
A.1. Using Hybrid mjrty 67The other lemma states that if all good processors vote for a nonerror value, andall manifest-faulty processors vote for an error value, then the sum of the cardinalitiesof good, arbitrary, and symmetric faulty processors is at least as large as the valuereturned by count all good votes .(8 (p : fcu) : g(p) ^ p 2 caucus � v(p) = t)^ (8 (p : fcu) : c(p) ^ p 2 caucus � v(p) = error)�jgs(caucus)j+ jas(caucus)j+ jss(caucus)j � count all good votes(caucus; v; n)_ t = errorBoth lemmas are proven by induction on the number of votes. These lemmas donot appear in the formal speci�cation, since they are only used internally in provingthe property Hybridmajority ax1 . In fact with subtle proof manipulation the use ofthese lemmas could be eliminated from the proof, although doing so would lengthenthe proof. From these lemmas and Hwinner the property Hybridmajority ax1 fol-lows directly.



66 Appendix A. Hybrid MJRTYhybridmjrty.count_all_good_votes_TCC4hybridmjrty.count_all_good_votes_TCC3hybridmjrty.count_votes_TCC5hybridmjrty.Hybrid_mjrty_TCC5bounded_induction.upto_inductionhybridmjrty.count_votes_TCC3hybridmjrty.Hinv_holdshybridmjrty.count_votes_TCC1hybridmjrty.Hybrid_mjrty_TCC1hybridmjrty.count_votes_TCC2hybridmjrty.Hybrid_mjrty_TCC2Hwinner depends on the following definitions:hybridmjrty.count_voteshybridmjrty.Hybrid_mjrtyhybridmjrty.count_all_good_voteshybridmjrty.HinvA.1 Using Hybrid mjrtyGiven hybrid mjrty , the following de�nition is su�cient to satisfy the axioms forHybridMajority stated earlier in the theory omh:HybridMajority(caucus; v) : T = proj 1(Hybrid mjrty(caucus; v; n))The proof of satisfaction of the second axiom given for Hybridmajority fromHlosers and Hwinner is a relatively straightforward induction on the number ofvotes. The proof of satisfaction of the �rst axiom from Hwinner is much more in-tricate. The proof proceeds by e�ectively introducing two lemmas from which theproof of the desired property is relatively straightforward. The lemmas are intro-duced by the PVS proof command case, which splits the proof into two branches:on one branch the lemma can be assumed, on the other it must be proved. The �rstlemma states that if all good processors in a caucus agree on a candidate (value),then count votes returns a value at least as big as the number of good processors.(8 (p : fcu) : g(p) ^ p 2 caucus � v(p) = t)� jgs(caucus)j � count votes(caucus; v; t; n)



65Hinv_holds depends on the following definitions:hybridmjrty.count_voteshybridmjrty.Hybrid_mjrtyhybridmjrty.count_all_good_voteshybridmjrty.HinvHlosers has been PROVED.The proof chain for Hlosers is COMPLETE.Hlosers depends on the following proved theorems:hybridmjrty.Hybrid_mjrty_TCC3hybridmjrty.count_all_good_votes_TCC1hybridmjrty.count_votes_TCC4hybridmjrty.count_all_good_votes_TCC2hybridmjrty.count_all_good_votes_TCC4hybridmjrty.count_all_good_votes_TCC3hybridmjrty.count_votes_TCC5hybridmjrty.Hybrid_mjrty_TCC5bounded_induction.upto_inductionhybridmjrty.count_votes_TCC3hybridmjrty.Hinv_holdshybridmjrty.count_votes_TCC1hybridmjrty.Hybrid_mjrty_TCC1hybridmjrty.count_votes_TCC2hybridmjrty.Hybrid_mjrty_TCC2Hlosers depends on the following definitions:hybridmjrty.count_voteshybridmjrty.Hybrid_mjrtyhybridmjrty.count_all_good_voteshybridmjrty.HinvHwinner has been PROVED.The proof chain for Hwinner is COMPLETE.Hwinner depends on the following proved theorems:hybridmjrty.Hybrid_mjrty_TCC3hybridmjrty.count_all_good_votes_TCC1hybridmjrty.Hlosershybridmjrty.count_votes_TCC4hybridmjrty.count_all_good_votes_TCC2



64 Appendix A. Hybrid MJRTYThe proof of TCC's and lemmas from the hybridmjrty theory have been com-pleted in PVS. Informally, there is only one signi�cant lemma, Hinv holds , which isproved by induction on i. In the base case, this holds by de�nition of the functions.In the inductive case, there are many cases, but each one is relatively straightforwardto analyze. The remaining two lemmas are immediately provable from Hinv holds .The following is the proof chain analysis from PVS.Proof summary for theory hybridmjrtyHybrid_mjrty_TCC5......................................proved - completeHybrid_mjrty_TCC1......................................proved - completeHybrid_mjrty_TCC2......................................proved - completeHybrid_mjrty_TCC3......................................proved - completecount_votes_TCC1.......................................proved - completecount_votes_TCC2.......................................proved - completecount_votes_TCC3.......................................proved - completecount_votes_TCC4.......................................proved - completecount_votes_TCC5.......................................proved - completecount_all_good_votes_TCC1..............................proved - completecount_all_good_votes_TCC2..............................proved - completecount_all_good_votes_TCC3..............................proved - completecount_all_good_votes_TCC4..............................proved - completeHinv_holds.............................................proved - completeHlosers................................................proved - completeHwinner................................................proved - completeTheory totals: 16 formulas, 16 attempted, 16 succeeded.Hinv_holds has been PROVED.The proof chain for Hinv_holds is COMPLETE.Hinv_holds depends on the following proved theorems:hybridmjrty.Hybrid_mjrty_TCC3hybridmjrty.count_all_good_votes_TCC1hybridmjrty.count_votes_TCC4hybridmjrty.count_all_good_votes_TCC2hybridmjrty.count_all_good_votes_TCC4hybridmjrty.count_all_good_votes_TCC3hybridmjrty.count_votes_TCC5hybridmjrty.Hybrid_mjrty_TCC5bounded_induction.upto_inductionhybridmjrty.count_votes_TCC3hybridmjrty.count_votes_TCC1hybridmjrty.Hybrid_mjrty_TCC1hybridmjrty.count_votes_TCC2hybridmjrty.Hybrid_mjrty_TCC2



63endif)measure (� caucus; poll; cand; i : i)count all good votes(caucus; poll; i) : recursive nat =(if i > 0then(if caucus(i � 1) ^ (: poll(i � 1) = error)then 1 + count all good votes(caucus; poll; i � 1)else count all good votes(caucus; poll; i � 1)endif)else 0endif)measure (� caucus; poll; i : i)Hinv(caucus; poll; i) :bool=(let P = Hybrid mjrty(caucus; poll; i) in(8 A :(: A = error)� 2�(count votes(caucus; poll; A; i)+ (if A = proj 1(P ) then 0 else proj 2(P ) endif))� proj 2(P ) + count all good votes(caucus; poll; i)))Hinv holds : lemma Hinv(caucus; poll; i)Hlosers :lemmaA 6= proj 1(Hybrid mjrty(caucus; poll; i)) ^ (: A = error)� 2 � count votes(caucus; poll; A; i)� count all good votes(caucus; poll; i)Hwinner :lemma(8 cand :(2 � count votes(caucus; poll; cand; i)> count all good votes(caucus; poll; i)^ : cand = error)� proj 1(Hybrid mjrty(caucus; poll; i)) = cand)end hybridmjrty



62 Appendix A. Hybrid MJRTYHlosers is a lemma about Hybrid mjrty stating that for all candidates A, ifA is not the �rst element of the pair returned by Hybrid mjrty , then A does nothave a majority of good votes. Hwinner is closely related to Hlosers , stating thatif a candidate has a majority of votes, then that candidate will be selected byHybrid mjrty .The properties Hlosers and Hwinner follow directly from the inductive invariantHinv . The property Hinv compactly asserts two invariants at once. First, thattwice the total of the selected candidates votes is less than the size of the currentbandwagon plus the total number of good (nonerror, in caucus) votes. Second,that twice the total of the selected candidates votes plus the size of the currentbandwagon is less than the total number of good votes. These invariants are truefor all nonerror candidates. Hinv is proven by induction on the total number ofvotes.hybridmjrty[T : type; n : posnat; error : T ] : theorybeginpoll : var [below[n] ! T ]caucus : var setof[below[n]]i : var upto[n]A; cand : var TP : var [T; below[n]]Hybrid mjrty(caucus; poll; i) : recursive [T; nat] =(if i = 0 then (error; 0)else(let P = Hybrid mjrty(caucus; poll; i � 1) in(if (: caucus(i � 1)) _ poll(i � 1) = error then Pelsif poll(i � 1) = proj 1(P ) then (proj 1(P ); proj 2(P ) + 1)elsif proj 2(P ) > 0 then (proj 1(P ); proj 2(P ) � 1)else (poll(i � 1); 1)endif))endif)measure (� caucus; poll; i : i)count votes(caucus; poll; cand; i) : recursive nat =(if i > 0then(if caucus(i � 1) ^ poll(i � 1) = cand then 1+ count votes(caucus; poll; cand; i � 1)else count votes(caucus; poll; cand; i � 1)endif)else 0



61The original MJRTY algorithm has been formally speci�ed and veri�ed before [3,4].The modi�ed version below is based on a recent unpublished veri�cation of MJRTYby Natarajan Shankar.MJRTY can be informally explained as a method to �nd the candidate, if thereis one, with the majority of votes at a political convention. Every voter on theconvention oor attempts to �nd someone who is voting for some other candidate.If two voters voting for di�erent candidates meet, they annihilate each other. Atthe end of this process, all the remaining voters must support the same candidate.The key property of this procedure is that if there is a majority for some candidatein the beginning, then there will be some voters for that candidate left at the end.If there is no candidate with a majority, then there may or may not be any votersleft at the end, and those left could be voting for any candidate, even the one withthe fewest total votes. Thus, a second (linear) pass is necessary to ensure that thedelegate supported by the voters remaining at the end does indeed have an overallmajority.This violently parallel procedure can be sequentialized by ordering the voters,and then moving down the line of voters forming a \bandwagon" of like-mindedvoters. When this bandwagon �nds that the next voter agrees with them, thebandwagon simply increases in size by one. When it �nds that the next voterchoses some other candidate, the bandwagon's size is decreased by one. If thebandwagon becomes empty, then the next voter becomes a bandwagon of one, andthe process continues. This procedure can be implemented by storing the candidatechosen by the current bandwagon, and a natural number representing the size ofthe bandwagon.It is straightforward to generalize this procedure to a version which respectscaucuses and ignores errors, as required by OMH. The input to the generalizedprocedure is a set of votes possibly containing votes belonging to processors outsidethe caucus, or in error, which should both be ignored in selecting the majority. Itwould be possible to use the standard MJRTY function on a set of votes �ltered toremove error and noncaucus votes, although such a speci�cation would be somewhatfarther from the most e�cient implementation, requiring additional passes over theset of votes. The generalized procedure must also specify the value to return in thecase that there are no nonerror votes in the caucus.The sequential algorithm is represented in our speci�cation as the function Hy-brid mjrty , which takes a caucus (a set of eligible voters), a poll (a function from allvoters to their chosen candidate), and i (the total number of votes) as argumentsand returns a pair consisting of the identity of a candidate, and a natural numberstanding for the size of the bandwagon of voters remaining at the end. In the basecase, the default value is chosen to be the error value. The function count votescounts the votes of a particular candidate, while count all good votes counts thetotal number of nonerror votes in a caucus.



Appendix AHybrid MJRTYIn the proofs performed to verify the correctness of OMH, only two properties aboutHybridMajority are assumed. Any implementation of HybridMajority that satis�esthese axioms would be acceptable for the purposes of OMH.jgs(caucus)j > jas(caucus)j + jss(caucus)j^ (8 p : g(p) ^ p 2 caucus � v(p) = t)^ t 6= error ^ (8 p : c(p) ^ p 2 caucus � v(p) = error)� HybridMajority(caucus; v) = t(8 p : p 2 caucus � v1(p) = v2(p))� HybridMajority(caucus; v1) = HybridMajority(caucus; v2)These properties were described and justi�ed in detail in Section 4.1. Nonethe-less, there is always a concern when properties are stated axiomatically that theymight be unrealizable. We allay this concern by exhibiting an e�cient implementa-tion for the HybridMajority function and proving that it satis�es the stated axioms.This development is speci�ed in the PVS theory hybridmjrty (shown on page 62),which constructively speci�es a function Hybrid mjrty . and then shows that it can beused to satisfy the axioms stated above. The function Hybrid mjrty is very similar tothe Boyer-Moore MJRTY algorithm [3], except that it ignores error values. MJRTYis a method for �nding the absolute majority (if there is one) of a set of values inlinear time, using only equality comparison operations. (Other implementations of amajority function require more than linear time, and/or more complex comparisons).60
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55states to be handled in an e�cient manner.1 Several systems based on state ex-ploration are available; some of these exploit the close connection between �nitestate graphs and propositional temporal logic (when they are usually called \modelcheckers" [8]), others provide a higher-level language (e.g., Mur� [10, 19] uses atransition-rule language for concurrent systems that is loosely based on Chandyand Misra's Unity model [7]).As it stands, OMH is not amenable to state exploration: it has far too manystates. But for debugging, it could be su�cient to examine highly simpli�ed versionsof the problem: for example, the case m = 1, n � 6, and a very small set of datavalues|E, R(E), and three distinct \good" values|seem su�cient to detect all theerrors that we discovered.Whereas conventional testing probes selected test cases of the full algorithm,state exploration provides complete coverage of simpli�ed instances. We plan toexamine the e�ectiveness of state exploration in this domain by conducting someexperiments with OMH and related algorithms.

1These techniques include hashing [12], and symbolic methods using Binary Decision Dia-grams [5, 6].



54 Chapter 5. ConclusionsThe e�ort required to perform this formal veri�cation was not particularly largeand did not seem to us to demand special skill. We attribute some of this ease inperforming formal veri�cation of a relatively tricky algorithm to the e�ectiveness ofthe tools employed [22]. These tools (and others that may be of similar e�ective-ness) are freely available. In light of the aws we discovered in Thambidurai andPark's algorithm, and had previously found in the proofs for other fault-tolerantalgorithms [24, 29, 30], we suggest that formal veri�cation should become a routinepart of the social process of development and analysis of fault-tolerant algorithmsintended for practical application in safety-critical systems.In future work, we hope to explore possible extensions to the OMH algorithmand its analysis to include communication faults, and to see whether larger numbersof symmetric faults can be tolerated. We also intend to study whether lower messagecomplexity can be achieved in cases of practical interest, and to examine alternativearchitectures employing fewer processors (we have already formally speci�ed andveri�ed a variant of OMH(1) for the asymmetric Draper FTP architecture [13]).We also plan to formally verify a modi�ed version of the Interactive-ConvergenceAlgorithm for clock synchronization using a hybrid fault model that includes com-munication faults (we have already formally veri�ed the standard algorithm [28],and have an informal analysis of the modi�ed version).Also, although our experience indicates that formal veri�cation is an e�ectivedebugging technique, it is undeniably expensive one, and it is interesting to askwhether other methods could have identi�ed the aws in Z and its derivatives moresimply or economically. Our previous experience with other mechanically-checkedveri�cations is consistent with the experience reported here: the e�ort spent discov-ering and repairing aws in a speci�cation, algorithm, or proof is a large part of theintellectual e�ort expended on formal veri�cation projects.An obvious alternative is testing: our speci�cations of these algorithms can beeasily translated into Lisp or other higher-order functional languages where they canbe run on a variety of test cases. (Obviously, controlled \fault-injections" will needto be programmed into the executable algorithms.) Without specifying a particularstrategy for determining test cases, we cannot say whether speci�c aws could havebeen detected in this way or not. However, it is clear that with less than completetest coverage, one cannot guarantee that all errors will be discovered.Between testing and conventional veri�cation lie the state-exploration methods.These methods resemble testing in that they are automatic; they resemble veri-�cation in that they are formal veri�cation methods. State-exploration methodssystematically enumerate all the states of a �nite-state algorithm and test whethercertain predicates hold at those states. Recent techniques allow large numbers of



Chapter 5ConclusionsTools for formal veri�cation have matured to the point where complex, practicallyinteresting aspects of systems can be economically veri�ed. The human e�ort re-quired to specify and prove in complete formal detail interesting theorems aboutfault-tolerant architectures is quite modest. In this report we have presented theformal veri�cation of a new algorithm for Byzantine Agreement under a hybrid faultmodel.Thambidurai and Park's hybrid fault model extends the design and analysisof Byzantine fault-tolerant algorithms in an important and useful way. Hybridfault-tolerant algorithms can tolerate greater numbers of \simple" faults than clas-sical Byzantine fault-tolerant algorithms, without sacri�cing the ability to with-stand Byzantine, or arbitrary, faults. We applied our formal veri�cation tools tothis domain, discovering errors in published proofs and in a proposed algorithm forByzantine Agreement under this fault model.A crucial tool in our detection of the aw in Thambidurai and Park's algorithm,and also in detecting aws in our own early attempts to repair this algorithm, wasour use of mechanically-checked formal veri�cation. The discipline of formal speci-�cation and veri�cation was also instrumental in helping us to develop the correctalgorithm presented here. The rigor of a mechanically-checked proof enhances ourconviction that this algorithm is, indeed, correct, and also helped us develop theinformal, but detailed, proof given here in the style of a traditional mathematicalpresentation.It is worth repeating that no formal veri�cation proves any program \correct."At most, a model of the program is shown to satisfy a speci�cation, and shownto exhibit certain properties under a certain set of assumptions. The true bene�tof formal speci�cation and veri�cation is not in getting a theorem prover to sayproved, but rather in re�ning one's understanding through dialogue with a tirelessmechanical skeptic. 53



52 Chapter 4. The Formal Speci�cation and Veri�cationhybridmjrty.count_all_good_votes_TCC1omh.fincard_allfinite_cardinality.fincardi_TCC4omh.HybridMajority_TCC1card_set.fincard_filterhybridmjrty.count_all_good_votes_TCC4Agreement_Final depends on the following axioms:omh.send2omh.statuses_disjointomh.send1omh.statuses_inclusiveomh.send4Agreement_Final depends on the following definitions:identity.Iomh.cfinite_cardinality.fincardsets.fullsetomh.gsomh.aomh.Validity_Propidentity.identityhybridmjrty.Hinvomh.cshybridmjrty.Hybrid_mjrtyomh.HybridMajoritysets.memberfinite_cardinality.fincardihybridmjrty.count_votesomh.gomh.Agreement_Propomh.asfilters.filterhybridmjrty.count_all_good_votesomh.OMHomh.ssomh.ssets.removeAgreement_Final depends on the following assumptions:omh.unact_axomh.act_axThe complete detailed proof chain analysis of every lemma from the omh theoryis over 20 pages in length.



4.3. PVS Proof Chain Analysis 51The third detailed analysis is that of the agreement property. The proof of thistheorem depends on the inductive version of agreement, which in turn depends onthe inductive validity property.Agreement_Final has been PROVED.The proof chain for Agreement_Final is COMPLETE.Agreement_Final depends on the following proved theorems:bounded_induction.upto_inductionomh.Validityfinite_cardinality.fincard_TCC1hybridmjrty.Hybrid_mjrty_TCC1omh.send5hybridmjrty.Hybrid_mjrty_TCC3omh.OMH_TCC1finite_cardinality.fincardi_TCC3card_set.fullset_fincardhybridmjrty.count_votes_TCC4finite_cardinality.fincardi_TCC1hybridmjrty.count_votes_TCC3hybridmjrty.count_votes_TCC1omh.OMH_TCC2hybridmjrty.Hybrid_mjrty_TCC2hybridmjrty.Hlosersomh.Validity_Corollary_TCC1hybridmjrty.Hwinneromh.IMPORTING1_TCC1hybridmjrty.count_votes_TCC5omh.HybridMajority_ax1hybridmjrty.count_all_good_votes_TCC2omh.Agreementidentity.I_TCC2omh.Agreement_Prop_TCC1hybridmjrty.count_votes_TCC2hybridmjrty.count_all_good_votes_TCC3omh.Validity_Prop_TCC1card_set.remove_commhybridmjrty.Hybrid_mjrty_TCC5hybridmjrty.Hinv_holdsomh.HybridMajority_ax2card_set.fincard_non_emptyomh.Validity_Corollary_TCC2finite_cardinality.fincardi_TCC2card_set.remove_propcard_set.fincard_remove



50 Chapter 4. The Formal Speci�cation and Veri�cationfinite_cardinality.fincardi_TCC4omh.HybridMajority_TCC1card_set.fincard_filterhybridmjrty.count_all_good_votes_TCC4Validity_Final depends on the following axioms:omh.send2omh.statuses_disjointomh.send1omh.statuses_inclusiveomh.send4Validity_Final depends on the following definitions:identity.Iomh.cfinite_cardinality.fincardsets.fullsetomh.gsfilters.filteromh.aomh.Validity_Propidentity.identityhybridmjrty.Hinvomh.cshybridmjrty.Hybrid_mjrtyomh.HybridMajoritysets.memberfinite_cardinality.fincardihybridmjrty.count_votesomh.gomh.ashybridmjrty.count_all_good_votesomh.OMHomh.ssomh.ssets.removeValidity_Final depends on the following assumptions:omh.unact_axomh.act_ax



4.3. PVS Proof Chain Analysis 49proof also depends on several lemmas and de�nitions from the PVS prelude, suchas the de�nitions of �ncard and �lter . Lemmas and de�nitions from the prelude arecited in these proof chain analyses, but the axioms of propositional logic, equality,the lambda calculus, and linear arithmetic used implicitly by the ground decisionprocedures are not identi�ed in this way.Validity_Final has been PROVED.The proof chain for Validity_Final is COMPLETE.Validity_Final depends on the following proved theorems:bounded_induction.upto_inductionomh.Validityfinite_cardinality.fincard_TCC1hybridmjrty.Hybrid_mjrty_TCC1omh.send5hybridmjrty.Hybrid_mjrty_TCC3omh.OMH_TCC1finite_cardinality.fincardi_TCC3card_set.fullset_fincardhybridmjrty.count_votes_TCC4finite_cardinality.fincardi_TCC1hybridmjrty.count_votes_TCC3hybridmjrty.Hinv_holdsomh.OMH_TCC2hybridmjrty.Hybrid_mjrty_TCC2omh.Validity_Final_TCC2hybridmjrty.Hlosershybridmjrty.Hwinneromh.IMPORTING1_TCC1hybridmjrty.count_votes_TCC5omh.HybridMajority_ax1hybridmjrty.count_all_good_votes_TCC2identity.I_TCC2hybridmjrty.Hybrid_mjrty_TCC5hybridmjrty.count_votes_TCC2hybridmjrty.count_all_good_votes_TCC3omh.Validity_Prop_TCC1card_set.remove_commhybridmjrty.count_votes_TCC1finite_cardinality.fincardi_TCC2card_set.remove_propomh.Validity_Final_TCC1card_set.fincard_removehybridmjrty.count_all_good_votes_TCC1omh.fincard_all



48 Chapter 4. The Formal Speci�cation and Veri�cationValidity_Prop_TCC1.....................................proved - completeValidity...............................................proved - completeAgreement_Prop_TCC1....................................proved - completeAgreement..............................................proved - completeValidity_Final.........................................proved - completeValidity_Final_TCC1....................................proved - completeValidity_Final_TCC2....................................proved - completeValidity_Corollary.....................................proved - completeValidity_Corollary_TCC1................................proved - completeValidity_Corollary_TCC2................................proved - completeAgreement_Final........................................proved - completeCrash_Only_Validity....................................proved - completeCrash_Only_Agreement...................................proved - completeCrash_Only_Validity_Final..............................proved - completeCrash_Only_Validity_Final_TCC1.........................proved - completeCrash_Only_Validity_Final_TCC2.........................proved - completeCrash_Only_Validity_Corollary..........................proved - completeCrash_Only_Agreement_Final.............................proved - completeTheory totals: 26 formulas, 26 attempted, 26 succeeded.The �rst example analyzed in detail is send5 , which depends only on the axiom-atization of send and status.send5 has been PROVED.The proof chain for send5 is COMPLETE.send5 depends on the following axioms:omh.statuses_inclusiveomh.send4omh.send2omh.send1send5 depends on the following definitions:omh.somh.comh.gomh.aThe second detailed analysis presented here is of the �nal validity theorem cor-responding to Lemma 1 in the semiformal proof described earlier. This theorem isessentially proved by appeal to the inductive version of validity, which has a long andcomplicated proof whose beginning was presented in Section 4.2.1. By transitivity ofdependencies, this �nal version of validity depends on all the de�nitions and axiomsthat the inductive version of validity depends on, plus a few more. Note that this



4.3. PVS Proof Chain Analysis 47Applying unact ax and instantiating the top quanti�er with the term: send(t0; q0; p0)and hiding some formulas,Validity.2.1:f�1g UnR(R(send(t0; q0; p0))) = send(t0; q0; p0)f�2g HybridMajority(caucus0 � fq0g;(� (q : fcu) :OMH(q; r0; R(send(t0; q0; q));caucus0 � fq0g)(p0)))= R(send(t0; q0; p0))f1g UnR(HybridMajority(caucus0 � fq0g;(� (q : fcu) : OMH(q; r0; R(send(t0; q0; q)); caucus0 � fq0g)(p0))))= send(t0; q0; p0)Invoking decision procedures completes the proof of Validity.2.1....The remainder of the proof takes up over one hundred pages of printed text, andis omitted here. Full machine-readable PVS speci�cations and PVS proofs of theentire proof chain are available from the authors.4.3 PVS Proof Chain AnalysisHere we reproduce a summary of the PVS analysis of the entire chain of proof forthe veri�cation conducted. Following the summary is a detailed description of allde�nitions, axioms, assumptions, lemmas, and theorems used implicitly or explicitlyin three example proofs.Proof summary for theory omhIMPORTING1_TCC1........................................proved - completefincard_all............................................proved - completesend5..................................................proved - completeHybridMajority_TCC1....................................proved - completeHybridMajority_ax1.....................................proved - completeHybridMajority_ax2.....................................proved - completeOMH_TCC1...............................................proved - completeOMH_TCC2...............................................proved - complete



46 Chapter 4. The Formal Speci�cation and Veri�cationSplitting conjunctions yields 5 subgoals:Validity.2.1:f�1g HybridMajority(caucus0 � fq0g;(� (q : fcu) :OMH(q; r0; R(send(t0; q0; q));caucus0 � fq0g)(p0)))= R(send(t0; q0; p0))f�2g r0 < mf�3g Validity Prop(r0)f�4g caucus0(p0)f�5g caucus0(q0)f�6g jcaucus0j>2 � j�lter(caucus0; a)j + 2 � j�lter(caucus0; s)j+ j�lter(caucus0; c)j+ r0+ 1f1g p0 = q0f2g UnR(HybridMajority(caucus0 � fq0g;(� (q : fcu) : OMH(q; r0; R(send(t0; q0; q)); caucus0 � fq0g)(p0))))= send(t0; q0; p0)f3g arbitrary(status(q0))



4.2. Formal Veri�cation 45Validity.2:f�1g jgs(caucus0 � fq0g)j> jas(caucus0 � fq0g)j + jss(caucus0 � fq0g)j(̂8 (p : fcu) :g(p) ^ p 2 caucus0 � fq0g�(� (q : fcu) :OMH(q; r0; R(send(t0; q0; q)); caucus0 � fq0g)(p0))(p)= R(send(t0; q0; p0)))^ R(send(t0; q0; p0)) 6= error^(8 (p : fcu) :c(p) ^ p 2 caucus0 � fq0g�(� (q : fcu) :OMH(q; r0; R(send(t0; q0; q));caucus0 � fq0g)(p0))(p)= error)�HybridMajority(caucus0 � fq0g;(� (q : fcu) :OMH(q; r0; R(send(t0; q0; q));caucus0 � fq0g)(p0)))= R(send(t0; q0; p0))f�2g r0 < mf�3g Validity Prop(r0)f�4g caucus0(p0)f�5g caucus0(q0)f�6g jcaucus0j>2 � j�lter(caucus0; a)j + 2 � j�lter(caucus0; s)j+ j�lter(caucus0; c)j+ r0+ 1f1g p0 = q0f2g UnR(HybridMajority(caucus0 � fq0g;(� (q : fcu) : OMH(q; r0; R(send(t0; q0; q)); caucus0 � fq0g)(p0))))= send(t0; q0; p0)f3g arbitrary(status(q0))



44 Chapter 4. The Formal Speci�cation and Veri�cationApplying HybridMajority ax1Validity.2:f�1g (8 (caucus : fcuset); (t : T ); (v : fcuvector) :jgs(caucus)j > jas(caucus)j + jss(caucus)j^ (8 (p : fcu) : g(p) ^ p 2 caucus � v(p) = t)^ t 6= error ^ (8 (p : fcu) : c(p) ^ p 2 caucus � v(p) = error)� HybridMajority(caucus; v) = t)f�2g r0 < mf�3g Validity Prop(r0)f�4g caucus0(p0)f�5g caucus0(q0)f�6g jcaucus0j>2 � j�lter(caucus0; a)j + 2 � j�lter(caucus0; s)j+ j�lter(caucus0; c)j+ r0+ 1f1g p0 = q0f2g UnR(HybridMajority(caucus0 � fq0g;(� (q : fcu) : OMH(q; r0; R(send(t0; q0; q)); caucus0 � fq0g)(p0))))= send(t0; q0; p0)f3g arbitrary(status(q0))Instantiating the top quanti�er in -1 with the terms:remove(q0; caucus0)R(send(t0; q0; p0))(�(q : fcu) : OMH(q; r0;R(send(t0; q0; q)); remove(q0; caucus0))(p0))



4.2. Formal Veri�cation 43Lifting IF-conditions to the top level,and by propositional simpli�cation,Validity.2:f�1g r0 < mf�2g Validity Prop(r0)f�3g caucus0(p0)f�4g caucus0(q0)f�5g jcaucus0j>2 � j�lter(caucus0; a)j + 2 � j�lter(caucus0; s)j+ j�lter(caucus0; c)j+ r0+ 1f1g p0 = q0f2g UnR(HybridMajority(caucus0 � fq0g;(� (q : fcu) : OMH(q; r0; R(send(t0; q0; q)); caucus0 � fq0g)(p0))))= send(t0; q0; p0)f3g arbitrary(status(q0))



42 Chapter 4. The Formal Speci�cation and Veri�cationExpanding the de�nition of OMHValidity.2:f�1g r0 < mf�2g Validity Prop(r0)f�3g caucus0(p0)f�4g caucus0(q0)f�5g jcaucus0j>2 � j�lter(caucus0; a)j + 2 � j�lter(caucus0; s)j+ j�lter(caucus0; c)j+ r0+ 1f1g arbitrary(status(q0))f2g if p0 = q0 then send(t0; q0; p0)elseUnR(HybridMajority(caucus0 � fq0g;(� (q : fcu) : OMH(q; r0; R(send(t0; q0; q)); caucus0 � fq0g)(p0))))endif= send(t0; q0; p0)



4.2. Formal Veri�cation 41For the top quanti�er in 1, we introduce Skolem constants: (p0; q0; caucus0; t0) andapply disjunctive simpli�cation to atten the sequent,Validity.2:f�1g r0 < mf�2g Validity Prop(r0)f�3g caucus0(p0)f�4g caucus0(q0)f�5g jcaucus0j>2 � j�lter(caucus0; a)j + 2 � j�lter(caucus0; s)j+ j�lter(caucus0; c)j+ r0+ 1f1g arbitrary(status(q0))f2g OMH(q0; r0 + 1; t0; caucus0)(p0) = send(t0; q0; p0)



40 Chapter 4. The Formal Speci�cation and Veri�cationValidity.2:f1g (8 (r : upto[m]) : r < m ^ Validity Prop(r) � Validity Prop(r + 1))For the top quanti�er in 1, we introduce Skolem constants: (r0) and apply disjunctivesimpli�cation to atten the sequent,Validity.2:f�1g r0 < mf�2g Validity Prop(r0)f1g Validity Prop(r0 + 1)Expanding the de�nition of Validity Prop in formula 1Validity.2:f�1g r0 < mf�2g Validity Prop(r0)f1g (8 (p; q : fcu); (caucus : fcuset); (t : T ) :: arbitrary(status(q))^ caucus(p)^ caucus(q)^ jcaucusj>2 � j�lter(caucus; a)j + 2 � j�lter(caucus; s)j+ j�lter(caucus; c)j+ r0+ 1� OMH(q; r0 + 1; t; caucus)(p) = send(t; q; p))



4.2. Formal Veri�cation 39Validity:f1g (8 (r : rounds) : Validity Prop(r))Inducting on r yields 2 subgoals: Validity.1 and Validity.2Validity.1:f1g Validity Prop(0)Expanding the de�nition of Validity PropValidity.1:f1g (8 (p; q : fcu); (caucus : fcuset); (t : T ) :: arbitrary(status(q))^ caucus(p)^ caucus(q)^ jcaucusj> 2 � j�lter(caucus; a)j + 2 � j�lter(caucus; s)j+ j�lter(caucus; c)j+ 0� OMH(q; 0; t; caucus)(p) = send(t; q; p))For the top quanti�er in 1, we introduce Skolem constants: (p0; q0; caucus0; t0) andapply disjunctive simpli�cation to atten the sequent,Validity.1:f�1g caucus0(p0)f�2g caucus0(q0)f�3g jcaucus0j> 2 � j�lter(caucus0; a)j + 2 � j�lter(caucus0; s)j+ j�lter(caucus0; c)j+ 0f1g arbitrary(status(q0))f2g OMH(q0; 0; t0; caucus0)(p0) = send(t0; q0; p0)Expanding the de�nition of OMH completes the proof of Validity.1.



38 Chapter 4. The Formal Speci�cation and Veri�cation4.2.1 Portion of PVS Proof of ValidityIn order to give an idea of the formal proof as interactively developed using PVS, wereproduce a prettyprinted version of such a proof (slightly edited for readability).It begins with the theorem name, Validity, and the initial sequent. Sequentsare presented as a list of numbered hypotheses, a horizontal line, and a list ofnumbered conclusions. One may read a sequent as stating that the conjunctionof the hypotheses implies the disjunction of the conclusions. Initially, there areno hypotheses, and only one conclusion, stating that for any number of rounds,the inductive validity property holds for that many rounds. The �rst step in theproof is the application of induction on the number of rounds. This leads to twosubgoals, called Validity.1 and Validity.2. For Validity.1, the base case ofthe induction, the de�nition of the inductive validity property is expanded and theresult is skolemized (fresh constants are introduced in place of universally quanti�edvariables). Then the de�nition of OMH is expanded and reduced. (Recall thespeci�cation given earlier; zero-round OMH reduces to send .) This completes thebranch of the proof corresponding to the base case of the induction.The remaining branch, called Validity.2, is then proved. This branch requiresit to be shown that for any number of rounds r, if the inductive validity propertyholds for r rounds, then it also holds for r + 1 rounds. By skolemizing, expandingde�nitions, and applying propositional simpli�cation, we arrive at the crux of theproof. Here we must show that if OMH behaves correctly at r rounds, then theUnR of the HybridMajority of the result of all other receivers utilizing OMH tobroadcast R of the value they received from the transmitter is the same as the valueactually sent by the transmitter. This must be demonstrated under certain otherassumptions, such as that are enough nonfaulty processors, and that the transmitteris not arbitrary faulty. The proof proceeds by utilizing a property of HybridMajor-ity , called HybridMajority ax1 . There are four hypotheses of this property, and oneconclusion. After quantifying appropriately, the proof is split into �ve cases, corre-sponding to a proof of each hypothesis of HybridMajority ax1 and a proof from theconclusion of HybridMajority ax1 to the conclusion of the actual property of inter-est. The proof of the latter (Validity.2.1) proceeds by bringing in the assumptionunact ax , hiding some irrelevant formulas, and invoking the decision procedures.



4.2. Formal Veri�cation 37formula name user-supplied number of uses ofsteps inductions assert�ncard all 30 1 7send5 14 0 1Validity 80 1 15Agreement 73 1 13Validity �nal 36 0 4Validity Cor 14 0 2Agreement �nal 51 0 4Crash Only Validity 79 1 14Crash Only Agreement 41 1 6Crash Only Valdity �nal 29 0 0Crash Only Validity Cor 8 0 1Crash Only Agreement �nal 21 0 0Hybridmajority ax1 78 2 16Hybridmajority ax2 20 1 3Table 4.1: Statistics for the Proofs Performedthe name of the formula concerned. The second column is the total number ofuser-suggested proof steps in the �nal proof. The third column counts the uses ofinduction. The fourth column counts the uses of ground or assert, which invoke theground decision procedures; these roughly correspond to the number of signi�cantbranches in a proof.The critical measure, however, for speci�cation and veri�cation tasks is not thesize of individual proofs, but the total time taken from problem understandingthrough complete formal proof. The e�ort reported here took less than a monthof part time work, including the exploration of awed modi�cations to AlgorithmZ that seemed informally plausible, and a change in notation for expository pur-poses. Producing this report took far more time than the formal speci�cation andveri�cation combined.Full machine-readable PVS speci�cations and PVS proofs of the entire proofchain are available from the authors.



36 Chapter 4. The Formal Speci�cation and Veri�cationThe �rst lemma, �ncard all , states that the cardinality of an entire set of proces-sors is equal to the sum of the cardinalities of the processors in that set of each status.This lemma follows from properties implicit in the de�nition of statuses : that theyare inclusive and disjoint. In detail, the formal proof requires 30 user-supplied stepsin PVS, seven of which are ground or assert, which invoke the ground decisionprocedures of PVS.The second lemma, send5 , states that all non-arbitrary-faulty processors exhibitsymmetric sending behavior. Informally, the proof of this property appeals to thefact that the four statuses|arbitrary , symmetric,manifest , and good|are inclusive.Case analysis and appeal to the send axioms send1 , send2 , and send4 essentiallycompletes the proof. In two cases, such as that when the transmitter is manifest-faulty, the relevant axiom must be applied twice. The entire formal proof comprises14 user-supplied steps in the PVS interactive veri�cation system.The most complicated proof constructed for this speci�cation is for Lemma 1(called Validity in the formal speci�cation), stating that if the transmitter is notarbitrary-faulty then all good receivers end up with the value actually sent by thetransmitter. This proof contains 13 invocations of lemmas and axioms, most of thembasic lemmas from the prelude and axioms from the OMH theory. The lemmas andaxioms cited in the proof are: induction; statuses inclusive, and statuses disjoint ,which are the automatically-generated assertions that the set of four statuses areinclusive and disjoint; �ncard remove, a lemma giving the cardinality of a set afteran element has been removed (used often|thirteen times); �ncard �lter , a lemmaasserting that the cardinality of a set is not less than the cardinality of that setwith some elements removed; �ncard all , described above; send5 , described above;remove comm, a lemma asserting that the order in which elements are removed froma set is immaterial, used four times; and axioms (such as the de�nitional axiomsfor send) brought into the proof explicitly six times. The entire proof consists of 80user-suggested steps, 15 of which are PVS assert commands, which invoke ratherpowerful decision procedures for ground arithmetic [31,32]. After some experimen-tation with alternative speci�cations, including constructing partial failed proofs ofthis lemma for alternative versions of the algorithm OMH, the �rst proof of Validitywas constructed from scratch in a few hours.The proof of the crash-only variant of Validity is very similar in nature to thegeneral version of validity, although it contains one fewer user-supplied steps, 14 ofwhich are assert.The proof of the Agreement property contains 10 invocations of lemmas andaxioms, and consists of 73 steps, including 13 calls to the ground decision procedures.This proof was constructed from scratch in a few hours.Table 4.1 summarizes some gross measures of the size and di�culty of construct-ing proofs for the lemmas and theorems of this speci�cation. The �rst column is



4.2. Formal Veri�cation 35Crash Only Agreement Prop(r) :bool=(8 p; q; z; caucus; t :g(p)̂ g(q)^ p 2 caucus^ q 2 caucus^ z 2 caucus^ jas(caucus)j = 0 ^ jss(caucus)j = 0 ^ jcaucusj > r� OMH(z; r; t; caucus)(p) = OMH(z; r; t; caucus)(q))Crash Only Agreement : lemma Crash Only Agreement Prop(r)Crash Only Validity Final :theoremg(p) ^ jaj = 0 ^ jsj = 0 ^ jfullset[fcu]j > m� OMH(G;m; t; fullset[fcu])(p) = send(t; G; p)Crash Only Validity Corollary :theoremg(p) ^ g(G) ^ jaj = 0 ^ jsj = 0 ^ jfullset[fcu]j > m� OMH(G;m; t; fullset[fcu])(p) = tCrash Only Agreement Final :theoremg(p) ^ g(q) ^ jaj = 0 ^ jsj = 0 ^ jfullset[fcu]j > m� OMH(G;m; t; fullset[fcu])(p) = OMH(G;m; t; fullset[fcu])(q)end omh4.2 Formal Veri�cationThe formal veri�cations corresponding Lemma 1 and Theorems 1 and 2 are provedby induction on the number of rounds, and follow the informal proofs quite closely.The theorem prover of PVS with its built-in arithmetic decision procedures andrewriting allowed the formal proof to be constructed at a relatively high level with-out being mired in detail. The PVS system allows partial proofs to be replayed underalternative assumptions, facilitating the exploration of generalizations and specialcases, such as that reported in Theorem 2, formally reected in the Crash Only vari-ants of the theorems. Another example of this sort of exploration was the removalof the assumption that error values are disjoint from good data values. The proofof each lemma in the speci�cation is described abstractly below.



34 Chapter 4. The Formal Speci�cation and Veri�cationValidity Final :theoremg(p)̂ : a(G)^ jaj � m^ 2 � jaj + 2 � jsj + jcj + m < n� OMH(G;m; t; fullset[fcu])(p) = send(t; G; p)Validity Corollary :theoremg(p)̂ g(G)^ jaj � m^ 2 � jaj + 2 � jsj + jcj + m < n� OMH(G;m; t; fullset[fcu])(p) = tAgreement Final :theoremg(p)̂ g(q)^ jaj � m^ 2 � jaj + 2 � jsj + jcj + m < n� OMH(G;m; t; fullset[fcu])(p) = OMH(G;m; t; fullset[fcu])(q)Crash Only Validity Prop(r) :bool=(8 p; q; caucus; t :g(p)̂ p 2 caucus^ q 2 caucus^ jas(caucus)j = 0 ^ jss(caucus)j = 0 ^ jcaucusj > r� OMH(q; r; t; caucus)(p) = send(t; q; p))Crash Only Validity : lemma Crash Only Validity Prop(r)



4.1. Formal Speci�cation 33OMH(G; r; t; caucus) : recursive fcuvector =if r = 0 then (� p : send(t; G; p))else(� p :if p = G then send(t; G; p)elseUnR(HybridMajority(caucus � fGg;(� q : OMH(q; r � 1;R(send(t; G; q)); caucus� fGg)(p))))endif)endifmeasure (� G; r; t; caucus! nat : r)Validity Prop(r) :bool=(8 p; q; caucus; t :: a(q)^ p 2 caucus^ q 2 caucus^ jcaucusj> 2 � (jas(caucus)j + jss(caucus)j) + jcs(caucus)j + r� OMH(q; r; t; caucus)(p) = send(t; q; p))Validity : lemma Validity Prop(r)Agreement Prop(r) :bool=(8 p; q; z; caucus; t :(g(p)̂ g(q)^ p 2 caucus^ q 2 caucus^ z 2 caucus^ jcaucusj> 2 � (jas(caucus)j + jss(caucus)j) + jcs(caucus)j+ r^ r � jas(caucus)j)� OMH(z; r; t; caucus)(p) = OMH(z; r; t; caucus)(q))Agreement : lemma Agreement Prop(r)



32 Chapter 4. The Formal Speci�cation and Veri�cationstatuses : type = farbitrary; symmetric;manifest; goodgstatus : [fcu! statuses]a(z) : bool = arbitrary(status(z))s(z) : bool = symmetric(status(z))c(z) : bool = manifest(status(z))g(z) : bool = good(status(z))as(caucus) : fcuset = �lter(caucus; a)ss(caucus) : fcuset = �lter(caucus; s)cs(caucus) : fcuset = �lter(caucus; c)gs(caucus) : fcuset = �lter(caucus; g)�ncard all :lemmajcaucusj = jas(caucus)j + jss(caucus)j + jcs(caucus)j + jgs(caucus)jsend : [T; fcu; fcu! T ]send1 : axiom g(p) � send(t; p; q) = tsend2 : axiom c(p) � send(t; p; q) = errorsend4 : axiom s(p) � send(t; p; q) = send(t; p; z)send5 : lemma : a(p) � send(t; p; q) = send(t; p; z)HybridMajority(caucus; v) : T = proj 1(Hybrid mjrty(caucus; v; n))HybridMajority ax1 :lemmajgs(caucus)j > jas(caucus)j + jss(caucus)j^ (8 p : g(p) ^ p 2 caucus � v(p) = t)^ t 6= error ^ (8 p : c(p) ^ p 2 caucus � v(p) = error)� HybridMajority(caucus; v) = tHybridMajority ax2 :lemma(8 p : p 2 caucus � v1(p) = v2(p))� HybridMajority(caucus; v1) = HybridMajority(caucus; v2)



4.1. Formal Speci�cation 31Note that in these analyses, there is at least one good receiver, and the remainder ofthe receivers are either good or manifest-faulty, so the good receivers will always winthe majority vote. A detail is the extra requirement that there be more processorsthan rounds, since it is di�cult to assert properties of the OMH algorithm run onthe empty set of processors.Note that analogous \ArbitraryOnly" theorems also hold, giving optimalbounds,6 although these bounds are trivial consequences of the general theorem.The analogous \SymmetricOnly" theorems would not give optimal bounds, as wasdiscussed in Section 3.4.omh[m : nat; n : posnat; T : type; error : T;R;UnR : [T ! T ]] :theorybeginassumingact ax : assumption (8 (t : T ) : R(t) 6= error)unact ax : assumption (8 (t : T ) : UnR(R(t)) = t)endassumingrounds : type = upto[m]t : var Tfcu : type = below[n]fcuset : type = setof[fcu]fcuvector : type = [fcu! T ]G; p; q; z : var fcuv; v1; v2 : var fcuvectorcaucus : var fcusetr : var roundsimporting�nite cardinality[fcu; n; identity[fcu]];�lters[fcu];card set[fcu; n; identity[fcu]];hybridmjrty[T; n; error]6Pease, Shostak and Lamport [25] proved that at least 3a+1 processors are required to withstanda arbitrary faults. This result has been formally veri�ed by Bevier and Young [2,1] using the Boyer-Moore prover.



30 Chapter 4. The Formal Speci�cation and Veri�cationThe �rst big property is Validity , stating that if the transmitter is not arbitrary-faulty, then this algorithm achieves the same result as send . This captures thecorrect behavior when the transmitter is good (send delivers the correct value),symmetric-faulty (send delivers the same wrong value to all receivers, which thenagree on this value), and manifest-faulty (send e�ectively delivers the value (errorto all receivers which then agree on error as the transmitter's value).: a(q)^ p 2 caucus^ q 2 caucus^ jcaucusj > 2 � (jas(caucus)j + jss(caucus)j) + jcs(caucus)j + r� OMH(q; r; t; caucus)(p) = send(t; q; p)The next property is Agreement , which states that if two receivers are both goodthey will agree, whatever the status of the transmitter.g(p)̂ g(q)^ p 2 caucus^ q 2 caucus^ z 2 caucus^ jcaucusj > 2 � (jas(caucus)j + jss(caucus)j) + jcs(caucus)j + r^ r � jas(caucus)j� OMH(z; r; t; caucus)(p) = OMH(z; r; t; caucus)(q))The next property, Validity �nal , instantiates the inductive validity propertywith the full set of processors. The property Validity Corollary addresses the specialcase when the transmitter is good. In this case the correct value is agreed upon by allgood receivers. The property Agreement �nal instantiates the inductive agreementproperty with the full set of processors.The remainder of the speci�cation addresses the special case when there are nosymmetric-faulty nor arbitrary-faulty processors. In this case a somewhat betterbound can be achieved with regard to manifest-faulty processors. In particular, thebounds given by the general versions of the theorems are not as good as can beachieved with simple non-Byzantine resilient algorithms. However, as described inSection 3.4, OMH does actually achieve optimal behavior in these cases, as shownby the alternative analysis described below.The same set of interesting properties described above is then repeated with theadded assumption that there are no arbitrary-faulty nor symmetric-faulty proces-sors. The bounds proven in these cases deliver more resilience to manifest faults.



4.1. Formal Speci�cation 29jgs(caucus)j > jas(caucus)j + jss(caucus)j^ (8 p : g(p) ^ p 2 caucus � v(p) = t)^ t 6= error ^ (8 p : c(p) ^ p 2 caucus � v(p) = error)� HybridMajority(caucus; v) = tThe antecedent to the implication in this speci�cation is complicated, but canbe read as follows. The function HybridMajority takes two arguments, a set of pro-cessors (i.e., an fcuset), which we call the caucus , and a vector mapping processorsto values (i.e., an fcuvector). If the vector records the same value for all good pro-cessors in the caucus, and the vector records an error value for all manifest-faultyprocessors in the caucus, and there are more good processors in the caucus thanthe sum of arbitrary-faulty and symmetric-faulty processors in the caucus, then Hy-bridMajority returns the same value as that recorded in the vector for the goodprocessors. Any implementation of HybridMajority that does in fact compute thetrue majority after casting out error values would satisfy this axiom.The second axiom states that the value returned depends only on the valuesrecorded in the vector for the processors in the caucus. Although HybridMajorityis a function, it could potentially be implemented in such a way that when there isno majority (i.e., when the antecedent to the implication above is false), the outputdepends on values of the vector corresponding to processors not in the caucus, orother irrelevant information contained in the arguments. The second axiom prohibitsthis kind of behavior.(8 p : p 2 caucus � v1(p) = v2(p))� HybridMajority(caucus; v1) = HybridMajority(caucus; v2)The remainder of the speci�cation consists of interesting properties of the OMHalgorithm. Many of the following theorems are �rst de�ned as predicates, then alemma asserting that this predicate is universal is proved by induction, and then atheorem giving the result in the form desired is derived from the lemma. This style ofbreaking a speci�cation into a predicate and a separate lemma and theorem is quiteuseful in formal systems. Many other large speci�cations use this technique [30,37].Note that in the semiformal speci�cation there was a notion of the value actuallysent by the transmitter. This is very close to the value of the function send(t,p,q),although we have axiomatized send so that manifest-faulty processors \send" error.Thus the formal speci�cation of Validity uses send where the semiformal speci�ca-tion uses case analysis and the notion of the value actually sent by symmetric-faultyprocessors.



28 Chapter 4. The Formal Speci�cation and Veri�cationOMBG(G; r; t; caucus) : recursive fcuvector =if r = 0 then (� p : send(t; G; p))else(� p :if p = G then send(t; G; p)elseMajority(caucus � fGg;(� z : OMBG(z; r � 1; send(t; G; z); caucus� fGg)(p)))endif)endifmeasure (� G; r; t; caucus! nat : r)The �nal step is to transform this speci�cation into one for OMH. The only dif-ferences between OMBG and OMH are that the latter uses HybridMajority insteadof the simple Majority function, and \wraps" and \unwraps" the values sent andreceived in the recursive calls with the functions R and UnR, respectively. Thus thespeci�cation for OMH given below is easily derived.OMH(G; r; t; caucus) : recursive fcuvector =if r = 0 then (� p : send(t; G; p))else(� p :if p = G then send(t; G; p)elseUnR(HybridMajority(caucus � fGg;(� z : OMH(z; r � 1; R(send(t; G; z)); caucus � fGg)(p))))endif)endifmeasure (� G; r; t; caucus! nat : r)It remains to specify the properties required of the functions HybridMajority ,UnR, and R. The function HybridMajority is intended to be like the previous (stan-dard) Majority function, except that all error values are excluded. Recall from ourearlier discussion that the Majority function does not actually need to be a majorityvote, so it is preferable to specify the properties required of it axiomatically. Thesame is true of HybridMajority , which is axiomatized below. Although these twoproperties are all that is required of an implementation of HybridMajority , we haveprovided a concrete implementation of HybridMajority based on the Boyer-MooreMJRTY algorithm [3], and proved that the axioms below are satis�ed by this im-plementation. Thus the following may be considered axioms, or may be consideredlemmas proven by appeal to the hybridmjrty theory described in Appendix A.



4.1. Formal Speci�cation 27The next step is to convert our speci�cation of the basic Oral Messages algo-rithm from the Interactive-Consistency to the Byzantine Generals formulation. Wespecify the Byzantine Generals form by a function OMBG that is similar to OMIC,but takes an additional (�rst) argument giving the identity of the Transmitter (orCommanding General), and replaces the fcuvector of private values by a single pri-vate value (that of the Transmitter). The result returned by OMBG is a simplefcuvector :OMBG(G;m; t; caucus)(p)is processor p's opinion of the Transmitter G's private value t following an m-roundexchange. If we assume that OMIC is available, then the behavior required ofOMBG in the case r > 0 can be derived directly from that of OMIC:r > 0� OMBG(G; r; t; caucus)(p)= if p = G then send(t; G; p)elseMajority(caucus � fqg;OMIC(r � 1; (� z : send(t; G; z)); caucus� fqg)(p))endifThe next step is to replace the inner call to OMIC by one to OMBG. NowOMIC(r� 1; (�z : send(t; G; z)); caucus� fqg)(p)is an fcuvector giving processor p's opinion of the values received by each processorwhen G sends them t. Using OMBG, p's opinion of the value received by processorz in this circumstance can be writtenOMBG(z; r� 1; send(t; G; z); caucus� fqg)(p)(i.e., z takes the part of the Transmitter, distributing the value send(t; G; z) receivedfrom the \real" Transmitter). Thus, the required fcuvector giving p's opinion of thevalues received by all such processors z is given by:(�z : OMBG(z; r� 1; send(t; G; z); caucus� fqg)(p)):In this way we arrive at the speci�cation for OMBG shown below.



26 Chapter 4. The Formal Speci�cation and Veri�cationThus the required speci�cation is:r > 0� OMIC(r; v; caucus)(p)(q)= if p = q then send(v(q); q; q)elseMajority(caucus � fqg;OMIC(r � 1; (� z : send(v(q); q; z)); caucus � fqg)(p))endifThe functionMajority takes a set of processors (here caucus�fqg), and an fcuvector ,and computes the majority value (if any) in that vector over that set.5The two behaviors stated above (for the cases m = 0, and m > 0, respectively)could be speci�ed as axioms de�ning the function OMIC; we prefer, however, to spec-ify the function de�nitionally and to deduce those properties as (straightforward)lemmas. The advantage of the de�nitional speci�cation is that the PVS typecheckerwill guarantee its soundness (in the sense of not introducing inconsistencies). To dothis, we are required to exhibit a measure function that takes the same arguments asOMIC and whose value is a natural number that can be proved to decrease acrossrecursive calls. In the present case, we use the function that returns the roundnumber as the measure function. The �nal speci�cation for OMIC is given below.OMIC(r; v; caucus) : recursive [fcu! fcuvector] =if r = 0 then (� p : (� q : send(v(q); q; p)))else(� p :(� q :if p = q then send(v(q); q; q)elseMajority(caucus � fqg;OMIC(r � 1; (� z : send(v(q); q; z));caucus � fqg)(p))endif))endifmeasure (� r; v; caucus! nat : r)5Requiring this function to be implemented by a majority vote overspeci�es the problem. Allthat is really required is that if the good processors form a majority in caucus, and if all the goodprocessors have the same value in the vector, then that is the value of the Majority function. Takingthe median of the values of the members of caucus (assuming they come from an ordered set) wouldalso satisfy this speci�cation (as was correctly noted by Lamport, Shostak and Pease [17, page 388]).



4.1. Formal Speci�cation 25speci�cation for the OM algorithm from our earlier report, and then transform itinto the OMH algorithm.We start by considering the Interactive-Consistency version of OM, which wecall OMIC. We specify OMIC as a function of three arguments: m the numberof rounds, v an fcuvector giving the private values of each processor, and caucusthe set of processors participating in (this round of) the algorithm. OMIC willreturn a \vector" of fcuvectors: that is a function from fcu to fcuvector . ThusOMIC(m; v; caucus)(p) will be the fcuvector of processor p following the OMICalgorithm, and OMIC(m; v; caucus)(p)(q) will be p's opinion of q's private value.Notice that we are using higher-order functions here (i.e., functions whose valuesare functions).In preparation for formally specifying OMIC, we �rst state its behavior for thecase m = 0.OMIC(0; v; caucus)(p)(q) = send(v(q); q; p)Our requirement on OMIC in the case m = 0 simply states that p's opinion of q'sprivate value v(q) following the algorithm should be send(v(q); q; p). It might seemthat we should require that both p and q should be members of the set caucus (aswe did in the speci�cation in [27]), but this is unnecessary because the value of thefunction is irrelevant p or q are not members of caucus .For the case m = r, r > 0, we require that p's opinion of q's private valueshould be send(v(q); q; q) if p = q,4 otherwise it should be the majority value in p'sfcuvector , after performing OMIC with m = r � 1 on the current set of processorswith q excluded, and the values received from q as the private values. Now the valuereceived by an arbitrary processors z from q is send(v(q); q; z), so the fcuvector ofsuch values is(�z : send(v(q); q; z)):The inner round of OMIC is therefore described byOMIC(r� 1; (�z : send(v(q); q; z)); caucus� fqg);and the fcuvector received by p following this isOMIC(r� 1; (�z : send(v(q); q; z)); caucus� fqg)(p):4We could specify v(q) in this case; we have chosen the weaker assumption that a faulty processormay not even know its own value.



24 Chapter 4. The Formal Speci�cation and Veri�cationstatus of the sender. The �rst axiom simply says that a good processor sendscorrect values to all (good) receivers:g(p) � send(t; p; q) = t:Note that here, and in further formal de�nitions, free variables are universally boundat the outermost level, and the types of all variables are omitted for brevity. See thecomplete speci�cation for subsidiary and variable declarations. The second axiomsays that a manifest-faulty processor always delivers values that are recognized aserroneous by good receivers:c(p) � send(t; p; q) = error :The third axiom says that a symmetric-faulty processor sends the same value to allgood receivers, although that value is otherwise unconstrained (i.e., it may be anypossible value, including those that are recognized as erroneous)s(p) � send(t; p; q) = send(t; p; z):Nothing is speci�ed for the behavior of arbitrary-faulty senders. A lemma (calledsend5 ) is stated and proved that all good receivers obtain the same value when thesender has any status but arbitrary-faulty::a(p) � send(t; p; q) = send(t; p; z):A de�ciency of this speci�cation is that, because send is a function, even ar-bitrarily faulty processors are consistent from one round to the next: the valuesend(t; p; q) is some �xed value, suggesting that a faulty processor p, given the samevalue t, will always send the same (possibly bad) value to the processor q|even indi�erent rounds of the protocol. This fact is not exploited in the proof, but it is notself-evident that this is so. In our veri�cation of the OM algorithm [27], we addedthe round number as an additional argument to send in order to lessen this concern.However, the only way to allay such doubts absolutely is to specify send as a rela-tion. Our colleague Shankar has axiomatized the OM algorithm using a relationalsend , and has proven the corresponding correctness conditions. Unfortunately, therelational send complicates and obscures the speci�cation (since it forces other func-tions to become relations also), so we have chosen to retain a functional send forthis exercise. It is probable that a relational version could be created without greate�ort.Our formal speci�cation of OMH is based on our earlier speci�cation of theclassical OM algorithm [27]. Rather than simply present the formal speci�cationof OMH as a fait accompli , we �rst reproduce some of the development of the



4.1. Formal Speci�cation 23The theory �nite cardinality is one of several cardinality theories available in thePVS prelude; these theories di�er in their assumptions concerning the type of theelements of the sets concerned. The theory �nite cardinality is applicable to setswhose elements are drawn from a �nite type; its parameters are the type concerned(here fcu), a natural number that is the cardinality of that type (here n), and abijection (here identity [fcu]) from the canonical set below [n] of cardinality n to thetype concerned.The theory �lters de�nes a function �lter that returns the set of members of agiven set that satisfy a given predicate. Since predicates and sets are equivalent inhigher-order logic, this operation is the same as set intersection.2 The theory card setprovides some standard lemmas concerning cardinality, and �lters (for example, thecardinality of a set is nonzero if and only if the set is nonempty); it takes the samearguments as �nite cardinality . The imported theory hybridmjrty is not essential tothe main development and is described in Appendix A.The type statuses is de�ned to be an enumeration of exactly four constants,corresponding to the four categories of behavior: arbitrary , symmetric, manifest ,and good .3 The function status returns the status of a given processor (or fcu); thisimplicitly enforces our notion that a processor not change status during executionof the agreement protocol. A processor that, in reality, is symmetric-faulty onemoment and manifest-faulty the next must be modeled as one that is arbitrary-faulty throughout the computation.Some shorthands are then de�ned for describing statuses: a, s , c, and g arepredicates recognizing the arbitrary-faulty, symmetric-faulty, manifest-faulty, andgood processors, respectively. Similarly, given a set caucus , as(caucus) is the set ofarbitrary-faulty processors in caucus . The functions ss , cs and gs similarly selectthe symmetric-faulty, manifest-faulty, and good processors, respectively. A simplelemma, �ncard all , states that the cardinality of a set of processors is equal to thesum of the cardinalities of the subsets of its processors of each status. This lemmafollows from a property implicit in the de�nition of statuses as an enumeration type:the members of the enumeration are inclusive and disjoint.The function send captures the properties of sending values from one processorto another. This function takes a value to be sent, a sender, and a receiver asarguments; it returns the value that would be received if the receiver were a goodprocessor. The result actually received is irrelevant if the receiver is not a goodprocessor (because the values passed on by faulty receivers are not assumed to berelated to those received). We axiomatize the behavior of send according to the2The theory �lters also provides a similar function on lists, which is rather more complex.3Enumeration constants are also overloaded as recognizer functions in PVS. Thus, if s is avariable of type statuses, s = arbitrary and arbitrary(s) are equivalent formulas. The latter formis used in this speci�cation.



22 Chapter 4. The Formal Speci�cation and Veri�cationcontainment units"). Both the natural numbers (0; 1; 2; : : :) and the strictly pos-itive natural numbers (1; 2; 3; : : :) are prede�ned types in PVS (nat , and posnat ,respectively), which are speci�ed in the \prelude" of standard de�nitions that areautomatically loaded into PVS. The prelude theories are described in the PVS lan-guage reference [23], and can also be examined on-line using the PVS commandsview-prelude-�le and view-prelude-theory.The parameter list continues by introducing an uninterpreted type T , to repre-sent the class of values exchanged in the algorithm, and an uninterpreted constanterror used to represent values that are recognized as manifestly erroneous.The remaining parameters to the OMH theory are the functions R and UnR,representing the \wrapping" and \unwrapping" functions that are performed onvalues as they are exchanged on the OMH algorithm. These functions must satisfycertain constraints (namely, wrapped values must not look like error values, andunwrapping a wrapped value must return the original value) that are stated asassumptions on the theory OMH, and discussed in Section 3.2. Formally, bothare functions from T to T . The function R is used to prevent a value from beingdiscarded by the hybrid majority vote. UnR is used to recover the correct value afterthe vote. Recall that error values are recorded as the values \sent" by manifest-faulty processors. The �rst assumption states that no R value is an error.R(t) 6= error :The second assumption states that UnR of R of a value is the same value.UnR(R(t)) = t:The algorithm proceeds through a number of \rounds" counted by the naturalnumbers 0; 1; : : : ; m; this range of numbers is speci�ed as the type rounds , usingthe prede�ned type-constructor upto from the PVS prelude. Processors, or \faultcontainment units" are represented by the natural numbers 0; 1; : : : ; n � 1. Thistype, called fcu, is speci�ed in terms of the prede�ned type-constructor below fromthe PVS prelude.1 The type fcuset represents sets of fcus, and is speci�ed in termsof the prede�ned type-constructor setof , also from the PVS prelude. Finally, thetype fcuvector is speci�ed as the type of functions from fcus to T .Several variables are then introduced, and instantiations of some prelude theoriesare imported. Prelude theories are always available and do not need to be importedexplicitly; the advantage of doing so, however, is that the required instances canbe indicated, so that later references can use simple, rather than quali�ed, names.1A slightly more elegant approach would make fcu a type parameter, with an assumption thatit is bijective with below [n]; several prelude theories use this approach.



Chapter 4The Formal Speci�cation andVeri�cationWe have formally speci�ed the OMH(n) algorithm and formally veri�ed that it sat-is�es the properties of agreement and validity using the PVS veri�cation system [22].The speci�cation language of PVS is a higher-order logic with a very rich type sys-tem. This allowed us to specify the OMH algorithm, its assumptions, and propertiesfairly directly. PVS's theorem prover or proof checker (we use either term, thoughthe latter is more correct) is interactive and operates under the direct control ofuser: the user chooses each step that is to be applied and PVS performs it, displaysthe result, and then waits for the next command. PVS di�ers from most other in-teractive theorem provers in the power of its basic steps: these can invoke decisionprocedures for arithmetic, automatic rewriting, induction, and other relatively largeunits of deduction; it di�ers from other highly automated theorem provers in beingdirectly controlled by the user. This style of mechanized proof checking allowed usto discover the aws in our early formulations of the OMH algorithm, and to verifythe properties of the �nal version with relatively little e�ort.We describe the formal speci�cation in the next section, and its formal veri�ca-tion in the section after that.4.1 Formal Speci�cationThe formal speci�cation is a single PVS theory omh (shown starting on page 31)that takes several parameters, beginning with a natural number m denoting thenumber of rounds of message exchanges to be performed, and a strictly positivenatural number n that denotes the number of participants (i.e., channels or \fault21



20 Chapter 3. The Algorithm OMH3.7 Implementing R and UnRAlthough the informal and formal speci�cations suggests that R and UnR are ap-plied to all values at every round, this is unnecessary. R and UnR may be identityon nonerror values. That is, the following de�nitions su�ce:R(x) def= if x = RjE for some j then Rj+1E else x endifUnR(x) def= if x = Rj+1E for some j then RjE else x endifThus, values v could be passed with an extra (say, highest order) bit denotingwhether the word actually stands for a data value or for Rv(E). R and UnR wouldthen become increment and decrement operations conditional on the highest bit.If R and UnR are applied to all values at every round, perhaps as uncondi-tional increment and decrement operations, then intermediate error values such asR(R(E)) may coincide with valid data values. The algorithm remains correct be-cause UnR (decrement) is always applied to the output of the majority vote.Both of these implementations of R and UnR require unbounded integers inorder to truly satisfy the requirements on R and UnR (for all v, R(v) 6= E, andUnR(R(v)) = v). However, for an m round OMH, just m+ 1 error values (E up toRm(E)) su�ce with suitable modi�cations to the algorithm.One could add a comparison of the number of applications of R with the depthof recursion in the algorithm OMH. (Simply computing Rx(E) where x is takenmodulo the total number of rounds leads to erroneous results.) Any values withmore R's than elapsed rounds may correctly be considered to indicate manifestfaults and treated as E, thus reducing the number of possible error values to onemore than the number of rounds. In the common case of one-round OMH, two errorvalues, corresponding to E and R(E) su�ce. With only a small set of error values,it may no longer be necessary to distinguish them by setting a special bit: theycould simply be allocated to values beyond the valid data range.Using these techniques, one may reduce the overhead of using OMH-like algo-rithms (as compared to OM) to a small constant number of extra data values, anda slightly more complex algorithm. These implementation techniques have not beenformally veri�ed.



3.6. Communications Faults 19for these faults either in the result corresponding to Lemma 1 above, or in thatcorresponding to Theorem 1. The latter seems the most likely candidate, sinceit is the case that deals with asymmetrically faulty transmitters. However, theinductive proof used in Theorem 1 does not work for the case of a transmitter withan asymmetric but nonarbitrary communications fault (because in the recursivesubcases we will still have the same number of arbitrary faults to mask, but one lessround to do it in|and we cannot mask more arbitrary faults than rounds). Thealternative is to consider communications faults in Lemma 1. It turns out that this isfeasible, but is equivalent to regarding a communications fault as a symmetric-faultin the receiver.This conclusion seems fairly useful, so we record it in the following de�nitionand theorem.� Let p and q be processors; if there is a communications fault on the link p! q,then a receiver can receive any value (i.e., we allow intermittent and Byzantinebehavior).7Theorem 3 Let C be the set of links with communications faults. Then Theorem1 can be applied provided that for each p! q 2 C, either:� processor p is counted as arbitrary-faulty (whether it actually is or not), or� processor q is manifest-faulty, symmetric-faulty, or arbitrary-faulty and iscounted as such, or� processor q is nonfaulty but is counted as symmetric-faulty.Proof: First, we consider the cases where processor q is faulty. In all cases(arbitrary-faulty, symmetric-faulty, and manifest-faulty), the behavior of a faultyprocessor is independent of the values it receives; hence the faulty link p ! q isirrelevant.If q is nonfaulty, we can attribute the faulty link p ! q to either p or q. If weattribute it to p, then p appears to manifest arbitrary (i.e., Byzantine) behavior,and must be counted as arbitrary-faulty.If we attribute the link fault p ! q to q and q is nonfaulty, then the behaviorseen by other processors is precisely that of a symmetric-faulty processor: if the linkdelivers a wrong value (or the correct one) to q, it will faithfully pass it on to allthe other receivers; if the link delivers a corrupted (or no) value to q, it will pass onR(E). Thus q should be counted as a symmetric-faulty processor. 2This and related alternative models of link faults, and other simple but asym-metric classes of communication faults, are interesting avenues for further work.7In the treatment used here, there is no advantage in a more restrictive model of communicationsfaults.



18 Chapter 3. The Algorithm OMHNumber of FaultsArbitrary (a) Symmetric (s) Manifest (c)1 1 01 0 20 2 00 1 20 0 5Table 3.1: Fault-Masking Capabilities of OMH(1) with n = 6(arbitrary) fault in this con�guration.4 Thambidurai, Park, and Trivedi [34] presentreliability analyses that show this increased fault tolerance indeed provides superiorreliability under plausible assumptions5. McElvany-Hugue has also studied the reli-ability of related algorithms under this fault model, reaching similar conclusions [14].In fact, our crash-only analysis above shows that OMH exhibits slightly greater faulttolerance than that assumed in these reliability analyses.3.6 Communications FaultsA disadvantage of most fault models for Interactive Consistency, including the oneused here, is that they attribute communications failure on a link connecting twoprocessors to one or other of the processors concerned.6 In the draconian fault-model of the original OM algorithm (i.e., all processors faults are Byzantine) thiscauses a communications fault on a link|a physical fault that may be consideredfairly likely, and relatively innocuous in its e�ects|to be counted as one of the mostdi�cult, and hopefully rare, of all faults.It is worth inquiring whether the hybrid model used here can be extended totreat communications faults as other than arbitrary processor faults. The problemin developing a hybrid fault model that includes communications faults as well asarbitrary processor faults, is that a communications fault does have the asymmetriccharacter of a Byzantine or arbitrary fault. If we introduce communications faultsas a new fault class, di�erent from arbitrary processor faults, then we must account4That is according to the classical analysis. As noted in the previous section, revised analysis ofOM(1) shows that it can actually withstand two simultaneous faults, provided at most one of themis arbitrary. The chief di�erence between OM and OMH is that OM does not distinguish manifestfaults from (other) symmetric ones.5Although Algorithm Z is awed, the analysis in [34] can be correctly applied to OMH6Perry and Toueg [26] presented an interactive-consensus algorithm for a fault model that admitscommunications failures, but that model does not consider Byzantine faults at all.



3.5. Bene�ts 17Theorem 2 If arbitrary and symmetric faults are not present, Algorithm OMH(m)satis�es conditions BGH1 and BGH2 provided there are more than m processors.3This theorem has been formalized and mechanically veri�ed. The formal prooffollows that of Theorem 1 closely, using analogous lemmas. However, here thereare only two cases to consider (good and manifest) whereas there are four in theprevious argument (good, manifest, symmetric, and arbitrary).When only symmetric faults are present, it is the algorithm, rather than itsgeneral analysis, that is less than optimal. Here, the additional rounds of messageexchanges are actively counterproductive in the cases m > 0 (compare n = 4, s = 2for the cases m = 0 and m = 1). Additional rounds of messages are the price paidfor overcoming arbitrary faults, and these seem to reduce the ability to deal withsymmetric faults. An interesting topic for future research is to investigate whetherthis trade-o� can be mitigated.When no manifest faults are present, Algorithm OMH becomes similar to thetraditional Algorithm OM. A related point was made in [33]: in the absence oferror values, hybrid majority is equivalent to majority. Thus the only substantivedi�erence between OMH and OM are the wrapper and unwrapper functions appliedto values. As discussed in Section 3.7 these functions may be identity on nonerrorvalues, in which case OMH becomes exactly OM in the absence of manifest errors.Thus the analysis above may be applied, showing that the traditional algorithmOM(m) can withstand more faults than is suggested by its standard analysis: infact, OM(m) satis�es conditions BGH1 and BGH2 if there are more than 2(a+s)+mprocessors, m � a, and manifest faults are counted as symmetric.3.5 Bene�tsRecall that OM achieves agreement and validity if there are more than three timesas many good processors as arbitrary-faulty processors (n > 3a). From the boundsgiven in Theorem 1, n > 2(a + s) + c +m and m � a, it may be seen that OMHachieves the same resilience to arbitrary faults if there are no symmetric-faulty ormanifest-faulty processors. Also, from Theorem 2, if a = s = 0, then all that isrequired is that n > r.While providing the same resilience to arbitrary or Byzantine faults, OMHachieves a higher degree of tolerance to other classes of faults than OM. Table 3.1indicates the di�erent numbers of simultaneous faults that a 6-plex can withstandusing OMH(1); for comparison, observe that OM(1) can withstand only a single3Of course, the conditions are somewhat vacuous if there are less than two good processors.



16 Chapter 3. The Algorithm OMHTheorem 1 For any m, Algorithm OMH(m) satis�es conditions BGH1 and BGH2if there are more than 2(a+ s) + c+m processors and m � a.Proof: The proof is by induction on m. In the base case m = 0 there can be noarbitrary-faulty processors, since m � a. If there are no arbitrary-faulty processorsthen the previous lemma ensures that OMH(0) satis�es BGH1 and BGH2. Wetherefore assume that the theorem is true for OMH(m�1) and prove it for OMH(m),m > 0.We next consider the case in which the transmitter is not arbitrary-faulty. ThenBGH2 is ensured by Lemma 1, and BGH1 follows from BGH2.Now consider the case where the transmitter is arbitrary-faulty. There are atmost a arbitrary-faulty processors, and the transmitter is one of them, so at mosta�1 of the receivers are arbitrary-faulty. Since there are more than 2(a+s)+c+mprocessors, there are more than 2(a+ s) + c+m� 1 receivers, and2(a+ s) + c+m� 1 > 2([a� 1] + s) + c+ [m� 1]:We may therefore apply the induction hypothesis to conclude that OMH(m � 1)satis�es conditions BGH1 and BGH2. Hence, for each q, any two nonfaulty re-ceivers get the same value for vq in step (3). (This follows from BGH2 if one of thetwo receivers is processor q, and from BGH1 otherwise). Hence, any two nonfaultyreceivers get the same vector of values v1; : : : ; vn�1, and therefore obtain the samevalue hybrid-majority(v1; : : : ; vn�1) in step (3) (since this value is functionally de-termined), thereby proving BGH1. 23.4 Extreme CasesAlthough a major improvement on OM, the number of faults that can be toleratedby OMH according to the analysis given above is not optimal in some of the extremecircumstances. In some cases, the algorithm is suboptimal; in others, the generalanalysis given above is too conservative. As an example of the latter, consider thecase where only manifest faults are present. In this case, the general analysis aboveindicates that the number of manifest faults that can be tolerated is n � m � 1:in other words, the greater the number of rounds, the fewer manifest faults thatcan be tolerated. In fact, alternative analysis shows that OMH(m) tolerates themaximum possible number of manifest-faulty processors when there are no arbitrarynor symmetric faults. The only constraint is that there must be more processors(whether faulty or not) than rounds (since otherwise some recursive instances wouldbe run on the empty set of processors).



3.3. Semiformal Analysis and Correctness Arguments 15Lemma 1 For any a, s, c and m, Algorithm OMH(m) satis�es BGH2 if there aremore than 2(a+ s) + c+m processors.Proof: The proof is by induction on m. BGH2 speci�es only what must happenif the transmitter is not arbitrary-faulty. In the base casem = 0, a nonfaulty receiverobtains the transmitter's value if the transmitter is nonfaulty. If the transmitter issymmetric-faulty the value obtained is the value actually sent. If the transmitter ismanifest-faulty the receiver obtains the value E. So the trivial algorithm OMH(0)works as advertised and the lemma is true for m = 0. We now assume the lemmais true for m� 1 (m > 0), and prove it for m.In step (1) of the algorithm, the transmitter e�ectively sends some value � to alln� 1 receivers. If the transmitter is nonfaulty, � will be v, the correct value; if it issymmetric-faulty, � is the value actually sent; if it is manifest-faulty, � is E. In anycase, we want all the nonfaulty receivers to decide on �.In step (2), each receiver applies OMH(m � 1) with n � 1 participants. Thosereceivers that are nonfaulty will apply the algorithm to the value R(�). Since byhypothesis n > 2(a + s) + c +m, we have n � 1 > 2(a + s) + c + (m � 1), so wecan apply the induction hypothesis to conclude that the nonfaulty receiver p getsvq = R(�) for each nonfaulty receiver q. Let c0 denote the number of manifest-faultyprocessors among the receivers. At most (a + s + c0) of the n � 1 receivers arefaulty, so each nonfaulty receiver p obtains a minimum of n� 1� (a+ s+ c0) valuesequal to R(�). Since there are c0 manifest-faulty processors among the receivers, anonfaulty receiver p also obtains a minimum of c0 values equal to E and, therefore,at most n � 1 � c0 values di�erent from E. The value R(�) will therefore win thehybrid-majority vote performed by each nonfaulty processor p, provided2(n� 1� (a+ s + c0)) > n� 1� c0;that is, providedn > 2(a+ s) + c0 + 1:Now, c0 � c, and 1 � m, so this condition is ensured by the constraintn > 2(a+ s) + c+m:Finally, UnR is applied to the result R(�), which results in �nal value �. 2



14 Chapter 3. The Algorithm OMH� Processors do not change fault status during the procedure; for example, ifa nonfaulty processor were to become manifest-faulty during this procedure,we would say that processor is arbitrary-faulty because it has e�ectively sentdi�erent values to other processors.� For all values v, R(v) 6= E. (Wrapped values are never mistaken for errors.)� For all values v, UnR(R(v)) = v. (Unwrapping a wrapped value results in theoriginal value.)Algorithm OMH must satisfy the Byzantine Generals conditions naturally ex-tended to the fault model described above.When the transmitter is symmetric-faulty, it is convenient to call the uniquevalue received by all nonfaulty receivers the value actually sent by the transmitter.BGH1: If processors p and q are nonfaulty, then they agree on the value ascribedto the transmitter; that is, �p = �q .BGH2: If processor p is nonfaulty, the value ascribed to the transmitter by p is� The correct value v, if the transmitter is nonfaulty,� The value actually sent, if the transmitter is symmetric-faulty,� The value E, if the transmitter is manifest-faulty.The argument for the correctness of OMH is an adaptation of that for the Byzan-tine Generals formulation of OM [17, page 390]. We de�ne� n, the number of processors,� a, the maximum number of arbitrary-faulty processors the algorithm is totolerate,� s, the maximum number of symmetric-faulty processors the algorithm is totolerate,� c, the maximum number of manifest-faulty processors the algorithm is totolerate,2� m, the number of rounds the algorithm is to perform.2We cannot use m for the number of manifest-faulty processors, because the parameter m istraditionally used for the number of rounds (although Thambidurai and Park use r). The symbolc can be considered a mnemonic for \crashed," which is one of the failures that can generatemanifest-faulty behavior.



3.3. Semiformal Analysis and Correctness Arguments 13correctly by OMH, because the nonfaulty receivers in OMH(1) each receive a singleE from the transmitter, which they pass on to the other receivers and themselves asR(E). The values thus voted on include three R(E)s and an arbitrary value (fromthe arbitrary-faulty receiver). All nonfaulty receivers therefore select R(E) as themajority value. After stripping one R from this value, the result correctly identi�esthe transmitter as manifest-faulty. In short, OMH incorporates the diagnosis ofmanifest faults into the agreement algorithm.The Hybrid Oral Messages Algorithm OMH(m) is de�ned more formally below,and completely formally in Chapter 4.1:OMH(0)1. The transmitter sends its value to every receiver.2. Each receiver uses the value received from the transmitter, or usesthe value E if a missing or manifestly erroneous value is received.OMH(m), m > 01. The transmitter sends its value to every receiver.2. For each p, let vp be the value receiver p obtains from the transmit-ter, or E if no value, or a manifestly bad value, is received.Each receiver p acts as the transmitter in Algorithm OMH(m�1) tocommunicate the value R(vp) to all of the n�1 receivers, includingitself.3. For each p and q, let vq be the value receiver p received from re-ceiver q in step (2) (using Algorithm OMH(m� 1)), or else E if nosuch value, or a manifestly bad value, was received. Each receiverp calculates the majority value among all non-error values vq re-ceived, (if no majority exists, the receiver uses some arbitrary, butfunctionally determined value) and then applies UnR to that value,using the result as the transmitter's value.3.3 Semiformal Analysis and Correctness ArgumentsWe make explicit a few unsurprising technical assumptions:� All processors are either nonfaulty, arbitrary-faulty, symmetric-faulty, ormanifest-faulty. (Any fault not otherwise classi�ed is considered arbitrary.)



12 Chapter 3. The Algorithm OMH(consider the case n = 6, m = 2 when there is a nonfaulty transmitter and threemanifest-faulty receivers).A repair to this di�culty might be to return the value E whenever the majorityvote yields the value RE. This modi�cation has the problem that receivers cannotdistinguish a manifest-faulty receiver from a nonfaulty one reporting that another ismanifest-faulty (consider the case n = 4,m = 1, all the processors are nonfaulty, andthe transmitter is trying to send RE|as can arise in recursive cases when m > 1).Like Thambidurai and Park did for Algorithm Z, we produced rather convincing,but nonetheless awed, informal \proofs of correctness" for these erroneous repairsto Algorithm Z. Eventually, the discipline of formal veri�cation (where one mustdeal with the implacable skepticism of a mechanical proof checker and is eventuallyforced to confront overlooked cases and unstated assumptions) enabled us to developa genuinely correct algorithm for this problem.Our new algorithm, OMH (for \Oral Messages, Hybrid"), is somewhat relatedto the last of the modi�cations to Algorithm Z indicated above, but recognizes thata single \reported error" value is insu�cient. OMH employs two functions R andUnR that act as a \wrapper" and an \unwrapper" for error values.The basic idea of OMH is that at each round, the processors do not forwardthe actual value they received. Instead, each processor sends a value correspondingto the statement \I'm reporting value." One can imagine that after several rounds,messages corresponding to \I'm reporting that he's reporting that she's reporting anError value" arise. This wrapper is only required for error values, but for simplicitywe assume that the functions R and UnR are applied to all values. Alternatives tothis are explored in Section 3.7. This leaves the following intuitive picture of thealgorithm.Proceed as in the usual OM Byzantine agreement algorithm presented above,with the following exceptions. Add a distinguished error value E, and two functionson values R and UnR. When a manifestly bad value is received, temporarily recordit as the special value E.When passing along a value received from the transmitter or incorporating it intothe local majority vote, apply R, standing for \I report: : :" to the value. Discardall E values (received from other receivers) before voting, but treat all other errorvalues (R(E), R(R(E)), etc.) as normal, potentially valid values during voting.After voting, apply UnR (strip o� one R) before returning the value.The key idea here is that in Z and related algorithms there is a confusion aboutwhich processors have manifest faults: if there is only one error value, E, howcan a processor distinguish between a manifest-faulty receiver and a good receiverreporting a bad value (or the lack of a value) from a manifest-faulty transmitter? Thecounterexample to Algorithm Z given above exploits this confusion, but it is handled



3.2. Repairing Algorithm Z 11� Completely unconstrained, if the transmitter is arbitrary-faulty.Note that it is not necessary to de�ne the value received by a faulty receiver,because such receivers may send values completely unrelated to their inputs. Alsonote that manifest faults must be symmetric. If a processor were to \crash" duringthis protocol (or if some of its outgoing links are broken, or if it is early or latetransmitting on some links), it would have to be counted as arbitrary-faulty, sincedi�erent good receivers may obtain di�erent values|even though the values sentare either correct or identi�ably bad. It is possible to treat such cases as a new classof faults, which, depending on practical considerations, may be an interesting areafor future research (see Section 3.6).3.2 Repairing Algorithm ZIt seems that the aw in Algorithm Z stems from the fact that it does not distinguishbetween values received frommanifest-faulty processors and the report of such valuesreceived from nonfaulty processors; the single value E is used for both cases. Thus,a plausible repair for Algorithm Z introduces an additional distinguished value RE(for Reported Error); when a manifestly faulty value is received, the receiver notes itas E, but passes it on as RE; if an RE is received, it is noted and passed on as such.Only E values are discarded when the majority vote is taken. In the counterexampleto Algorithm Z given above, the nonfaulty receivers in this modi�ed algorithm willeach interpret the value received from the transmitter as E, and pass it on to theother receivers as RE. In their majority votes, each nonfaulty receiver has a singleE (from the transmitter), which it discards, two REs (from the other nonfaultyreceivers), and an arbitrary value (from the faulty receiver). All will therefore selectRE as the value ascribed to the transmitter.Unfortunately this modi�ed algorithm has two defects. First, a receiver thatobtains a manifest-faulty value from the transmitter notes it as E, but passes it onas RE. Thus, this receiver will omit the value from its majority vote, but the otherswill include it (as RE). This asymmetry can be exploited by an arbitrary-faultytransmitter to force the receivers into disagreement (consider an arbitrary-faultytransmitter and three nonfaulty receivers, where the transmitter sends the valuesE, RE, and a normal value).It therefore seems that receivers must distinguish between an E received fromthe transmitter (which must be treated locally as RE and passed on as such), andone received from another receiver (which can be discarded in the majority vote).This repair �xes one problem, but leaves the other: the value ascribed to a manifestfaulty transmitter is not E, but RE. This might seem a small inconvenience, butit causes the algorithm to fail when m, the number of rounds, is greater than 1



Chapter 3The Algorithm OMHOMH is our new algorithm for Interactive Consistency under a hybrid fault model.In this chapter, we present the fault model, the algorithm, and its correctness prop-erties semiformally; the mechanically-checked formal speci�cation and veri�cationare described in the next chapter.3.1 Hybrid Fault ModelOur fault model is that of Thambidurai and Park, but with the cases renamed|we�nd the anthropomorphism in terms such as \malicious faults" unhelpful.The fault modes we distinguish for processors are arbitrary-faulty , symmetric-faulty , and manifest-faulty (also called crash-faulty). (These correspond to Tham-bidurai and Park's asymmetric malicious, symmetric malicious, and nonmaliciousfaults, respectively.) Of course, we also need a class of good (also called nonfaulty)processors. We specify these fault modes semiformally as follows (the formal char-acterizations are presented in the following chapter).When a transmitter sends its value v to the receivers, the value obtained by anonfaulty receiver p is:� v, if the transmitter is nonfaulty� E, if the transmitter is manifest-faulty1� Unknown, if the transmitter is symmetric-faulty, but all receivers obtain thesame value,1Some preprocessing of timeouts, parity and \reasonableness" checks, etc. may be necessaryto identify manifestly faulty values. The intended interpretation is that the receiver detects theincoming value as missing or bad, and then replaces it by the distinguished value E.10



2.4. Algorithm Z 9is that their Lemma 1 (all nonfaulty receivers get the correct value of a nonfaultytransmitter) fails to consider the case where the value sent by the transmitter is E.This can arise in recursive instances of the algorithm when nonfaulty receivers arepassing on the value received from a faulty source. Further thought soon revealsthat not only is the proof awed, but the algorithm is incorrect: even systems withlarge numbers of processors may fail with only two faulty components.The simplest counterexample comprises �ve processors in which the transmitterhas a nonmalicious fault, one of the receivers has an asymmetric malicious fault,and the algorithm is Z with one round (i.e., n = 5; a = 1; s = 0; b = 1; m = 1).All the nonfaulty receivers note E as the value received from the transmitter, andrelay the value E to all the other receivers. The faulty receiver sends a di�erent(non-E) value to each of the nonfaulty receivers. Each nonfaulty receiver then hasthree E values, and one non-E value; because E values are discarded in the majorityvote, each nonfaulty receiver selects the value received from the faulty receiver asthe value sent by the transmitter. Since these values are all di�erent, the algorithmhas failed to achieve agreement among the nonfaulty receivers. Observe that thisscenario is independent of the number of receivers (provided there are more thanthree of them|two that should agree and one that is faulty), so the problem is notdue to an inadequate level of redundancy.



8 Chapter 2. Requirements, Assumptions, and the Algorithms OM and Z3. For each p, and each q 6= p, let vq be the value receiver p ob-tained from receiver q in step (2) (using Algorithm OM(m� 1)), orelse some arbitrary, but �xed, value if nothing was received. Eachreceiver p calculates the majority value among all values vq it re-ceives, and uses that as the transmitter's value (or some arbitrary,but �xed, value if no absolute majority exists).The correctness of this algorithm (that it achieves BG1 and BG2 under certainassumptions) was proven in [17, page 390] and mechanically checked in [1, 27].2.4 Algorithm ZThambidurai and Park's Algorithm Z is a modi�cation of OM intended to operateunder their hybrid fault model described earlier. The di�erence between OM and Zis that the latter has a distinguished \error" value, E. Any processor that receives amissing or manifestly bad value replaces that value by E and uses E as the value thatit passes on in the recursive instances of the algorithm. The majority voting thatis required in OM, is replaced in Z by a majority vote with all E values eliminated.Thambidurai and Park claim that an m-round implementation of Algorithm Z canwithstand a + s + b simultaneous faults, where a is the number of asymmetricmalicious faults, s the number of symmetric malicious faults, and b the number ofnonmalicious faults, provided a � m, and n, the number of processors, satis�esn > 2a+ 2s+ b+m. In the case of no symmetric malicious or nonmalicious faults(i.e., Byzantine faults only), we have m = a and s = b = 0, so that n > 3m and thealgorithm provides the same performance as the classical Oral Messages algorithm.We and our colleagues at SRI have undertaken mechanically checked formal ver-i�cations for a number of fault-tolerant algorithms, including OM [27], and haveidenti�ed de�ciencies in some of the previously published analyses (though not inthe algorithms|see, for example [24,29,30]). Any changes to the established algo-rithms for Interactive Consistency must be subjected to intense scrutiny, for errorsin these algorithms are single points of failure in any system that employs them.Changes that widen the classi�cation of faults considered are likely to increase thecase analysis, and hence the complexity and potential fallibility of arguments forthe correctness of modi�ed algorithms. We therefore considered Thambidurai andPark's Algorithm Z an interesting candidate for formal veri�cation.We began our attempt to formally verify Algorithm Z by studying the proofof its correctness provided by Thambidurai and Park [33, pages 96 and 97]. Thisproof follows the outline of the standard proof for OM [17, page 390] quite closely.However, we soon found that Thambidurai and Park's proof is simultaneously morecomplicated than necessary and awed in several details. The most serious fault



2.2. Assumptions 72.2 AssumptionsThe principal di�culty that must be overcome by a Byzantine Generals algorithmis that the transmitter may send di�erent values to di�erent receivers, thereby com-plicating satisfaction of condition BG1. To overcome this, algorithms use several\rounds" of message exchange during which processor p tells processor q what valueit received from processor r and so on. Under the \Oral Messages" assumptions,the di�culty is compounded because a faulty processor q may \lie" to processorr about the value it received from processor p. More precisely, the Oral Messagesassumptions are the following.A1: Every message that is sent between nonfaulty processors is correctly delivered.A2: The receiver of a message knows who sent it.A3: The absence of a message can be detected.In the classical Byzantine Generals problem, there are no constraints at all onthe behavior of a faulty processor.2.3 Algorithm OMLamport, Shostak, and Pease's Algorithm OM solves the Byzantine Generals prob-lem under the Oral Messages assumption. The algorithm is parameterized bym, thenumber of rounds of message exchanges performed. OM(m) can withstand up to mfaults, provided n > 3m, where n is the total number of processors. The algorithmis described recursively; the base case is OM(0).OM(0)1. The transmitter sends its value to every receiver.2. Each receiver uses the value obtained from the transmitter, or somearbitrary, but �xed, value if nothing is received.Now we can describe the general case.OM(m), m > 01. The transmitter sends its value to every receiver.2. For each p, let vp be the value receiver p obtains from the transmit-ter, or else be some arbitrary, but �xed, value if it obtains no value.Each receiver p acts as the transmitter in Algorithm OM(m� 1) tocommunicate its value vp to each of the n� 2 other receivers.



Chapter 2Requirements, Assumptions,and the Algorithms OM and ZAlthough the problem of real practical interest is Interactive Consistency, all thealgorithms we consider are presented here in their Byzantine Generals formulation,since this appears simpler in informal presentations. The relationship between In-teractive Consistency and the Byzantine Generals Problem is examined in [27].2.1 RequirementsIn the Byzantine Generals formulation of the problem, there are n participants,which we call \processors." A distinguished processor, which we call the transmitter ,possesses a value to be communicated to all the other processors, which we call thereceivers .1 There are n processors in total, of which some (possibly including thetransmitter) may be faulty. The transmitter's value is denoted v and the problemis to devise an algorithm that will allow each receiver p to compute an estimate �pof the transmitter's value satisfying the following conditions:BG1: If receivers p and q are nonfaulty, then they agree on the value ascribed tothe transmitter|that is, for all nonfaulty p and q, �p = �q .BG2: If the transmitter is nonfaulty, then every nonfaulty receiver computes thecorrect value|that is, for all nonfaulty p, �p = v.Conditions BG1 and BG2 are sometimes known as \Agreement" and \Validity,"respectively.1Lamport, Shostak, and Pease [17] speak of a \Commanding General" and of \Lieutenant Gen-erals" where we say transmitter and receivers. 6



1.1. Related Work 5fault-tolerant architectures. However, our interest is less in the algorithms them-selves, and more in the use of mechanically-checked formal methods as a systematicand rigorous means to analyze these algorithms, to identify all the assumptions onwhich they depend, to detect and help correct errors in their formulation, and toprovide compelling arguments for their correctness. From this point of view, algo-rithms for hybrid fault models are particularly interesting because of their subtlety,and the extended case analysis required in their analysis. As with other algorithmswhere we have discovered errors in published analyses [28], our corrections are tech-nical adjustments (though quite radical in the case of the algorithm considered here)that build on the insights, algorithms, and analyses of the original authors.



4 Chapter 1. Introductiongood value is sent to some receivers and manifestly bad values are sent to all others,then the sender is considered asymmetric malicious in this taxonomy.Thambidurai and Park present a variant on the classical Oral Messages algorithmthat retains the e�ectiveness of that algorithm with respect to arbitrary faults, butthat is also capable of withstanding more faults of the other kinds considered.6In a later paper, Thambidurai, Park, and Trivedi [34] present reliability analysesthat show this increased fault tolerance indeed provides superior reliability underplausible assumptions. McElvany-Hugue has also studied the reliability of relatedalgorithms under this fault model, reaching similar conclusions [14].Unfortunately, Thambidurai and Park's algorithm (which they call AlgorithmZ) has a serious aw and fails in quite simple circumstances. In this report, wedescribe the aw, and explain how straightforward attempts to repair it also fail.We then present a correct algorithm for the problem of Interactive Consistencyunder a hybrid fault model and present a proof of its correctness. Thambidurai andPark presented a proof of correctness for their awed algorithm, and we have alsodeveloped some rather convincing \proofs" ourselves for other incorrect algorithmsfor this problem. Accordingly, we have developed a mechanically checked formalveri�cation for our algorithm using the PVS veri�cation system [22]. (In fact, all thiswork grew out of the attempt to formally verify their Algorithm Z.) We describe thisformal veri�cation and show that it is not particularly di�cult. Because informalproofs seem unreliable in this domain, and the consequences of failure could becatastrophic, we argue that formal veri�cation should become routine.1.1 Related WorkHybrid fault models were �rst introduced for the MAFT architecture, developedat Allied-Signal's Aerospace Technology Center [15]. MAFT provides a rich setof fault-tolerant mechanisms and services, including clock synchronization (bothsteady-state and startup), interactive consistency with both exact and approxi-mate agreement, and sophisticated error detection and recon�guration [35]. Theinteractive-consistency algorithm employed in MAFT apparently does not su�erfrom the problem we identi�ed in Algorithm Z, and Michelle McElvany Hugue andothers at Allied Signal have developed corrected versions of Algorithm Z and proofsof correctness that are similar to ours.The reason we selected hybrid fault models and their algorithms for study is thatthese seem among the most interesting and useful directions in current research for6Meyer and Pradhan [21] consider a fault model that, in Thambidurai and Park's taxonomy,comprises only asymmetric malicious and benign faults. Their algorithm is derived from the algo-rithm of [11] and, like the parent algorithm, is not particularly suitable for the cases of practicalinterest (i.e., m = 1, or possibly m = 2, n less than 10).



3(each channel in turn taking the role of the Commander), so there is no disadvan-tage to considering the Byzantine Generals formulation. See [27] for more extendeddiscussion of this topic.Lamport, Pease, and Shostak presented algorithms for solving the ByzantineGenerals problem. The principal di�culty to be overcome in such algorithms ispossibly asymmetric behavior on the part of faulty channels: such a channel mayprovide one value to a second channel, but a di�erent value to a third, thereby mak-ing it di�cult for the recipients to agree on a common value. Byzantine Generalsalgorithms overcome the possibility of faulty channels exhibiting asymmetric behav-ior by using several rounds of message exchange during which channel p tells channelq what value it received from channel r and so on. The precise form of the algorithmdepends on assumptions about what a faulty channel may do when relaying such amessage; under the \Oral Messages" assumption, there is no guarantee that a faultychannel will relay messages correctly. This corresponds to totally arbitrary behaviorby faulty channels: not only can a faulty channel provide inconsistent data initially,but it can also relay data inconsistently.5Using m+1 rounds of message exchanges, the Oral Messages algorithm of Lam-port, Shostak, and Pease [17], which we denote OM(m), can withstand up to marbitrary faults, provided n, the number of channels, satis�es n > 3m. The boundn > 3m is optimal: Pease, Shostak, and Lamport proved that no algorithm based onthe Oral Messages assumptions can withstand more arbitrary faults than this [25].However, as we have already noted, OM(m) is not optimal when other than ar-bitrary faults are considered: other algorithms can withstand greater numbers ofsimpler faults for a given number of channels than OM(m).We are not the �rst to make these observations. Thambidurai and Park [33] andMeyer and Pradhan [20,21] have considered Interactive Consistency algorithms thatresist multiple fault classes. Thambidurai and Park's \Uni�ed" model divides faultsinto three classes: nonmalicious (or benign), symmetric malicious, and asymmetricmalicious. A nonmalicious fault is one that produces detectably missing values (e.g.,timing, omission, or crash faults), or that produces a \self-incriminating" value thatall nonfaulty recipients can detect as bad (e.g., it fails checksum or format tests). Amalicious fault is one that yields a value that is not detectably bad (i.e., it is a wrong ,rather than a missing or manifestly corrupted, value). A symmetric malicious faultdelivers the same wrong value to every nonfaulty receiver; an asymmetric maliciousfault delivers (possibly) di�erent wrong values (or missing or detectably bad values)to di�erent nonfaulty receivers. The classical arbitrary or Byzantine fault is anasymmetric malicious fault in this classi�cation. Note that a nonmalicious faultmay be asymmetric in that di�erent detectably bad values may be sent, but if a5Under the \signed messages" assumption (which can be satis�ed using digital signatures), analtered message can be detected by the recipient.



2 Chapter 1. IntroductionInclusion of the arbitrary fault mode (i.e., faults whose behaviors are entirely un-constrained) eliminates the fear that some unforeseen mode may defeat the fault-tolerance mechanisms provided, while inclusion of other fault modes allows greaterresilience to be achieved for faults of these kinds than with a classical Byzantinefault-tolerant architecture.Our interest is architectures for digital ight-control systems, where fault-masking behavior is required to ultra-high levels of reliability. This means thatnot only must stochastic modeling show that adequate numbers and kinds of faultsare masked to satisfy the mission requirements, but that convincing analytical ev-idence must attest to the soundness of the overall fault-tolerant architecture andto the correctness of the design and implementation of its mechanisms of faulttolerance.3 Such a rational design for a \reliable computing platform" suitable forultra-critical applications was established in the late 1970s and early 1980s by theSIFT architecture [36]: the system workload is executed by several independentchannels operating in approximate synchrony, and results are subjected to majorityvoting. If all channels execute identical workloads on identical data, then majorityvoting is su�cient to mask arbitrary channel failures. However, majority votingis not su�cient to mask arbitrary failures in the distribution of single-source data(such as sensor samples) [25], nor in clock synchronization [16].In this report, we focus on algorithms for reliably distributing single-source datato multiple channels in the presence of faults. This problem, known as \Interac-tive Consistency" (although sometimes called \source congruence"), was �rst posedand solved for the case where faulty channels can exhibit arbitrary behavior byPease, Shostak, and Lamport [25] in 1980.4 Interactive Consistency is a symmet-ric problem: it is assumed that each channel has a \private value" (e.g., a set ofsensor samples) and the goal is to ensure that every nonfaulty channel achievesan accurate record of the private value of every other nonfaulty channel. In 1982,Lamport, Shostak, and Pease [17] presented an asymmetric version of InteractiveConsistency, which they called the \Byzantine Generals Problem"; here, the goal isto communicate a single value from a designated channel called the \CommandingGeneral" to all the other channels, which are known as \Lieutenant Generals." Theproblem of real practical interest is Interactive Consistency, but the metaphor ofthe Byzantine Generals has proved so memorable that this formulation is betterknown; it can also be easier to describe algorithms informally using the ByzantineGenerals formulation, although the balance of advantage can be reversed in trulyformal presentations [27]. An algorithm for the Byzantine Generals problem can beconverted to one for Interactive Consistency by simply iterating it over all channels3There are examples where unanticipated behaviors of the mechanisms for fault tolerance becamethe primary source of system failure [18].4Davies and Wakerley had anticipated some of the issues a few years earlier [9].



Chapter 1IntroductionFault-tolerant systems are designed and evaluated against explicit assumptions re-garding the kinds and numbers of faults they are to tolerate. \Fault models," whichenumerate the assumed behaviors of faulty components, range from those that iden-tify many highly speci�c modes of failure, to those that comprise just a few broadclasses. The advantage of a very detailed fault model is that the mechanisms of faulttolerance can be �nely tuned to deliver maximum resilience from a given level of re-dundancy; the corresponding disadvantages are that an overlooked fault mode maycause unexpected failure in operation, and the need to counter many fault modescan lead to a complex design|which may itself be a source of faults.In contrast to designs that consider many fault modes are those that make noassumptions whatsoever about the behavior of faulty components. The advantageof such \Byzantine" fault-tolerant designs is that they cannot be defeated by un-expected failure modes; their disadvantage is that all faults are treated as \worstcase," so that large levels of redundancy tolerate relatively few faults. For example,a conventional Byzantine fault-tolerant architecture requires 3m+1 channels to tol-erate m simultaneous faults of any kind within some of its functions [25,1]. Thus, a4-plex is needed in order to withstand a single fault,1 and 5- and 6-plexes provide noadditional bene�t (in fact the additional channels will increase the fault arrival rateand thereby lower overall reliability).2 This seems counterintuitive, since it is clearthat suitably organized 5- and 6-plexes can withstand more faults, of some kinds,than a 4-plex.These observations motivate the study of fault-tolerant architectures and al-gorithms with respect to hybrid fault models that include the Byzantine, or \ar-bitrary," fault mode, together with a limited number of additional fault modes.1Single fault tolerance can also be provided by architectures such as Draper Laboratory's FTP,which uses only three full processors plus three simpler \interstages" [13].2If the system can be recon�gured following a fault, then a �fth and sixth channel can increasereliability if used as standby spares|but they serve no purpose as live channels.1
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AbstractConsistent distribution of single-source data to replicated comput-ing channels is a fundamental problem in fault-tolerant system design.The \Oral Messages" (OM) algorithm of Lamport, Shostak, and Peasesolves this problem of Interactive Consistency (also known as SourceCongruence or Byzantine Agreement) in the presence of m arbitrary(i.e., Byzantine) Faults, using m + 1 rounds of message exchange andn > 3m channels.A de�ciency of OM and similar algorithms is that all faults are as-sumed to exhibit worst-case (i.e., arbitrary) behavior, so that the algo-rithm can tolerate no more \simple" faults than truly Byzantine ones. Toovercome this de�ciency, Thambidurai and Park introduced a \hybrid"fault model that distinguished three fault modes: asymmetric (Byzan-tine), symmetric, and benign; they also exhibited, along with an infor-mal \proof of correctness," a modi�ed version of OM that withstandsa asymmetric, s symmetric, and b benign faults simultaneously, usingm+ 1 rounds, provided n > 2a+ 2s+ b+m, and m � a.Unfortunately, this algorithm is awed; it fails, for example, in thecase n = 5; m = 1 when the transmitter has a benign fault and one of thereceivers is Byzantine. We detected this aw while undertaking a for-mal veri�cation of the algorithm using our PVS mechanical veri�cationsystem. Repairing this algorithm is not easy. We developed an incorrectversion ourselves, and even \proved" it correct using ordinary, informalmathematics.The discipline of mechanically checked formal veri�cation eventuallyenabled us to develop a correct algorithm for Interactive Consistencyunder the hybrid fault model. We present this algorithm, discuss itssubtle points, and describe its formal speci�cation and veri�cation. Be-cause informal proofs seem unreliable in this domain, and because theconsequences of failure could be catastrophic, we believe formal veri�ca-tion should become standard for algorithms intended for safety-criticalapplications. We argue that formal veri�cation systems such as PVS arenow su�ciently e�ective that their application to such problems may beconsidered routine.Keywords: interactive consistency, Byzantine agreement, hybrid faultmodels, formal veri�cation. iii
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