� j )(A) �M(� j )(�0(A)).Proposition 3.16 If A and A0 are maximal types in ontext �, i.e.,1. �()(�) = CONTEXT,2. �(�)(A) = �(�)(A0) = TYPE,3. �(A) = A and �(A0) = A0and for eah a in (A ' A0),



28 Chapter 3. Adding Subtypes1. a � TRUE, or2. a � (a1 = a2) andM(� j )(a1) =M(� j )(a2) holds,thenM(� j )(A) =M(� j )(A0).5Proposition 3.17 If �()(�) = CONTEXT and �(�)(T ) = TYPE, thenM(� j )(T ) =M(� j )(fx:�(T ) j �(T )(x)g).We an now examine the updated forms of the invariants given by Theo-rems 2.11, 2.12, and 2.13. The proof of Theorem 2.11 remains straightforward.The statement of Theorem 2.13 must now be strengthened to inlude sound-ness, that is, if `� a and  satis�es �, then M(� j )(a) = 1. For now, weassume soundness (Theorem 7.2) sine we have not yet presented the proofrules.Theorem 3.18 (type soundness) If �()(�) = CONTEXT,  satis�es �, and�(�)(A) = TYPE thenM(� j )(A) 2 U .Proof. There is only one new ase to add to the indution proof of The-orem 2.12, namely, when A � fx:T j ag. In this ase, by De�nition 3.10,�(�)(T ) = TYPE, so by the indution hypothesis,M(� j )(T ) 2 U . Sine, byDe�nition 3.12,M(� j )(A) � M(� j )(T ), we have M(� j )(A) 2 U byDe�nition 1.1.Theorem 3.19 (term soundness) If �()(�) = CONTEXT,  satis�es �, and�(�)(a) = A thenM(� j )(a) 2 M(� j )(A).Proof. There are two a�eted ases in the proof from that of Theorem 2.13,namely, those of appliation and projetion. The ase of projetion expressionsis straightforward given Proposition 3.15.When a � (f b), by De�nition 3.10, we have that �(�)(f) = [B!A℄and �(�)(b) = B0. Let X be M(� j )(B), X 0 be M(� j )(B0), and Y beM(� j )(A). Then by De�nition 2.6,M(� j )([B!A℄) = Y X . By the indu-tion hypotheses,M(� j )(f) 2 Y X andM(� j )(b) 2 X 0. By De�nition 3.10,soundness of the proof rules (Theorem 7.2), and Propositions 3.15 and 3.16,there is a maximal supertype �(B) of both B and B0 suh that X and X 0 areboth subsets ofM(� j )(�(B)). Sine, by De�nition 3.10, `� �(B)(b), andby Proposition 3.17,M(� j )(B) =M(� j )(fx:�(B) j �(B)(x)g), we haveM(� j )(b) 2 M(� j )(B), and hene by De�nition 2.6,M(� j )((f b)) 2M(� j )(A).5We remind the reader that the formulas a in (A ' A0) are equalities, but we have notyet formally introdued equality into the language.



3.1. Summary 293.1 SummaryPVS features a form of subtyping where it is possible to form the subtypeof a type satisfying a given prediate on the type. This kind of subtypingintrodues several deliate semanti issues into PVS. A term an now haveseveral types sine, for example, the term orresponding to the number 2 anbe a prime number, an even number, a natural number, an integer, a rationalnumber, or a real number. When the expeted type is a subtype, the anonialtype of the atual term must be ompatible with the expeted type, that is,the two maximal supertypes must be equivalent and the atual term must sat-isfy any subtype onstraints imposed by the expeted type. We have de�nedthe notions of maximal supertype, subtype onstraints, type equivalene, andompatibility. These notions are used to de�ne the type rules and semantisof the simply typed fragment of PVS extended with subtypes. Note that bothtype equivalene (and hene, ompatibility) and type orretness are undeid-able. Proof obligations generated during typeheking are the only soure ofsuh undeidability. The modularization of the type system into a deidablepart onsisting of the simply typed fragment, and the proof obligations gener-ated by subtyping, is perhaps the most signi�ant design onsideration in thePVS language.



Chapter 4Dependent TypesThe PVS language fragment desribed thus far is already quite expressive. Itemploys de�nitional equivalene between types and ontains prediate sub-types. It is undeidable whether an expression in this fragment is type-orretbeause of the proof obligations that arise with respet to prediate subtypesand type equivalene. The next step is the addition of type dependeniesbetween the omponents of a type. This extension onsiderably enhanes theutility of this type system. It is also a natural extension given prediate subtyp-ing whih already allows types that depend on free variables in the prediates.With dependent typing, we an make the type of one omponent of a prod-ut depend on the value of another omponent, or the type of the range of afuntion vary aording to its argument value.A dependent produt type is written as [x:A;B℄. A dependent funtiontype is written as [x:A!B℄. Any produt or funtion type an be transformedinto a dependent type by inserting dummy type bindings. Conversely, anydummy type bindings that do not atually bind any variable ourrenes anbe removed. The type rules and semantis below will assume that all produtand funtion types are presented as dependent types.Example 4.1 (dependent types)[i: nat; fj: nat j j � ig℄;[i: nat; [fj: nat j j � ig!bool℄℄;[i: int!fj: int j i � jg℄:Before we treat dependent types, we update the de�nitions of the set offree variables and substitution to aount for the fat that with subtyping and30



31dependent typing, both free and bound variables an our in terms and types.This is needed for the next step where we try to remove type dependenies bysubstituting a term into a dependent type.De�nition 4.2 (free variables for types)FV (�)([x:A!B℄) = FV (�)(A) [ (FV (�; x: VAR A)(B)� fxg)FV (�)([x:A;B℄) = FV (�)(A) [ (FV (�; x: VAR A)(B)� fxg)FV (�)(fx:A j ag) = FV (�)(A) [ (FV (�; x: VAR A)(a)� fxg)De�nition 4.3 (substitution for types)[x:A!B℄[a1=x1; : : : ; an=xn℄= [y:A[a1=x1; : : : ; an=xn℄!B[y=x; a1=xn; : : : ; an=xn℄℄[x:A;B℄[a1=x1; : : : ; an=xn℄= [y:A[a1=x1; : : : ; an=xn℄; B[y=x; a1=x1; : : : ; an=xn℄℄fx:A j ag[a1=xn; : : : ; an=xn℄= fy:A[a1=x1; : : : ; an=xn℄ j a[y=x; a1=xn; : : : ; an=xn℄gwhere y is a fresh variable.The de�nition of � has to be modi�ed slightly for dependent types.The de�nition is �rst extended to type bindings, �(x:T ) = x:�(T ). Thede�nition for the ase of dependent funtion types is unhanged so that�([x:A!B℄) = [x:A!�(B)℄. The de�nition for the produt ase is moredeliate sine the de�nition �([x:A;B℄) = [x:�(A); �(B)℄ results in a loss oftype information regarding the ourrenes of x in B.1 To ensure that typeinformation regarding x is retained, we de�ne a new operation Tna whihonstrains the subtype assertions in type T with an additional assertion a.De�nition 4.4 (Adding subtype onstraints)sna = sfx:T jbgna = fx:T ja ^ bg[A!B℄na = [Ana!Bna℄[A;B℄na = [Ana; Bna℄1Doug Howe brought this problem to our attention.



32 Chapter 4. Dependent TypesWe an now de�ne the maximal supertype operation for dependent tupletypes.De�nition 4.5 (Maximal supertype for dependent produt types)�([x:A;B℄) = [x:�(A); Bn�(A)(x)℄The de�nition of � for a dependent funtion type [y:A!B℄ is slightlydi�erent from that of an ordinary funtion type sine �(B) an ontain freeourrenes of the variable y. For example, �([i: int!fj: int j i � jg℄) mustbe �(f : [i: int!int℄): (8(i: int): i � f(i)). The de�nition for dependent tuplesremains essentially unhanged from that of ordinary produts.De�nition 4.6 (onstraint prediates for dependent types)�([y:A!B℄) = (�(x: [y:A!�(B)℄): (8(y:A): �(B)(x(y))))�([y:A;B℄) = (�(x: [y:�(A); �(B)n�(A)(y)℄):�(A)(p1 x) ^ �(B)(p2 x)[(p1 x)=y℄)Example 4.7 (dependent type prediates)�([i: int!fj: int j i � jg℄) = [i: int!int℄�([i: int!fj: int j i � jg℄) = �(f : [i: int!int℄):8(i: int): (�(j: int): i � j)(f(i))The de�nition of ' must also be massaged slightly for dependent types.Reall that ' heks whether two maximal types are equivalent by generatingproof obligations as needed. This is the basi operation for heking whetherthe expeted type of an expression is ompatible with its atual type. The sub-tlety now is that the expeted type might be a dependent type where the atualtype is not. Consider the ase of the pair h5; (�(x: fj: nat j j � 5g): x)i whosetype would be omputed by � as [i: nat; [fj: nat j j � 5g!fj: nat j j � 5g℄℄where the expeted type might be [i: nat; [fj: nat j j � ig!fj: nat j j � ig℄℄.To ope with this, we will allow the option of two maximal types, say A andB, to be ompared using ' in the ontext of an expression a. This is indiated



33by the notation (A ' B)=a. Note that (A ' B)=a is sensible only when A andB are maximal types. The missing ases in De�nition 3.6 are inluded in Def-inition 4.8. For a list of formulas a1; : : : ; an, let (8(x:T ): a1; : : : ; an) representthe list (8(x:T ): a1); : : : ; (8(x:T ): an).2De�nition 4.8 (type equivalene for dependent types)(s ' s)=a = TRUE([x:A!B℄ ' [x0:A0!B0℄) = (�(A) ' �(A0));(�(A) = �(A0));(8(x:A): (B ' B0[x=x0℄))([x:A!B℄ ' [x0:A0!B0℄)=a = (�(A) ' �(A0));(�(A) = �(A0));(8(x:A): (B ' B0[x=x0℄)=a(x))([x:A1; A2℄ ' [y:B1; B2℄) = (A1 ' B1);(8(x:A1): (A2 ' B2[x=y℄))([x:A1; A2℄ ' [y:B1; B2℄)=a = (A1 ' B1)=(p1 a);(A2[(p1 a)=x℄ ' B2[(p1 a)=y℄)=(p2 a)(A ' B)=a = FALSE; otherwise.As with (A � B)�, the notation (A a� B)� indiates that all the proof obliga-tions a0 in (�(A) ' �(B))=a are provable, that is, `� a0.With dependent types, the type rules must be modi�ed so as to augmentthe ontext suitably to aount for any dependenies. We will give the de�ni-tions only for dependent type onstrutions.De�nition 4.9 (type rules with dependent types)�(�)([x:A;B℄) = TYPE; if �(x) is unde�ned;�(�)(A) = TYPE; and�(�; x: VAR A)(B) = TYPE�(�)([x:A!B℄) = TYPE; if �(x) is unde�ned;�(�)(A) = TYPE; and�(�; x: VAR A)(B) = TYPE2Note that the type-orretness of the proof obligation (�(A) = �(A0)) in De�nition 4.8depends on the prior proof obligations �(A) ' �(A0).



34 Chapter 4. Dependent Types�(�)(f a) = B0; where �0(�(�)(f)) = [x:A!B℄;�(�)(a) = A0;(A a� A0)�;B0 is B[a=x℄;`� �(A)(a)�(�)(�(x:A): a) = [x:A!B℄; whereB = �(�; x: VAR A)(a)�(�)(p1 a) = A1; where �0(�(�)(a)) = [x:A1; A2℄�(�)(p2 a) = A2[(p1 a)=x℄; where �0(�(�)(a)) = [x:A1; A2℄
Example 4.10 (dependent typing)�(�)([x: bool; fy: bool j x � yg℄) = TYPE�(�)([x: bool!fy: bool j x � yg℄) = TYPEBefore we an assign meanings to dependent types, we must augment our def-inition of the universe U to ontain sets orresponding to these onstrutions.If F is a funtion with domain set X and a range Y , whih is a set of sets, wean de�ne �F to be the set fhx; yi j x 2 dom(F ); y 2 F (x)g and �F to be theset ff j (8x 2 dom(F ): f(x) 2 F (x))g. Note that �F � SX2�F }(X) but weinlude �F in the universe U de�ned below for simpliity. We an drop X�Yand XY from the universe de�nition sine X�Y an be obtained from �F byde�ning an F with domain X that always returns Y , and similarly, XY anbe obtained by �F where F is de�ned to with domain Y to always return X.The universe U an then be rede�ned as below.De�nition 4.11 (type universe with dependent types)U0 = f2;RgUi+1 = Ui[ [X2Ui }(X)[ f�F j F 2 Wig



35[ f�F j F 2 WigWi = [X2Ui UXiU! = [i2!UiU = U!One very important onsequene of the above extension of the universe isthat all type dependenies must be bounded in the sense that if B is a typeexpression with a single free variable x of type A, then it must be the ase thatfor any set [[A℄℄ representing A, there is a bound n suh that for any z in [[A℄℄,the meaning of B under fx zg must be in Un. This property is easily provedby indution on the struture of a PVS type sine the parameter x an appearonly in the prediate part of a subtype where the rank of the meaning of theresulting type annot vary with the value of x. In partiular, there is no wayto de�ne a type onstrutor T n in PVS that returns the n-tuple [T; [: : : ; T ℄| {z }n ℄for a given n sine this would entail an unbounded dependeny. If unboundedtype dependenies were allowed in PVS, one an onstrut a dependent typesuh as [n:nat!T n℄ whose representation is not in U as de�ned above.The meaning funtion for dependent types is obtained by adding the asesorresponding to dependent produt and funtion types. All the other asesare unhanged from De�nition 3.12. Note that the semanti de�nition fordependent types is equivalent to the nondependent one when there are nodependenies.De�nition 4.12 (meaning funtion with dependent types)M(� j )([x:A;B℄) = �F; whereF maps z 2 M(� j )(A) toM(�; x: VAR A j fx zg)(B)M(� j )([x:A!B℄) = �F; whereF maps z 2 M(� j )(A) toM(�; x: VAR A j fx zg)(B)



36 Chapter 4. Dependent TypesExample 4.13 (meaning funtion with dependent types)M(� j )([x: bool; fy: bool j x � yg℄) = fh0; 0i; h0; 1i; h1; 1igM(� j )([x: bool!fy: bool j x � yg℄) = ffh0; 0i; h1; 1ig;fh0; 1i; h1; 1igg
We now need to show that the extensions orresponding to dependent typespreserve the properties in Theorems 3.18 and 3.19, namely,M(� j )(T ) 2 Uand M(� j )(a) 2 M(� j )(�(�)(a)). For the former, we prove a strongertheorem that inorporates the rank-boundedness of dependent types.Theorem 4.14 (rank bounded type semantis) If B is a pretype,x1; : : : ; xn is a list of symbols, A1; : : : ; An is a list of pretypes suh that1. �()(�; x1: VAR A1; : : : ; xn: VAR An) = CONTEXT,2. �(�; x1: VAR A1; : : : ; xn: VAR An)(B) = TYPE, and3.  is an assignment satisfying �,then there is an i suh that for any list of values z1; : : : ; zn where fx1  z1g : : :fxn  zng is a satisfying assignment for �; x1: VAR A1; : : : ; xn: VAR An,we haveM(�; x1: VAR A1; : : : ; xn: VAR An j fx1  z1g : : : fxn  zng)(B) 2 Ui:Proof. The proof is by strutural indution on the pretype B. Let �0 denote�; x1: VAR A1; : : : ; xn: VAR An, 0 denote fx1  z1g : : : fxn  zng, and [[C℄℄denoteM(�0 j 0)(C).1. B � s: Sine [[B℄℄ is just (B) by De�nition 2.6, we have that there isan i suh that [[B℄℄ 2 Ui regardless of the hoie of values z1; : : : ; zn.2. B � fy:T j ag: By the indution hypothesis, we know that for some j,it is always the ase that [[T ℄℄ 2 Uj. By De�nition 3.12, we have that[[B℄℄ � [[T ℄℄ so if we let i = j +1, then by De�nition 4.11, it is always thease that [[B℄℄ 2 Ui.



373. B � [y:C!D℄: By De�nition 4.9, �0(y) is unde�ned, �(�0)(C) =TYPE, �()(�0; y: VAR C) = CONTEXT, and �(�0; y: VAR C)(D) = TYPE.By the indution hypothesis, for some j, it is always the ase thatM(�0 j 0)(C) 2 Uj, and for some k, it is always the ase thatfor any satisfying assignment 0fy  wg for �0; y: VAR C, we haveM(�0; y: VAR C j 0fy  wg)(D) 2 Uk. Then the funtion F mapping winM(�0)(C) toM(�0; y: VAR C j 0fy wg)(D) is an element of Wj+k.Letting i be j + k + 1, we have by De�nition 4.12 thatM(�0 j 0)(B) is�F and is hene an element of Ui by De�nition 4.11.4. B � [y:C;D℄: Similar to the previous ase.By hoosing n to be 0, the previous theorem yields the result that when�(�)(B) = TYPE,M(� j )(B) 2 U .We next need to establish that for any preterm a, if �(�)(a) = A, thenM(� j )(a) 2 M(� j )(A). The �rst step in this diretion is the proof ofthe substitution lemma below.Proposition 4.15 If �()(�) = �()(�0) = CONTEXT where for eah s, �(s) isde�ned if and only if �0(s) is de�ned, and  is an assignment satisfying both� and �0, then1. If �(s) = �0(s) (i.e., they are equal when either �(s) or �0(s) is de�ned),then(a) �(�)(a) = �(�0)(a), for any preterm a.(b) �(�)(A) = �(�0)(A), for any pretype A.2. M(� j )(A) =M(�0 j )(A), when �(�)(A) = TYPE.3. M(� j )(a) = M(�0 j )(a), for any preterm a suh that �(�)(a) isde�ned.Lemma 4.16 (substitution lemma) If �()(�; x: VAR A) = CONTEXT,�(�)(a) = A, then1. If �(�; x: VAR A)(b) = B, thenM(� j )(b[a=x℄) =M(�; x: VAR A j fx M(� j )(a)g)(b).2. If �(�; x: VAR A)(C) = TYPE, thenM(� j )(C[a=x℄) =M(�; x: VAR A j fx M(� j )(a)g)(C).



38 Chapter 4. Dependent TypesProof. The proof is by simultaneous strutural indution on the preterm band the pretype C. The following ases deal with the preterm b.1. b � s: If s � x, then by De�nition 4.12, the left-handside M(� j )(b[a=x℄) is M(� j )(a), and the right-hand sideM(�; x: VAR A j fx M(� j )(a)g)(b) is alsoM(� j )(a).If s 6� x, then by De�nition 4.12, the left-hand side and the right-handside are both equal to (s).2. b � (�(y:C): d): Sine C an ontain free ourrenes of x, wehave by the indution hypothesis that M(� j )(C[a=x℄) =M(�; x: VAR A j fx  M(� j )(a)g)(C). Also,M(� j )((�(y:C): d)[a=x℄) is equal to the set of ordered pairs hv; zisuh that v 2 M(� j )(C[a=x℄) and z =M(�; y: VAR C[a=x℄ j fy  vg)(d[a=x℄).By the indution hypothesis,M(�; y: VAR C[a=x℄ j fy vg)(d[a=x℄) =M(�; y: VAR C[a=x℄; x: VAR A j fy  vgfx M(� j )(a)g)(d). Sinex does not our free in C[a=x℄, by Proposition 4.15 we an exhangethe ourrenes of y and x so thatM(�; y: VAR C[a=x℄; x: VAR A j fy vgfx  M(� j )(a)g)(d) = M(�; x: VAR A; y: VAR C[a=x℄ j fx  M(� j )(a)gfy  vg)(d).By De�nition 4.12, the right-hand side is the set of ordered pairs of theform hv; zi suh that v 2 M(�; x: VAR A j fx  M(� j )(a)g)(C)and z = M(�; x: VAR A; y: VAR C j fx  M(� j )(a)gfy  vg)(d). By Proposition 4.15 and the indution hypothesis, we knowthat M(�; x: VAR A; y: VAR C j fx  M(� j )(a)gfy  vg)(d) =M(�; x: VAR A; y: VAR C[a=x℄ j fx  M(� j )(a)gfy  vg)(d), andhene it follows that the two sets of ordered pairs are equal.3. b � (f ): In this ase, b[a=x℄ � (f [a=x℄ [a=x℄) and the onlusionfollows easily from the indution hypothesis and De�nition 4.12.4. b � (b1; b2): The onlusion follows easily from De�nitions 2.15, 4.12,and the indution hypotheses.5. b � (pi ): This ase is also straightforward sine b[a=x℄ �(pi [a=x℄), and by the indution hypothesis, M(�; x: VAR a j fx  M(� j )(a)g)() =M(� j )([a=x℄).The remaining ases deal with the pretype C.



391. C � s: This ase is trivial sine by De�nition 2.15, C[a=x℄ � C and theleft-hand and right-hand sides both redue to (C).2. C � fy:T j dg: The argument here follows along the lines of the b �(�(x:C):D) ase above. By the indution hypotheses, we know thatM(�; x: VAR A j fx M(� j )(a)g)(T )= M(� j )(T [a=x℄)M(�; y: VAR T [a=x℄; x: VAR A j fy zgfx M(� j )(a)g)(d)= M(�; y: VAR T [a=x℄ j fy  zg)(d[a=x℄);for any z 2 M(� j )(T [a=x℄)The onlusion follows from Proposition 4.15 and De�nition 4.12.3. C � [y:C1!C2℄: The argument here is similar to that of the previ-ous ase. Essentially, by the indution hypothesis and Proposition 4.15,the funtion mapping z 2 M(�; x: VAR A j fx  M(� j )(a))(C1)to M(�; y: VAR C1[a=x℄; x: VAR A j fy  zgfx  M(� j )(a)g)(C2)is the same as the funtion mapping z 2 M(� j )(C1[a=x℄) toM(�; y: VAR C1[a=x℄ j fy zg)(C2[a=x℄).4. C � [y:C1; C2℄: Similar to the previous ase.Proposition 4.17 is stated below without proof. It asserts the semantiequivalene with respet to term a of types A and B when (A a� B)� holds.Note that its orretness depends on the soundness of the proof rules.Proposition 4.17 If �()(�) = CONTEXT, a is a preterm suh that �(�)(a) =B, and (A a� B)�, then M(� j )(a) 2 M(� j )(A) i� M(� j )(a) 2M(� j )(B).Theorem 4.18 If �()(�) = CONTEXT,  is an assignment satisfying �, and ais a preterm suh that �(�)(a) = A, thenM(� j )(a) 2 M(� j )(A).Proof. The proof is by indution on the struture of the preterm a.1. a � s: Then by De�nition 4.12, M(� j )(a) = (a), and by De�ni-tion 2.8, we have that (a) 2 M(� j )(A).



40 Chapter 4. Dependent Types2. a � (�(x:C): b): By De�nition 4.9, we have �(�)(a) = A =[x:C!�(�; x: VAR C)(b)℄. Let B label �(�; x: VAR C)(b). We know thatM(� j )(A) is of the form �F where F maps z 2 M(� j )(C) toM(�; x: VAR C j fx zg)(B).By the indution hypothesis on b, we know that for any z 2 M(� j )(C),M(�; x: VAR C j fx  zg)(b) 2 M(�; x: VAR C j fx zg)(B). Sineby De�nition 4.12,M(� j )(a) is a funtion mapping z 2 M(� j )(C)to M(�; x: VAR C j fx  zg)(b), we have M(� j )(a) 2 �F by thede�nition of �.3. a � (f b): By De�nition 4.9, we have that �(�)(f) = [x:B!A0℄,�(�)(b) = B0, (B a� B0)�, A � A0[a=x℄, and `� �(B)(b). We knowby the indution hypothesis that M(� j )(f) 2 M(� j )([x:B!A0℄)and M(� j )(b) 2 M(� j )(B0). By Propositions 4.17 and 3.17,M(� j )(b) 2 M(� j )(�(B)). We therefore have by Proposi-tion 3.17 that M(� j )(b) 2 M(� j )(B). By De�nition 4.12,M(� j )(a) 2 M(�; x: VAR B j fx M(� j )(b)g)(A0), and hene byLemma 4.16 it follows thatM(� j )(a) 2 M(� j )(A0[b=x℄).4. a � (a1; a2): The onlusion follows easily from the indution hypothesisand De�nition 4.9.5. a � (pi b): The onlusion follows easily from Proposition 3.17, theindution hypothesis, and De�nition 4.9. The (p2 b) ase also employsLemma 4.16.
4.1 SummaryDependent typing is a signi�ant enhanement to PVS sine it adds an im-portant degree of exibility and preision to the type system. Notions suhas subtype onstraints and type equivalene that were introdued for subtyp-ing an be extended for the ase of dependent types. The semanti universemust be extended to inlude additional sets to aommodate the semantisof dependent types. The rank-boundedness of type dependenies is ruialin demonstrating that dependent types an be interpreted in this extendedsemanti universe.



Chapter 5Theories and ParametriTheoriesThe next extension of the PVS language introdues theories and parametritheories. The theory onstrut of PVS provides a way of pakaging togethera related olletion of delarations. Theories an be parametri in individualor type parameters. Thus, PVS permits polymorphism or type parametriityonly at the theory level rather than at the delaration level as in HOL [GM93℄.We �rst onsider PVS theories without parameters. The main hange now isthat ontexts are no longer simple and an ontain theory delarations as well.A theory delaration has the formm: THEORY = �, where � is a simple ontextwith no variable or theory delarations. If �(m) is the delarationm: THEORY =�, then kind(�(m)) = THEORY, and de�nition(�(m)) = �. Correspondingly,onstants and type names are no longer just symbols but an be ompoundnames of the form m:s where m is a symbol naming a theory and s is a symbolorresponding to the onstant or type name.5.1 Theories without ParametersTo de�ne the type rules for theories, we �rst modify the de�nition of � forsimple ontexts so that the ontext argument is not always empty. Here �; �represents the onatenation of ontexts.De�nition 5.1 (type rules for ontexts)�(�)(fg) = CONTEXT�(�)(�; s : TYPE = T ) = CONTEXT; if �(s) and �(s) are unde�ned,�(�)(�) = CONTEXT; and41



42 Chapter 5. Theories and Parametri Theories�(�; �)(T ) = TYPE�(�)(�; :T ) = CONTEXT; if �() and �() are unde�ned,�(�)(�) = CONTEXT; and�(�; �)(T ) = TYPE�(�)(�; x: VAR T ) = CONTEXT; if �(x) and �(x) are unde�ned,�(�)(�) = CONTEXT; and�(�; �)(T ) = TYPEExample 5.2 (type rules for ontexts)�(
)(real: TYPE; 0: real;�: [[real; real℄!bool℄) = CONTEXTThe following rule handles theory delarations.De�nition 5.3 (type rule for ontexts with theory delarations)�(�)(�; m: THEORY = �) = CONTEXT if �(m);�(m) are unde�ned� only has onstant and type delarations,�(�; �)(�) = CONTEXT;�(�)(�) = CONTEXTExample 5.4 (ontexts with theory delarations)�(
)(reals: THEORY = (real: TYPE; 0: real;�: [[real; real℄!bool℄))= CONTEXTAny referene to a type name or a onstant s delared in a theory moutside of this theory must be pre�xed by the theory name, as in m:s. Notethat referenes to a type name or onstant that is delared in the same theoryshould not be given a theory pre�x. Before we an give the type rules, we mustupdate the de�nition of the type expansion operation Æ to pre�x symbols withtheir theory names. Let �(m)(s) abbreviate de�nition(�(m))(s), whih is the



5.1. Theories without Parameters 43delaration of the symbol s in the de�nition of the theory m. Let �(�; m)(a)be the result of pre�xing every unpre�xed type or onstant symbol in a by m,where a is either an individual or type expression. We omit the de�nition of� sine it is straightforward.We modify the de�nition of Æ in De�nition 2.16 with the following lauses.De�nition 5.5 (expanded type for pre�xed symbols)Æ(�)(m:s) = Æ(�)(�(�; m)(de�nition(�(m)(s)))); ifde�nition(�(m)(s)) is nonempty.Æ(�)(m:s) = m:s if de�nition(�(m)(s)) is empty.Example 5.6 (expanded type for pre�xed symbols) Let 
00 be the on-text 
; reals: THEORY = (real: TYPE;0: real;�: [[real; real℄!bool℄;nonneg real: TYPE = fx: real j � (0; x)g;1: nonneg real)Æ(
00)(reals:nonneg real) = fx: reals:real j reals:� (reals:0; x)gThe type rules for pre�xed symbols are given below.De�nition 5.7 (type rules for pre�xed symbols)�(�)(m:s) = TYPE; if kind(�(m)) = THEORY andkind(�(m)(s)) = TYPE�(�)(m:s) = Æ(�)(�(�; m)(type(�(m)(s))));if kind(�(m)) = THEORY andkind(�(m)(s)) = CONSTANT



44 Chapter 5. Theories and Parametri TheoriesExample 5.8 (type rules for pre�xed symbols)�(
00)(reals:nonneg real) = TYPE�(
00)(reals:1) = fx: reals:real j reals:� (reals:0; x)gThe operations �, and � remain unhanged. An assignment  now maps atheory name m to an assignment (m).De�nition 5.9 (meaning funtion for pre�xed symbols)M(� j )(m:s) = (m)(s)Example 5.10 (meaning funtion for pre�xed symbols) Let !00 be asatisfying assignment for 
00 of the form: : : freals freal Rgf0 0g : : :g : : : :M(
00 j !00)(reals:real) = RM(
00 j !00)(reals:0) = 0De�nition 5.11 (satisfation for ontexts with theories) An assign-ment  satis�es a ontext � if in addition to the onstraints stated inDe�nition 2.18,  maps every theory m delared in � to a satisfying assign-ment for the body of the theory given by de�nition(�(m)), that is for eahdelared symbol s in m:1. If kind(�(m)(s)) = TYPE, then (m)(s) 2 U .2. If kind(�(m)(s)) = CONSTANT, then (m)(s) 2 M(� j )(�(�)(m:s)).3. If de�nition(�(m)(s)) is nonempty, then(m)(s) =M(�j)(�(�; m)(de�nition(�(m)(s)))):



5.2. Constant De�nitions 455.2 Constant De�nitionsWe �rst extend the subset of PVS desribed so far to inlude onstant def-initions in a manner similar to type de�nitions. This extension is used informalizing the semantis of parametri theories. The syntax for a onstantde�nition is :T = a where de�nition(�()) is a. These de�nitions are ex-pliit, that is, not reursive. With this extension, the type rule for onstantdelarations in ontexts hanges from that of De�nition 3.10.De�nition 5.12 (type rule with onstant de�nitions)�(�)(�; :T = a) = T; if �() is unde�ned;�() is unde�ned;�(�)(�) = CONTEXT;�(�; �)(a) = T 0;(T � T 0)�;`� �(T )(a)The notion of satisfation must be extended from that of De�nition 5.11to ensure that an assignment for a de�ned onstant satis�es the de�nition.De�nition 5.13 (satisfation with onstant de�nitions) An assign-ment  satis�es a ontext � if in addition to the onditions in De�nition 5.11,whenever kind(�(s)) = CONSTANT and de�nition(�(s)) is nonempty, then(s) =M(� j )(de�nition(�(s))).5.3 Parametri TheoriesThe extension to parametri theories is obtained by permitting theories to bedelared as m[�℄: THEORY = �, where � is a ontext listing the parametersand � is the body of the theory. If the above delaration of m ours inontext �, then � is formals(�(m)), and � is de�nition(�(m)). For nonpara-metri theories, formals(�(m)) is empty. Types or onstants delared in aparametri theory are referened outside the theory as m[�℄:s, where � is alist of atual parameters onsisting of types and terms. The type rule fromthe nonparametri ase must be modi�ed to hek the parameters.



46 Chapter 5. Theories and Parametri TheoriesDe�nition 5.14 (type rule for ontexts with parametri theories)�(�)(�; m[�℄: THEORY = �)= CONTEXT if �(m);�(m);�(m) are unde�ned�(�)(�) = CONTEXT�(�; �)(�) = CONTEXT;� has only onstant andtype delarations without de�nitions,�(�; �; �)(�) = CONTEXT� only has type and onstant delarationsThe type rules for pre�xed symbols are given below. The notation � = �,where � is of the form s1:�1; : : : ; sn:�n, and � is of the form �1; : : : ; �n,is short for the ontext s1:�1 = �1; : : : ; sn:�n = �n. The de�nition of� is now extended to substitute atual theory parameters for formals, sothat �(�; m[�℄)(a) pre�xes every unpre�xed symbol s in a that is delaredin de�nition(�(m)) by m[�℄, and replaes any si in a that is delared informals(�(m)) by the orresponding �i in �.De�nition 5.15 (type rules for pre�xed names with atuals) Let �be formals(�(m)).�(�)(m[�℄:s) = TYPE; ifkind(�(m)) = THEORYkind(�(m))(s) = TYPE and�(�)(� = �) = CONTEXT�(�)(m[�℄:s) = Æ(�)((�(�; m[�℄)(type(�(m)(s))));if kind(�(m)) = THEORYkind(�(m)(s)) = CONSTANT and�(�)(� = �) = CONTEXTDe�nition 5.16 (type expansion with parametri theories)Æ(�)(m[�℄:s) = Æ(�)((�(�; m[�℄)(de�nition(�(m)(s))))); ifde�nition(�(m)(s)) is nonempty.Æ(�)(m[�℄:s) = m[�℄:s; if de�nition(�(m)(s)) is empty.



5.3. Parametri Theories 47The de�nition of an assignment for a ontext with parametri theoriesis a bit ompliated. In the nonparametri ase, (m) simply returns anassignment of values for the types and onstants delared in the theory m.For the ase of parametri theories m, (m) returns a funtion that maps themeaning of the given atuals � to an assignment (m)(M(� j )(�)) for thetypes and onstants delared in the theorym. There is an important restritionthat (m) must be rank-preserving, that is, if $ and $0 are assignments for �so that for eah i where �i is a type parameter, the rank of $(�i) equals therank of $0(�i), then the ranks of (m)($)(s) and (m)($0)(s) must be thesame for eah type symbol s delared in m.It is also important to observe that the semantis of parametri theoriesmakes use of the axiom of hoie sine the assignment orresponding to atheory m of the form m[t: TYPE℄: THEORY = f: tg is essentially a hoie funtion.Let f�  $g represent the assignment suh that f�  $g(s) = $(s)for s in the domain of the ontext �, and (s), otherwise. The meaning ofsymbols of the form m[�℄:s an then be de�ned as below.De�nition 5.17 (meaning funtion for pre�xed symbols with atuals)M(� j )(m[�℄:s)= M(�; �;� j f� $gf� (m)($)g)(s); where� = formals(�(m))� = de�nition(�(m))$(r) =M(� j )((� = �)(r)); for r 2 �The de�nition of a satisfying assignment given in De�nition 5.11 also mustbe strengthened. Let � be the formal parameters to theory m in ontext �;then, an assignment $ is said to be satisfying parameter assignment for �under the assignment  to � i� f� $g is a satisfying assignment for �.De�nition 5.18 (satisfation for ontexts with parametri theories)An assignment  satis�es a ontext � if in addition to the onstraints statedin De�nition 5.11,  maps every parametri theory m delared in � withparameters � and de�nition �, to a funtion that maps any satisfying pa-rameter assignment $ for the theory parameters � (namely, formals(�(m)))to a satisfying assignment f�  $gf�  (m)($)g for � (given byde�nition(�(m))).



48 Chapter 5. Theories and Parametri Theories5.4 SummaryTheories are used to pakage related delarations together. Parametri the-ories an be used to pakage together delarations that are generi in typeand individual parameters. The type rules for ontexts must be extended toaommodate the theories. The type rules for simple (nonparametri) theoriesare straightforward given this extension. The operation of expanding a typeusing type de�nitions must be enhaned so that symbols delared in a theoryare pre�xed with their theory name when referened outside the theory. As-signments now have the same nested struture as ontexts, and the semantide�nition is easily extended to handle pre�xed symbols. Parametri theoriesare more omplex. The theory pre�xes now ontain atual parameters thathave to be typeheked relative to the expeted formal parameters. The as-signments orresponding to parametri theories are funtions that map givenassignments for the formals to assignments for the delarations within a the-ory. Suh a mapping must be onstrained to be rank-preserving. Parametritheories an have subtype parameters, and assumptions on the parameters.The rules for subtype parameters and assumptions are omitted for now butwill be inluded in an expanded version of this report.



Chapter 6Conditional Expressions andLogial ConnetivesWe have, so far, introdued the ore of PVS ontaining types, type de�nitions,onstant and variable delarations, subtypes, dependent types, and theories.In extending the language with both expliit and reursive onstant de�nitionsand formulas, a ruial di�erene is that the logial ontext under whih atype-orretness ondition is generated provides additional assumptions thatan be used in proving any proof obligations. Examples of expressions wherean extended ontext is needed to establish type orretness by dishargingproof obligations inlude1. x 6= y � (x+y)=(x�y) � 0. The type of the division operator onstrainsthe denominator to be nonzero, that is, fx: real j x 6= 0g. In the givenexpression, the denominator an be shown to be nonzero only in theontext of the anteedent x 6= y.2. IF(i > 0; i;�i) has type nat given integer i provided the then and elseparts are typeheked with the assumptions i > 0 and :(i > 0), respe-tively.PVS has a polymorphi primitive equality prediate:equality[T : TYPE℄ : THEORY = f =: [[T, T℄ -> bool℄ gNote that an equality of the form equality[T ℄:=(a; b) is informally writtenas a = b. When it is relevant to indiate the type parameter, we write theequality as a =T b. It an be dedued from the meaning of equality that ifS is a subtype of T , then for a and b in S, it must be the ase that a =S b49



50 Chapter 6. Conditional Expressions and Logial Connetivesi� a =T b. Thus, we an assume that equality is always parameterized bya maximal type. We assume that any relevant ontext � ontains the abovedelaration of the theory equality. Furthermore, any satisfying assignment for suh a � must satisfy(equality)(X)(=) = fhx; xi j x 2 Xg:The negation operation an be de�ned in terms of equality as shown below.We assume that the ontext ontains a delaration of the form: : [bool!bool℄ = (� (x : bool): x = FALSE)As is lear, a satisfying assignment  for a ontext � ontaining the abovedelaration must be suh that (:) yields the usual truth-table semantis, thatis, fh0; 1i; h1; 0ig.We an then introdue the polymorphi IF-THEN-ELSE operation as fol-lows:if_def [T: TYPE℄: THEORY = f IF:[bool,T,T -> T℄ gIn typeheking onditional expressions, the notion of ontext has to beextended to inlude formulas so that the typeheking of the subterm b inIF(a; b; ) is done in the ontext of a, and the typeheking of  is done in theontext of :a. There is one new typeheking rule for ontexts with formulas.�()(�; a) = CONTEXT; if�()(�) = CONTEXT; and(�(�)(a) � bool)�Note that the type rule heks that the type of a is ompatible with boolrather than equivalent to it sine it is possible that the type of a might be asubtype of bool.De�nition 6.1 (satisfation for ontexts with formulas) An assign-ment  satis�es ontext � when in addition to the onditions in De�nition 5.18,for eah pre�x �0; a of �,M(�0 j )(a) = 1.The typeheking of onditional expressions is di�erent from that of otherappliation expressions sine the test part of the onditional expression isintrodued into the ontext as a ontextual assumption.



51De�nition 6.2 (type rule for onditional expressions)�(�)(if def[T ℄:IF(a; b; )) = T; if (�(�)(a) � bool)�;�(�; a)(b) = B;(B � T )�;a;`�;a �(T )(b)�(�;:a)() = C;(C � T )�;:a;`�;:a �(T )()The meaning of onditional expressions must be treated in a speial waysine the else part need not denote when the test part is true and, orrespond-ingly, the then part need not denote if the test part is false. We assume thatany relevant ontexts � ontain the above delaration of the if def theory.Conditional expressions an be regarded as a new onstrut in the languagerather than a form of appliation. However, it is onservative to regard on-ditional expressions as appliations sine the latter introdue the additionalonstraint that all the arguments must already denote, that is, appliationsare strit.De�nition 6.3 (meaning funtion for onditional expressions)M(� j )(if def[T ℄:IF(a; b; )) = � M(� j )(b); ifM(� j )(a) = 1M(� j )(); otherwiseThe semantis for onditional expressions raises an important issue. Theequality if def[bool℄:IF(x; y; FALSE) = if def[bool℄:IF(y; x; FALSE)is semantially valid for variables x and y of type bool. An expression likeif def[bool℄:IF(i 6= 0; 1=i > 0; FALSE) an be typeheked to have the typebool sine it generates a valid proof obligation i 6= 0 � i 6= 0, but the seem-ingly equivalent expression if def[bool℄:IF(1=i > 0; i 6= 0; FALSE) generatesan unveri�able proof obligation i 6= 0. This may seem ontraditory sine theequality suggests a transformation of a type orret onditional expression toa type inorret expression. The resolution here is that equality annot be



52 Chapter 6. Conditional Expressions and Logial Connetivesinstantiated with i 6= 0 for x and 1=i > 0 for y sine the expression 1=i > 0typeheks as having type bool only when i 6= 0 is known from the ontext.The same applies in the ase of the other propositional onnetives, thus en-suring that eah expression is type orret in the ontext in whih it ours.We an then de�ne the propositional onnetives in terms of onditionalexpressions.^: [[bool; bool℄!bool℄ = �(x: bool; y: bool): if def[bool℄:IF(x; y; FALSE)_: [[bool; bool℄!bool℄ = �(x: bool; y: bool): if def[bool℄:IF(x; TRUE; y)�: [[bool; bool℄!bool℄ = �(x: bool; y: bool): if def[bool℄:IF(x; y; TRUE)In the typeheking of terms of the form a^ b, we follow the orrespondingrule for the de�nition so that the term a is assumed in the ontext whentypeheking term b. Similarly, for a _ b, the formula :a is assumed in theontext when typeheking b, and for a � b, the formula a is assumed in theontext when typeheking b. The Boolean equivalene operator IFF has nospeial rules for adding formulas to ontexts during typeheking.6.1 SummaryThe use of assumption formulas enables expressions to be typeheked withinthe narrow ontext of their use so that the governing assumptions an be usedin disharging any proof obligations. The type rules for onditional expressionsand the Boolean onnetives ^, _, and � make use of ontextual assumptions.



Chapter 7Proof Theory of PVSThe �nal step in the presentation of the semantis is the presentation of theproof rules for the idealized subset of PVS desribed thus far. As already indi-ated, the proof theory is an integral part of the semantis sine typehekingand proof heking are losely intertwined. Fortunately, the proof rules turnout to be muh less ompliated than the type rules.The PVS proof theory is presented in terms of a sequent alulus. Asequent is of the form � `� �, where � is the ontext, � is a set of anteedentformulas, and � is a set of onsequent formulas. Suh a sequent should be readas stating that the onjuntion of the formulas in � implies the disjuntion offormulas in �.Inferene rules are presented in the formpremise(s)onlusion name side ondition7.1 PVS Proof Rules7.1.1 Strutural RulesThe strutural rules permit the sequent to be rearranged or weakened via theintrodution of new sequent formulas into the onlusion. All the struturalrules an be expressed in terms of the single powerful weakening rule shownbelow. It allows a weaker statement to be derived from a stronger one byadding either anteedent formulas or onsequent formulas. The relation �1 ��2 holds between two lists when all the formulas in �1 our in the list �2.�1 `� �1�2 `� �2 W if �1 � �2 and �1 � �253



54 Chapter 7. Proof Theory of PVSBoth the Contration and Exhange rules shown below are absorbed by theabove weakening rule W. The Contration rules C ` and ` C allow multipleourrenes of the same sequent formula to be replaed by a single ourrene.a; a;� `� �a;� `� � C ` � `� a; a;�� `� a;� ` CThe Exhange rule asserts that the order of the formulas in the anteedentand the onsequent parts of the sequent is immaterial. It an be stated as�1; b; a;�2 `� ��1; a; b;�2 `� � X ` � `� �1; b; a;�2� `� �1; a; b;�2 ` XAs seen above, inferene rules have the general form�1 ` �1 � � � �n ` �n� ` � R:This says that if we are given a leaf of a proof tree of the form � ` �, then byapplying the rule named R, we may obtain a tree with n new leaves.7.1.2 Cut RuleThe ut rule Cut an be used to introdue a ase split on a formula a into aproof of a sequent � `� � so as to yield the subgoals �; a `� � and � `� a;�,whih an be seen as assuming a along one branh and :a along the other.(�(�)(a) � bool)� �; a `� � � `� a;�� `� � Cut7.1.3 Propositional AxiomsThe axioms rule Ax simply asserts that a follows from a.�; a `� a;� AxThe next two rules assert that any sequent with either an anteedent o-urrene of FALSE or a onsequent ourrene of TRUE is an axiom.�; FALSE `� � FALSE ` � `� TRUE;� ` TRUE



7.1. PVS Proof Rules 557.1.4 Context RulesCertain formulas hold in a ontext simply beause they are already assertedin the ontext either as a formula or a onstant de�nition.`� a ContextFormula if a is a formula in �`� s = a ContextDe�nition if s:T = a is a onstant de�nition in �The ontext � an be extended with anteedent formulas or negations ofonsequent formulas using the following two rules.�; a `�;a ��; a `� � Context ` � `�;:a a;�� `� a;� ` ContextThe following ontext-weakening rule is useful sine it shows that provabil-ity is monotoni with respet to the ontext.� `� �� `�0 � ContextW if � is a pre�x of �07.1.5 Conditional RulesThe rules governing the elimination of IF-THEN-ELSE in a proof are unusualsine they augment the ontext with the test part or its negation, as in theorresponding type rules.�; a; b `�;a � �;  `�;:a a;��; IF(a; b; ) `� � IF `�; a `�;a b;� � `�;:a a; ;�� `� IF(a; b; );� ` IF7.1.6 Equality RulesThe rules for equality an be stated as below. The rules of transitivity andsymmetry for equality an be derived from these rules. The notation a[e℄ isused to highlight one or more ourrenes of e in the formula a suh that thereare no free variable ourrenes in e.1 The notation �[e℄ similarly highlightsourrenes of e in �.1We enfore an invariant on a sequent that it must not ontain any free variables. Thisinvariant is preserved by eah of the proof rules.



56 Chapter 7. Proof Theory of PVS� `� a = a;� Re a = b;�[b℄ `� �[b℄a = b;�[a℄ `� �[a℄ Repl7.1.7 Boolean Equality RulesThe rule Repl TRUE asserts that an anteedent formula a an be treated as ananteedent equality of the form a = TRUE, and orrespondingly, a onsequentformula a an be treated as an anteedent equality of the form a = FALSE.�[TRUE℄; a `� �[TRUE℄�[a℄; a `� �[a℄ Repl TRUE �[FALSE℄; a `� �[FALSE℄�[a℄ `� a;�[a℄ Repl FALSEThe rule TRUE-FALSE asserts that TRUE and FALSE are distint Booleanonstants. �; TRUE = FALSE `� � TRUE-FALSE7.1.8 Redution RulesThe redution rules are equality rules (axioms) that provide the obvious sim-pli�ations for appliations involving lambda abstrations and produt proje-tions. `� (�(x:T ): a)(b) = a[b=x℄ �`� pi(a1; a2) = ai �7.1.9 Extensionality RulesThe extensionality rules are also equality rules for establishing equality be-tween two expressions of funtion or produt type. The extensionality rulefor funtions, FunExt, introdues a Skolem onstant s to determine that twofuntions f and g are equal when the results of applying them to an arbitraryargument s are equal.� `�;s:A (f s) =B[s=x℄ (g s);�� `� f =[x:A!B℄ g;� FunExt �(s) unde�ned



7.2. Soundness of the Proof Rules 57The extensionality rule for produts asserts that two produts are equal iftheir orresponding projetions are equal.� `� p1(a) =T1 p1(b);� � `� p2(a) =T2[(p1 a)=x℄ p2(b);�� `� a =[x:T1T2℄ b;� TupExtReall that the quanti�ers an be de�ned in terms of lambda abstrationand equality so that (8(x:T ): a) is just (�(x:T ): a) = (�(x:T ): TRUE). Exis-tential quanti�ation (9(x:T ): a) an easily be de�ned as :(8(x:T )::a). Theproof rules for quanti�ers an then be derived from the rules �, TupExt, andthe equality rules.7.1.10 Type Constraint RuleWe need a rule to introdue the type onstraint on a term as an anteedentformula of the given goal sequent.�(�)(a) = A �(A)(a);� `� �� `� � Typepred7.2 Soundness of the Proof RulesProposition 7.1 If � is a pre�x of �0, �()(�) = �()(�0) = CONTEXT, 0 isa satisfying assignment for �0, and  = 0 � � then for any a suh that�(�)(a) = �(�0)(a), it is the ase thatM(� j )(a) =M(�0 j 0)(a).Theorem 7.2 (soundness) If �()(�) = CONTEXT suh that for every formulaa in �;�, (�(�)(a) � bool)�, and � `� � is provable, then for any satisfyingassignment  for �, either there is a formula b in �, suh thatM(� j )(b) = 0or a formula  in �, suh that M(� j )() = 1.Proof. The proof is by indution on the struture of the proof of � `� �.Reall that this proof is atually part of a simultaneous indution that inludesthe soundness of the type rules relative to the semanti funtion, that is,Theorems 4.14 and 4.18. Spei� invoations of the soundness theorem ourin the proofs of Theorem 3.19 and Proposition 4.17.1. Strutural Rules: Sine the subset of formulas in the premise and theonlusion of these rules are the same, the onlusion follows easily fromthe indution hypothesis.



58 Chapter 7. Proof Theory of PVS2. Cut : By the semanti soundness of the type rules, we haveM(� j )(a) 22. If M(� j )(a) = 0, then by the indution hypothesis on the se-ond subgoal of the proof rule, there must be some b in � suh thatM(� j )(b) = 0 or a  in � suh thatM(� j )() = 1. The ase whenM(� j )(a) = 1 is symmetrial.3. Propositional Axioms: Obvious.4. Context Rules:ContextFormula: If  satis�es � and a 2 �, thenM(� j )(a) = 1.ContextDe�nition: If  satis�es � and s:T = a is a delaration in �,then by the de�nition of satisfation,M(� j )(s) =M(� j )(a).Context `: The argument is trivial when M(� j )(a) = 0. Oth-erwise,  satis�es the extended ontext �; a, and the onlusionfollows from the indution hypothesis.` Context: Similar to Context ` above.ContextW: If  satis�es �0, then it also satis�es �, and hene theproof.5. Conditional Rules: We only onsider IF ` sine the ` IF proof is similar.IfM(� j )(IF(a; b; )) = 0, the onlusion follows trivially. Otherwise,If  satis�es �, then M(� j )(a) 2 2. If M(� j )(a) = 1, thenM(� j )(b) = 1. The indution hypothesis on the subgoal �; a; b `�;a �yields the desired onlusion. Similarly, if M(� j )(a) = 0, we haveM(� j )() = 1 and the indution hypothesis on the seond subgoalyields the desired onlusion.6. Equality Rules: The Re rule is obvious. For the Repl rule, ifM(� j )(a = b) = 0, the onlusion follows trivially. Otherwise,M(� j )(a) = M(� j )(b). Hene,  satis�es the extended on-text �; a = b. Then for eah [a℄ in �[a℄ or �[a℄, M(� j )([a℄) =M(� j )([b℄).7. Boolean Equality Rules: The Repl TRUE and Repl FALSE rules fol-low easily sine when M(� j )(a) = 1, we have M(� j )([a℄) =M(� j )([TRUE℄). A similar argument applies to Repl FALSE.The soundness of TRUE-FALSE is easy sineM(� j )(TRUE = FALSE) = 0.



7.2. Soundness of the Proof Rules 598. Redution Rules: The �-redution rule follows beauseM(� j )((�(x:T ): a)(b)) isM(�; x: VAR T j fx  M(� j )(b)g)(a)whih by the Substitution Lemma 4.16 is equal toM(� j )(a[b=x℄).The soundness �-redution rule is a diret onsequent of De�nition 2.6.9. Extensionality Rules:FunExt: First onsider the ase when the domain typeM(� j )(A) isempty. Then by De�nition 4.12,M(� j )(f) =M(� j )(g) = ;.ThereforeM(� j )(f = g) = 1 and hene the onlusion.2The ase whenM(� j )(A) is nonempty, we have for any  satisfy-ing � and s 2 M(� j )(A), that 0 given by fs zg is a satisfyingassignment for �; s:A. By the indution hypothesis, there is eitheran a in � suh thatM(�; s:A j 0)(b) = 0 or a  in (f s) = (g s);�suh that M(�; s:A j 0)() = 1. If we have suh a b in �, byProposition 7.1, we also have that M(� j )(b) = 0. A similarargument an be used if we have suh a  in �. If  is (f s) = (g s),thenM(� j )(f)(z) =M(� j )(g)(z) for every z inM(� j )(A).By set-theoreti extensionality, this means that M(� j )(f) andM(� j )(g) are idential elements of �F where F maps z inM(� j )(A) to an element of M(�; x: VAR A j fx  zg)(B).ThereforeM(� j )(f = g) = 1 as desired.TupExt: If there is some d in � suh that by applying the indutionhypothesis to any of the subgoalsM(� j )(d) = 0, then the sameholds for the onlusion sequent. Similarly, if the indution hypoth-esis on some subgoal yields a  in � suh that M(� j )() = 1,then the same holds for the onlusion sequent. So the remain-ing ase is when, by the indution hypothesis, M(� j )(pi(a)) =M(� j )(pi(b)) for eah i 2 f1; 2g. It is therefore easy to onludeby set-theoreti extensionality thatM(� j )(a) and M(� j )(b)are idential elements of M(� j )(a=[T1; T2℄). We an then useProposition 4.17 to onlude thatM(� j )(a) andM(� j )(b) areidential elements ofM(� j )([T1; T2℄).10. Type Constraint Rule: Reall from Proposition 3.17 that when �(�)(a) =A, then M(� j )(�(A)(a)) = 1. Given this and the indution hy-2Sine the subgoal sequent � `�;s:A (f s) = (g s);� is valid when M(� j )(A) = ; forall assignments , it is natural to ask how it is atually proved. The only way a type A anbe empty under any assignment  is if M(� j )(�(A)(a) = 0). The Typepred rule antherefore be used on the Skolem onstant s to omplete the proof.



60 Chapter 7. Proof Theory of PVSpothesis, it must either be the ase that we have a b in � suh thatM(� j )(b) = 0 or a  in � suh thatM(� j )() = 1.To tie the development so far into a single simultaneous indution aspromised, we state the key theorem whose subproofs have been given by thetheorems presented thus far, namely, Theorems 4.14, 4.18, and 7.2.Theorem 7.3 If �()(�) = CONTEXT, then1. If �;� is a list of preterms suh that for every a in �;�, (�(�)(a) �bool)�, and � `� � is provable, then for any satisfying assignment  for�, either there is a b in �, suh thatM(� j )(b) = 0 or a  in �, suhthatM(� j )() = 1.2. If A is a pretype suh that �(�)(A) = TYPE, then for any assignment satisfying �,M(� j )(A) 2 U .3. If a is a preterm suh that �(�)(a) = A, then for any assignment satisfying �,M(� j )(a) 2 M(� j )(A).7.3 SummaryThe logial inferene rules for the PVS logi have been presented in a sequentalulus format. The formal semantis presented in the earlier hapters is usedto establish the soundness of these proof rules.



Chapter 8ConlusionWe have presented the syntax and semantis of idealized PVS in several stages.In the �rst stage we introdued the simply typed fragment, whih was then ex-tended with type de�nitions. The third suh fragment inluded subtyping; thefourth fragment introdued dependent typing. Finally, we introdued onstantde�nitions and parametri and nonparametri theories.The semanti de�nition was given in a novel, funtional style where aanonial type was assigned to eah type orret term. The interplay be-tween types and proofs in PVS introdued subtleties and omplexities intothe semanti de�nition. We an now answer some of the questions raised inChapter 1:� What is the semanti ore of the language, and what is just syntatisugar?The semanti ore of the language is a typed lambda alulus with simplefuntion and tuple types, prediate subtypes, dependent types, paramet-ri theories, and onditional expressions. Many of the other features ofthe PVS language suh as reords and update expressions an be ex-plained in terms of the ore language.� What are the rules for determining whether a given PVS expression iswell typed?The typeheking rules have been presented in terms of the de�nition ofthe � operator in Chapters 2, 3, 4, 5, and 6.� How is subtyping handled, and in partiular, how are proof obligationsorresponding to subtypes generated?Typeheking an expression a with respet to prediate subtype on-straint fx:T jp(x)g is done by generating the proof obligation p(a) under61



62 Chapter 8. Conlusionthe logial ontext in whih a is being typeheked. This is made pre-ise in De�nitions 3.10 and 6.2. Proof obligations are generated whentypeheking ontexts (for nonemptiness), typeheking expressions withrespet to expeted subtypes, and omparing two types ontaining sub-type expressions for ompatibility.� What is the meaning, in set-theoreti terms, of a PVS expression orassertion?The set-theoreti meaning of well-formed PVS types and expressions isgiven by a meaning funtionM that assigns a setM(� j )(T ) from theuniverse U to eah type T , and an elementM(� j )(a) ofM(� j )(T )to a given term a of type T .� Are the type rules sound with respet to the semantis?The typeheking funtion � is de�ned to hek ontexts, preterms, andpretypes for type orretness. The type rules are shown to be sound withrespet to the given semantis in Theorem 7.3.� Are the proof rules sound with respet to the semantis?The proof rules are given in Chapter 7 in a sequent alulus format andproved to be sound with respet to the semantis in Theorem 7.3.� What is the form of dependent typing used by PVS, and what kinds oftype dependenies are disallowed by the language?The semanti analysis of dependent typing in Chapter 4 revealed thattype dependenies were onstrained to be rank-bounded. This is true be-ause the dependenies in dependent typing only onstrain the prediatepart of prediate subtypes. Thus, when there is a dependent type T (n)that depends on a parameter n, the meaning of T (n) has a �xed rank re-gardless of the meaning assigned to n. The PVS language features usedto de�ne dependent types all preserve the rank-boundedness. Languageextensions violating rank-boundedness suh as a type dependeny of theform [n:nat!T n℄ are disallowed. One an extend the language withsuh dependent types, but the semantis would then be onsiderablymore ompliated.� What is the meaning of theory-level parametriity, and what, if any, arethe semanti limits on suh parameterization?



63The semantis of parametri theories is desribed in Chapter 5. In par-tiular, the semantis for parametri theories is given in terms of rank-preserving maps between the meanings of the parameters and the mean-ings of the identi�ers delared in the theory. These maps must be suhthat the rank of an assignment to a type in a theory depends only onthe ranks of the (meanings of the) type parameters.� What language extensions are inompatible with the referene semantisgiven here?We have already indiated that any language extension, suh as an n-tuple type T n, that violates rank-boundedness would be inompatiblewith the semantis presented here.This report presents only the ore language of PVS. A more ompletesemanti treatment would inlude arithmeti, reursive onstant de�nitions,indutive de�nitions, reursive datatypes, assumptions on theory parameters,and type judgements.Aknowledgments. The advie and enouragement of John Rushby, RikButler, Paul Miner, Pat Linoln, and Mandayam Srivas are greatly apprei-ated, as are the useful expert omments of Peter Dybjer, Mike Gordon, DougHowe, and Paul Jakson. Bruno Dutertre, Paul Miner, and Harald Rue� sug-gested numerous improvements to earlier drafts.



Bibliography[AMCP84℄ P. B. Andrews, D. A. Miller, E. L. Cohen, and F. Pfenning. Au-tomating higher-order logi. In W. W. Bledsoe and D. W. Love-land, editors, Automated Theorem Proving: After 25 Years, pages169{192. Amerian Mathematial Soiety, Providene, R.I., 1984.[And86℄ Peter B. Andrews. An Introdution to Logi and Type Theory: ToTruth through Proof. Aademi Press, New York, NY, 1986.[CAB+86℄ R. L. Constable, S. F. Allen, H. M. Bromley, W. R. Cleaveland,J. F. Cremer, R. W. Harper, D. J. Howe, T. B. Knoblok, N. P.Mendler, P. Panangaden, J. T. Sasaki, and S. F. Smith. Imple-menting Mathematis with the Nuprl Proof Development System.Prentie-Hall, Englewood Cli�s, NJ, 1986.[Chu40℄ A. Churh. A formulation of the simple theory of types. Journalof Symboli Logi, 5:56{68, 1940.[DFH+91℄ Gilles Dowek, Amy Felty, Hugo Herbelin, G�erard Huet, ChristinePaulin-Mohring, and Benjamin Werner. The COQ proof assis-tant user's guide: Version 5.6. Rapports Tehniques 134, INRIA,Roquenourt, Frane, Deember 1991.[Dyb91℄ Peter Dybjer. Indutive sets and families in Martin-L�of's typetheory and their set-theoreti semantis. In Logial Frameworks,pages 280{306. Cambridge University Press, 1991.[EHDM93℄ User Guide for the Ehdm Spei�ation Language and Veri�ationSystem, Version 6.1. Computer Siene Laboratory, SRI Interna-tional, Menlo Park, CA, February 1993. Three volumes.[FBHL84℄ A. A. Fraenkel, Y. Bar-Hillel, and A. Levy. Foundations of SetTheory, volume 67 of Studies in Logi and the Foundations of64



Bibliography 65Mathematis. North-Holland, Amsterdam, The Netherlands, se-ond printing, seond edition, 1984.[FGJM85℄ Kokihi Futatsugi, Joseph Goguen, Jean-Pierre Jouannaud, andJos�e Meseguer. Priniples of OBJ2. In Brian K. Reid, editor,12th ACM Symposium on Priniples of Programming Languages,pages 52{66. Assoiation for Computing Mahinery, 1985.[GH93℄ John V. Guttag and James J. Horning with S. J. Garland, K. D.Jones, A. Modet, and J. M. Wing. Larh: Languages and Toolsfor Formal Spei�ation. Texts and Monographs in ComputerSiene. Springer-Verlag, 1993.[GM93℄ M. J. C. Gordon and T. F. Melham, editors. Introdution toHOL: A Theorem Proving Environment for Higher-Order Logi.Cambridge University Press, Cambridge, UK, 1993.[How91℄ Douglas J. Howe. On omputational open-endedness in Martin-L�of's type theory. In Proeedings, Sixth Annual IEEE Symposiumon Logi in Computer Siene, pages 162{172, Amsterdam, TheNetherlands, 15{18 July 1991. IEEE Computer Soiety Press.[How96℄ Douglas J. Howe. Semanti foundations for embedding HOL inNuprl. In Martin Wirsing and Maurie Nivat, editors, AlgebraiMethodology and Software Tehnology, 5th International Confer-ene, AMAST'96, pages 85{101. Number 1101 in Leture Notesin Computer Siene, Springer Verlag, 1996.[Jon90℄ Cli� B. Jones. Systemati Software Development Using VDM.Prentie Hall International Series in Computer Siene. PrentieHall, Hemel Hempstead, UK, seond edition, 1990.[Lam94℄ Leslie Lamport. The temporal logi of ations. ACM TOPLAS,16(3):872{923, May 1994.[LP97℄ Leslie Lamport and Lawrene C. Paulson. Should your spei�-ation language be typed? SRC Researh Report 147, DigitalSystems Researh Center, Palo Alto, CA, May 1997. Available athttp://www.researh.digital.om/SRC.[Mel89℄ Thomas F. Melham. Automating reursive type de�nitions inhigher order logi. In G. Birtwistle and P. A. Subrahmanyam,



66 Bibliographyeditors, Current Trends in Hardware Veri�ation and TheoremProving, pages 341{386, New York, NY, 1989. Springer-Verlag.[MMMS90℄ Albert R. Meyer, John C. Mithell, Eugenio Moggi, and RihardStatman. Empty types in polymorphi lambda alulus. In Ger-ard Huet, editor, Logial Foundations of Funtional Programming,University of Texas at Austin Year of Programming, pages 273{284. Addison-Wesley, 1990.[OS97℄ S. Owre and N. Shankar. Abstrat datatypes in PVS. Tehnialreport, Computer Siene Laboratory, SRI International, MenloPark, CA, Deember 1997. Revised version of SRI-CSL-93-9. Toappear as a NASA Contrator Report.[OSRSC98℄ S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert.User Guide for the PVS Spei�ation and Veri�ation System.Computer Siene Laboratory, SRI International, Menlo Park,CA, September 1998. Three volumes: Language, System, andProver Referene Manuals.[RAISE92℄ The RAISE Language Group. The RAISE Spei�ation Lan-guage. BCS Pratitioner Series. Prentie-Hall International,Hemel Hempstead, UK, 1992.[Spi88℄ J. M. Spivey. Understanding Z: A Spei�ation Language and itsFormal Semantis. Cambridge Trats in Theoretial ComputerSiene 3. Cambridge University Press, Cambridge, UK, 1988.


