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Abstract separate sessions in order to confuse honest particigants.

variety of methods have been developed for analyzing and
Formal analysis of security protocols is largely based on a reasoning about security protocols. Most current formal
set of assumptions commonly referred to as the Dolev-Yacapproaches use the so-called Dolev-Yao model of adver-
model. Two formalisms that state the basic assumptions ofsary capabilities, which appears to be drawn from positions
this model are related here: strand spaces [6] and multiset taken in [9] and from a simplified model presented in [4].
rewriting with existential quantification [2, 5]. Although The two basic assumptions of the Dolev-Yao model, perfect
is fairly intuitive that these two languages should be equiv  (black-box) cryptography and a nondeterministic adversar
lent in some way, a number of modifications to each systenprovide an idealized setting in which protocol analysis be-
are required to obtain a meaningful equivalence. We ex- comes relatively tractable.
tend the strand formalism with away of incrementally grow-  one recent setting for stating the basic assumptions
ing bundles in order to emulate an execution of a protocol of the Dolev-Yao model is given by strand spaces [6, 7,
with parametric strands. We omit the initialization part of 8]. Strand spaces provide a way of presenting informa-
the multiset rewriting setting, which formalizes the cloic  tjon about causal interactions among protocol participant
of initial data, such as shared public or private keys, and Rroyughly, a strand is a linearly ordered sequence of events
which has no counterpart in the strand space setting. The 5t represents the actions of a protocol participant. A
correspondence between the modified formalisms directlygrang space is a collection of strands, equipped with agrap
relaf[es the intruder theory from the multiset rewriting-for  grycture generated by causal interaction. Strand spaces
malism to the penetrator strands. provide a simple and succinct framework for state-based
analysis of completed protocol runs. State space reduction
techniques based on the strand space framework are utilized

1 Introduction in an efficient automated checker, Athena [10].

Protocol transitions may also be naturally expressed as
a form of rewriting. This observation may be sharpened
to a rigorous, formal definition of the Dolev-Yao model
by means of multiset rewriting with existential quantifi-
cation [2, 5]. In this framework protocol execution may
be carried out symbolically. Existential quantificatiors, a
commonly used in formal logic, provides a natural way of
choosing new values, such as new keys or nonces. Multiset
rewriting provides a very precise way of specifying segurit

Security protocols are widely used to protect access to
computer systems and to protect transactions over the Inter
net. Such protocols are difficult to design and analyze for
several reasons. Some of the difficulties come from sub-
tleties of cryptographic primitives. Further difficultiasise
because security protocols are required to work properly
when multiple instances of the protocol are carried out in
parallel, where a malicious intruder may combine data from

*Partﬁ"y supported by DoD MURI “Semantic Conbsistency ifofma- protocols and has been incorporated into a high-level spec-
tion Exchange” as ONR Grant N00014-97-1-0505, by NSF GradiR- Pt ot

9509931, CCR-9629754 and CCR-9800785, and by NRL underamint ffication Iangue}ge for authentication protocols, _CAPSL [3]
N0014-96-D2024 to various authors. As presented in [2, 5], a protocol theory consists of three

TThe original version of this paper was published in the Pedieys of parts: a bounded phase describing protocol initialization
the Thirteenth IEEE Computer Security Foundations Works(fo Syver- that distributes keys or establishes other shared infoomat

son, editor), pp. 35-51, IEEE Computer Society Press, Cilgéar UK ; ; ; ;
3-5 July 2000. Subsequent research revealed an error in berim This a role generation theory that designates possibly multiple

version corrects the error and propagates the resultinggeisa while re- rples that each principal may play in.a_ p_r0t009| (such as ini-
maining as close as possible to the spirit of the originaepap tiator, responder, or server), and a disjoint union of baghd
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subtheories that each characterize a possible role. The multheirmultiset uniondenoted M, N”. The elements we will

tiset rewriting formalism allows us to formulate one stan- consider here will be first-order atomic formuldst) over

dard intruder theory that describes any adversary for anysome signature.

protocol. In its simplest form, anultiset rewrite rule- is a pair of
One would expect that strand spaces and multiset rewrit-multisets ¥ and G, respectively called iteintecedenand

ing should be equivalent in some way. However, a mean-consequentWe will consider a slightly more elaborate no-

ingful equivalence may be obtained only after a number of tion in which F and G are multisets of first-order atomic

modifications are made in each setting. To this end, we ex-formulas with variables among We emphasize this aspect

tend the strand space setting by introducing several dymami by writing them asF'(#) andG(Z). Furthermore, we shall

concepts that describe the evolution of parametric strasds be able to mark variables in the consequent so that they are

an execution of a protocol unfolds. In particular, we présen instantiated to fresiH' constants, that have not previously

a formalized notion of parametric strands and we describebeen encountered, even if the rule is used repeatedly. A rule

a way of incrementally growing strand space bundles in or- assumes then the form

der to emulate an execution of a protocol with parametric

strands. In addition to contributing to the understandihg o r: F(&) — 3. G(Z, 1)

the strand space setting, these extensions make possble th

comparison with multiset rewriting specifications. In arde Wherer is a label anddii indicates that the constanis

to obtain a precise equivalence, we also must drop the ini-ought to be fresh. Anultiset rewriting systerfk is a set

tialization part of the multiset rewriting formalism, wiic ~ Of rewrite rules.

specifies the choice of initial conditions. In many protacol Rewrite rules allow transforming a multiset into another

the initial conditions specify generation of fresh sharedp ~ Multiset by making localized changes to the elements that

lic or private keys. The initialization phase generatiresfr ~ appear in it. Given a multiset of ground fact$, a rule

initial data has no counterpart in the strand space setting” : F(#) — 3ii. G(#,1) is applicableif M = F (), M’,

We also anticipate the validation of variable instantiasio ~ for termsi. Then, applyingr to M yields the multiset

to the very beginning of the execution of a role. After these IV = G(t. ¢), M" where the constangare fresh (in particu-

modifications, there is a straightforward and direct corre- lar, they do notappear ii/), ¥ andsi have been instantiated

spondence between strand spaces and multiset rewriting¥ith 7 and@respectively, and the facts(7) in M have been

theories. Moreover, the correspondence directly relates t replaced withG(¢, ¢) to produceN. We denote the appli-

intruder theories from the multiset rewriting formalism to cation of a single rule and of zero or more rewrite rules by

penetrator strands. We believe that the investigationef th means of th@ne-ste@ndmultistep transitiojudgments:

exact nature of the relationship between the two formalisms ) -

deepens our understanding of the Dolev-Yao model and can M—gN M-—3rN

suggest extensions and refinements to these and other spec- ) . . .
ification languages based on strand spaces. respectively. The labelsands identify which rule(s) have

The multiset rewriting formalism is discussed in Sec- been applied and the termisised to instantiaté. Thus,f

tion 2. In section 3, we discuss strand spaces and presen?Cts as a complete trace of the execution.
our extensions. The translation from multiset rewriting to .
strand spaces is presented in Section 4. The translation fro 2-2 Protocol Theories
strand spaces to multiset rewriting is presented in Seétion

We model protocols by means of specifically tailored
multiset rewriting systems. We present here a simplified
version of the model introduced in [2, 5]. A fragment suf-
ficient for a comparison with the strand formalism will be
introduced in Section 2.3. However, we refer the interested
reader to these presentations and to [1] for a more detailed
account. We rely upon the following atomic formulas:

2 Multiset Rewriting Theories

In Section 2.1 we recall a few multiset rewriting con-
cepts, and, in Section 2.2, we apply them to the specifica-
tion of cryptoprotocols. Regular protocol theories, aliert
restriction, are introduced in Section 2.3.

Persistent information: Data such as the identity of prin-

2.1 Multiset Rewriting cipals and their keys often constitute the stage on
which the execution of a protocol takes place, and does
A multisetM is an unordered collection of objectselr not change as it unfolds. We will represent and access
ementspossibly with repetitions. Thempty multisetioes this persistent informatiorthrough a fixed set gber-
not contain any object and will be written”* We accu- sistent predicatethat we will indicate using a slanted
mulate the elements of two multiset$ and N by taking font (e.g.KeyP, as opposed ti).
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Fao : ma(A, B) — Ao(A, B), ma(A, B)

rai : Ao(A,B) — ENA 1(14 B NA) ({NA,A}KB)

rpg : A1(A,B,NA), N({NA,NB}KA) — AQ(A B NA NB)

ras : AQ(A,B,NA,NB) — A‘;(A B NA JVB)7 N({NB}KB)
Bob

rgo : WB(A,B) Bo( ), WB(A,B)

rB1 : Bo(A4,B), N({Na, A}kyp) Bi(A,B,Na)

g2 : Bl(A,B,NA) Z(A B NA NB) ({NA,NB}KA)

(

rga : BQ(A,B,NA,NB), N({NB}KB) B3 A B NA NB)

Ll
;ﬁ

where 7wa(A, B)
ms(B, A)

Pr(A), (A,

A K Y, Pr(B), PubK(B, Kg)
Pr(B), PrvK(B, K

5'), Pr(A), PubK(A,K4)

Figure 1. Multiset Rewriting Specification of the Needham-S chroeder Protocol

In [2, 5], we described the choice of the persistent data sage — useful for intrusion detection). We simply

by means of a set of multiset rewrite rules of a spe- need to alter our naming convention for role states and
cific form, that we called thaitialization theory We rules (below) to take alternatives into account. Indeed,
showed that the application of these rules can be con- any partial ordering of the role state predicates will
fined to an initialization phase that precedes the exe- implement awell-founded protocol theoryas defined
cution of any other rule. Lell be the resulting set in[2, 5]. This paper will consider only linearly ordered
of ground facts (constraints on the initialization theory role states, as the layer of technicality required to treat
preventlIl from containing duplicates [2, 5]). Strand the general case would obscure the comparison with

constructions assume instead that the persistent infor- strands.
mation is given as a set. We reconcile the two ap-
proaches by dropping the explicit initialization phase
of [2, 5] and assumingl given. We will allow individ-

ual rules to queryT (but not to modify it).

An additional predicate symbol)(is needed to model the
intruder’'s knowledge (see Appendix A).

We represent each rojein a protocol by means of a
singlerole generation ruleand a finite number gbrotocol

Network messages:Network messages are modeled by execution rulesThe purpose of the former is to prepare for
the predicateN(m), wherem is the message being the execution of an instance of rglelt has the form
transmitted. Having a distinct network predicate for Tpo : T(E) — Apo(F), 7(E).
each message exchanged in a protocol specification,

as done in [2, 5], is equivalent, but would obscure the where, here and in the rest of the papef7) denotes a
translation in Section 5. multiset of persistent atomic formulas that may mention

variables among?. Notice how persistent information is
Role states: We first choose a set ofole identifiers preserved. The execution rules describe the messages sent
p1,- .., pn for the different roles constituting the pro- and expected by the principal acting in this role. Fot
tocol. Then, for each rolg, we have a finite family of ~ 0...1, — 1, we have a rule,;; of either of the following
role state predicate$A,;(im) | i =0...1,}. Theyare  two forms:
inten_ded to hold the i.nternal state of a principal in role gong- A (@), (T,
p during the successive steps of the protocol.

~

2, 1), N(m(Z, Z,1)), n(Z, 2)

/\Hl

— I ALi
This scheme can immediately be generalized to

express roles that can take conditional or non- m(Z,9)),7(Z,§, %)

deterministic actionsg(g.toss a coin to choose among 2),7(Z,7,2)

two messages to send — useful for zero-knowledge where m (%) stands for a message pattern with variables
proofs for examples — or respond in two different amongy. In the first type of rules, we rely on the existen-
ways depending on the contents of an incoming mes-tial operatorF7 to model the ability of a principal to create

receive: A, (%), N
— Ap1+1(_’

/\

@1
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nonces when sending a message. This principal can als@ Strand Constructions
include some persistent data(e.g.the name and public

key of an interlocutor), possibly related to informatioalit We now define strands and related concepts. In order
ready possesseg)( In the second rule template, the princi- g simplify this task, we first recall some basic definitions
pal should be able to access persistent informatimlated  from graph theory in Section 3.1. In Section 3.2, we adapt
to data in the received messagge.g.the sender’s public  he definitions in [10], which is more concise than [6]. In
key) or previously known informatiod. Situations where  gection 3.3, we extend the strand formalism with a series of
a principal both sends and receive a message, or sends Muhew concepts intended to ease the comparison with protocol
tiple messages, can easily be expressed by these rules.  theories. These extensions are of independent interest and

A protocol is specified as a sRtof such roles. EverR therefore we discuss some of their properties.
constructed in this way is trivially a well-founded protdco
theory [2, 5]. As an example, Figure 1 shows the encoding 3 1 Preliminary Definitions
of the familiar simplified Needham-Schroeder public key
protocol in the multiset rewriting notation. We usAtice
andBob as nicknames for the initiator and responder, re-
spectively. For the sake of readability, we omitted the keys
in the persistent state predicates.

The behavior of the intruder according to the Dolev-Yao
model [4, 9] is similarly specified as a set of rewrite rules [1
2]. We describe it in Appendix A. We will refer to them as
7. A state is then a multiset of ground fadts= 11, A, N, I,
where A is a multiset of role stateAp,;(f), N is multiset
of messagedl(m) currently in transit, and summarizes
the intruder’s knowledglm). Notice in particular that the
initial state is jusfl, Iy, wherel, contains the information
(e.g.keys) initially known to the intruder.

A directed graphG is a pair(S,—) where S is the
set ofnodesof G and— C S x S is the set okedgesof
G. We will generally writevy; — vs for (v1,1v5) € —.
A directed labeled graplds,, is a structurg S, —, L, A)
where(S, —) is a directed graph, is a set oflabels and
A : S — Lis alabeling functionthat associates a label to
every node. In the sequel, all our graphs will be directed and
labeled, but we will generally keepimplicit for simplicity.
In particular, forv € S andl € L, we will write “v = [”
as an abbreviation of (v) = . However, forv,, vy € S,
expressions of the form; = v, shall always refer to the
nodes, and not to their labels.

A graphG = (S, —) is achainif there is a total or-
deringug, v1, . .. of the elements of such that; — v;
iff j =i+ 1. AgraphG = (S, —) is adisjoint union of
chainsif S = (J,.;Si and— = J,c; —: (for some
set/) and(S;, —»;) are chains for eache I.

A bipartite graphis a structurez = (S;, Sy, —) such
thatS; andsS, are disjoint,(S; US,, —) is a graph, and if
v1 — o thenv, € S; andvsy € S, (|e — C 5 x 52)
Observe that all edges go frofy to S». We say thatz =
(51, Sz, —)) is

2.3 Regular Protocol Theories

In the following, we will consider only protocol theo-
ries of a particular format, that we catgular. The role
generation rule of a regular role accesses all the persisten
information that will be used in this role. It has therefore
the following form:

e functionalif — is a partial functioni(e.if v — 14
andv — vy imply vy = 1y).

e injective if — is injective f{.e. if 1 — ' and
vy — v imply vy = ).

e surjectiveif —s is surjective ontd, (i.e.foreachy’ €
S, there isv € Sy such thay — v/').

rp0 ¢ T(T) — Ap(Z), m(T).
Consequently, protocol execution rules do not need to men-
tion any persistent information:

send:  A,i(Z) — 3. Apipa (2, 7)), N(m(Z, 7))

A bi-graph G is a structure(S,—-, —) where both
(S,=) and(S, —) are graphs.
In the sequel, we will often rely on the natural adaptation

Regular protocol theories guess all the persistent inferma of standard graph-theoretic notionsd. isomorphism) to
tion that are used in a role, including the identity and keys |abeled graphs and bi-graphs.

of other parties, before any message is exchanged. As we
will see, this is closely related to the mode of executions 53 5 gtrands and Bundles
of strands. The example in Figure 1 is a regular protocol
theory?!

—

receive: A,;(Z), N(m(Z,¥)) — Ayit1(Z.79)

An eventis a pair consisting of a message and an

1The use of the general notion of protocol theory lead to aor émrthe
original version of this paper.
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indication of whether it has been sents) or received
(—m) [6]. The set of all events will be denotedM.
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p(Z,7): |7 fresh,m (%)

im‘p‘,1(f, ’r_i)

imw(f, ﬁ)

Figure 2. A Parametric Strand

A strandis a finite sequence of evenis. an element
of (£M)*. We indicate strands with the letterthe length
of a strand as$s|, and itsi-th event ag; (fori = 1...]s|).
Observe that a strandcan be thought of as a chain graph
(S,=) with labels over+ M, whereS = {s; : i =
1...|s|}ands; = s, iff j =i+ 1.

Slightly simplifying from [6], astrand spacés a set of
strands with an additional relation-) on the nodes. The
only condition is that ifty — vs, thenv; = +m and
vy = —m (for the same message). Therefore,— rep-
resents the transmission of the messagom the sender
v, to the receiver,. Alternatively, a strand space can be
viewed as a labeled bi-graph= (S,=, —) with labels
over+M, = C S x S, and— C St x S~ where
S* and S~ indicate the set of positively- and negatively-
labeled nodes 5 respectively, and the constraints dis-
cussed aboveS, =) is a disjoint union of chains, and if
vy — v, thenvy = +m andvs = —m for some message
m.

A bundleis a strand space = (S,=, —) such that
the bipartite grapi{S*, S—, —) is functional, injective,
and surjective, and— U ——) is acyclic. In terms of

protocols, the first three constraints imply that a message i
sent to at most one recipient at a time, no message is re-
ceived from more than one sender, and every received mes
sage has been sent, respectively. Dangling positive node

this formalism, they will ease the comparison with multiset
rewriting specifications.

The notion of role is kept implicit in [6] and rapidly in-
troduced as the conceptwéce-typen [10]. A role is noth-
ing but a parametric strand: a strand where the messages
may contain variables. An actual strand is obtained by in-
stantiating all the variables in a parametric strand (onén i
tial segment of one) with persistent information and actual
message pieces. For simplicity, we will not define nor con-
sider constructions corresponding to arbitrary well-fdea
protocol theories (see Section 2 and [2, 5]).

A parametric strandfor the rolep may look as in Fig-
ure 2. The freshness af, i.e. the fact that the variable$
should be instantiated with “new” constants that have not
been used before, is expressed as a side condition. Using
the terminology in [6, 10], the values are uniquely orig-
inated This is a slightly more verbose way of specifying
freshness than our use 6fin the previous section, but it
achieves the same effect. What we see as the main differ-
ence however is that freshness is presented as a meta-level
comment in [6, 10], while we have it as an operator in our
specification calculus. The relationship between var&ble
are expressed in [10] using intuitive notati@ng. k! for
the inverse key of:, or k4 for the key of A. We formal-
ize these relations by equippipgvith the constraints (%),
that, without loss of generality, will be a set of persistent
atomic formulas from Section 2, parameterized c¥er

As in the case of transition systemsptocolis given
as a set of roles. The model of the intruder in the style of
Dolev and Yao [4, 9] is also specified as a set of paramet-
ric strandsP (F,) calledpenetrator strandswherep is the
intruder’s initial knowledge (see Appendix A or [10] for a
definition, and [1] for an analysis). As an example, Figure 3
shows how the Needham-Schroeder public key protocol is
modeled using parametric strands, where we have used in-
coming and outgoing arrows instead of the tagand— for
readability.
These definitions allow us to specialize the bundles we
will be looking at: given a set of parametric strangisev-

gry strand in a bundle should be an initial prefix of an

correspond to messages in transit. We should point out thafnstantiated protocol (or penetrator) strand. We are inter

functionality is not required in [6, 10].

If we think in terms of protocols, a bundle represents a
shapshot of the execution of a protocol (therefore a dynamic
concept). As we will see, this comprises a current globa

ested in initial prefixes since a bundle is a snapshot of the
execution of a protocol, and a particular role instance may
be halfway through its execution. We then say thas a

| bundle ovels.

state (what each principal and the intruder are up to, and the - e will now give a few definitions needed to emulate the
messages in transit), as well as a precise account of how thigxecution of a protocol with parametric strands. No such

situation has been reached.

3.3 Extensions

definitions can be found in the original description of sttan
constructions [6, 10], which focuses on analyzing protocol
traces, not on specifying how to generate them.

First, observe that the network traffic in a bundle is ex-

We now introduce a few new concepts on top of these pressed in terms of events and of thes relation. The
definitions. Besides contributing to the understanding of edges of— represent past traffic. messages that have been
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Alice(A, B, Na, N5) ‘ N fresh, (A, B) ‘

{NA’A}KB —
— {NA7NB}KA
{NB}KB —

where 74 (A, B)
nB(A, B)

Pr(B), PrvK(

Pr(A), PrvK(A, K
B,Kg'

Bob(A, B, N4, N5) ‘ N fresh,m5 (A, B) ‘

— {NA’A}KB
{NAaNB}KA —
— {NB}KB

W), Pr(B), PubK(B, Kp)

, ), Pr(A), PubK(A,K_,)

B

Figure 3. Parametric Strand Specification of

sent and successfully received. The dangling positive fiode

correspond to current traffic: messages in transit that have

been sent, but not yet received. We will call these nodes the

fringe of the bundle (or strand space). More formally, given

a strand space = (S,=, —), its fringe is the set
Fr(o)={v:vesS, v=+4m, anddv'.v — '}

Another component of the execution state of a protocol

is a description of the actions that can legally take placesWe Wwill now formalize this notion.

in order to continue the execution. First, some technicali-
ties. Leto be a bundle over a set of parametric strafds
acompletionof ¢ is any strand spacg that embeds as a

subgraph, and that extends each incomplete strand in it Withdiately follows (

the omitted nodes and the relative>-edges. Ifs is a strand
in o ands is its extension i, the sequence obtained by re-
moving every event i from 3 is itself a (possibly empty)
strand. We call it aesidual strandand indicate it ag \ s.
We then writes \ o for the set of all residual strands &f
with respect tar.

Given these preliminary definitionscanfigurationover
S is a pair of strand spac¢s, o) whereo is a bundle over
S, ando! is an extension of whose only additional—;-
edges originate i¥r(o), cover all of Fr(o), and point to
ot \ 0. Clearly, ifo = (S,=, —) ando* = (S*, =¥,
—%), we have thats C S, and=> C =", and finally
— C —t,

A one-step transition is what it takes to go from one bun-
dle to the “next”. There are two ways to make progress in

the bundle world: extend a strand, or add a new one. Let us

analyze them:

e Extending a strandIf the configuration at hand em-
beds a strand that is not fully contained in its bundle
part, then we add the first missing node of the latter
and the incoming=--edge. If this node is positive,
we add an—-arrow to a matching negative node. If
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S, with g; = (S,:>1—)1) and (7'1'i

the Needham-Sc hroeder Protocol

it is negative, we must make sure that it has an incom-
ing —-edge.

Creating a strand Alternatively, we can select a para-
metric strand and instantiate first its “fresh” data and
then its other parameters. Were we to perform both in-
stantiations at once, there would be no way to run pro-
tocols which exchange nonces, such as our example in
Figure 3.

Let(oy,0?) and
(02, ag) be configurations over a set of parametric strands
CHESS
1,2. We say that(os,0!) imme-
al,aﬁ) by means of moven, written
(01,08~ 5(a2,0%), if any of the following situations ap-
ply. An intuitive sense of what each case formalizes can
be gained by looking at the pictorial abstraction preceding
each possibility. Hereg;, v’ andv” stand for nodes on fully
instantiated strands.

%), for i

(3

—

S\ S

(v, ="

So: There are nodes, V" € Sf \ S; such thatr = +m,
V" = —m, no—-edge enterg’’, and no—--arrow
entersv. Then,

[ ] Sg = S] U{l/}, [ Sg = Sgy
=2 = =1, :>g = :>§,
—2 = —i = =i u{e)

S\ S

(v,v! v

"y




S: There are nodes,»” € S\ S, andv' € S such
thaty = +m, v"" = —m, no —-edge enters"”, and
v =! . Then,

° 52 = 51 U{I/}, ° Sg — S%,
=n == U{(V\1)}, =i = =t
— = = — = LU},

S8\S S0\S
(v,—.,—)
s

Ro: There are nodes € 5S¢\ S, andv” € S, such that
v=—-m, v =4+m, " —)g v, and no=> enterw.

R: There are nodes € S! \ S, andv/,»" € S, such that
Yy, andy =t b

v=—-m,v" = 4+m, v —]
Then,
e Sy = S1U{v}, oagzag.

=2 = =1 U{(V/al’)}'
—>9 —>1 U{(l/”,l/)};

S S0\S S S8\S

;
ol
b

Cr: p is a parametric strand i§ and ¢ is a substitution
for all its variables marked “fresh” with constants that
appear nowhere ito, o%).

.0'2:(7'1; ﬁ_

o o} =0} Uplél.
where,o U s is obtained by taking the union of the

nodes and=--edges ofr ands,

S\ S S S\ S

4
S p[€.6]

i
ol
b b

. pl¢] is a partially instantiated parametric strandoifh
andé is a substitution for the remaining variables. In
particular, ifp[¢] mentions constraints, then their in-
stantiation should be compatible with the know persis-
tent dataj.e. n[6] C II. Then,
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® 02 =01, oo'g:

ot — ple] U pl¢. 6.
where o — s is the subgraph af obtained by removing
all nodes ofs and their incident edges.

Themoveo that labels the transition arrow— s records
the necessary information to reconstruct the transition
uniquely up to the creation of new strands. Given a con-
figuration(o, o), amovefor transitions of typeS,, S, Ro,
andR is atripleo = (v, v?, v®) wherev is a nodep? is the
parent node?” of v according to the=> relation (or “—" if
v is the first node of a chain — casBg andRy), andv®
is the nodev® sending the message that labelalong the
— relation (if v is negative, or " otherwise). In order
to simplify our analysis, we shall assume that transitidns o
type C¢ and C; are unobservable. Below, we will briefly
discuss the natural alternative of choosing the pgirs)
and(p[¢],0) as witnesses of these two types of transitions,
wherep is the name of the chosen parametric strand,&and
andd are the instantiating substitutions.

A multistep transitioramounts to chaining zero or more
one-step transitions. This relation is obtained by takireg t
reflexive and transitive closure™% of —= s, whered is
the sequence of the component movesi{‘empty). o'is a
trace of the computation.

Observe that our definition of transition preserves
configurations, i.e. if (o1,0%) is a configuration and
(01,00 )~ s(04,0%), then(o,, o) is also a configuration.
This property clearly extends to multistep transitions.

The concepts and extensions we have just introduced set
the basis for the translations between the multiset rewrit-
ing approach to security protocol specification and strand
constructions. We describe the two directions of this trans
lations in Sections 4 and 5, respectively. We conclude this
section with an analysis of the notions just defined.

The above definition embeds two distinct notions of
traces for strand constructions. On the one hand, the bun-
dle within a configuration gives a precise account of which
events have taken place, abstracting from their temporal oc
currence order (and instantiation details), but taking int
consideration their dependencies both in terms of the erder
ing of steps (captured by=-edges) and message transmis-
sion/reception (expressed by thes-arrows). On the other
hand, the move sequendehat labels the transition arrow
also indicates which steps have taken place, but imposes a
linear occurrence order on them. We will now relate these
two notions.

Notice that each move inserts exactly one node in a con-
figuration. Moreover, the very possibility of making such an
insertion is regulated by the two types of edges. Therefore,
we can think of a bundle as specifying a partial order of the
occurrence of individual moves (the ordering relation &s th
transitive closure of the union ef= and-—). Instead, a
move sequence linearizes the set of moves into a total or-



der. In general, we can linearize a bundlas a sequence

of moves in many ways. The following definition imposes

constraints on the form of acceptable move sequences.
Given a bundler = (S, =, —), we defineO,, as the

set of move sequencés= (o1, ..., 0s) such that, for =

1, ey ‘S|, 0; = (Vi,ﬂf,ﬂf) and

e v; € Sandy; # v;fori # j.

if v; isinitial in S, thenv? = —;

if there is an index < i with o; = (v;, 7}

i73)
such that; = v; in o, then! = v;.

if v; = +m, thenv = —;

— if vy; = —m and there is an index < i with
0j = (vj,7},7}) such that; — v; in g, then
Vi = vj.

Then, any legal move sequeng¢&om (-, -) to any configu-
ration containingr is an element of),,. This is formalized
in the following completeness result.

Property 3.1 Let (0, 0") be a configuration over a sef
of parametric strands and a move sequence such that
(-, )= (o,0%). Thend € O,,.

Proof: We proceed by induction on the length of the move
sequencey, checking that each element in it satisfies the
above definition. O

Moreover, anys in O, is a legal move sequence from
(+,-) to any configuration containing, as expressed by the
following soundness result.

Property 3.2 Let (0, 0) be a configuration over a sef
of parametric strands, then for eaéhe O, the multistep
transition (-, -} (o, o*) is well-defined.

Proof: We proceed by induction on the size of the configu-
ration, whergoy, 0% ) < (09, 0%) if o, is a proper subgraph
of oy orif oy is a subgraph of, anda§i is a proper subgraph
of of. O

If & describes the transition frofn -) to a configuration
(o,0%), the individual moves i@ contain enough informa-

o —5= {(vi,vy) : v = vi}.

Now, if & labels a transition frong-, -) to some config-
uration (o, o), theno; is isomorphic too. We have the
following expected result.

Property 3.3 Let (o, 0%) be a configuration and a move
sequence such that, -)——% (o, o%). Then,o; is a bundle
and there is a bi-graph isomorphism betweenando.

Proof: By induction on the length af. O

The structure of moves we have considered is not suf-
ficient to reconstruct the final configuration of a move se-
guence. If we are interested in such objects, we need to
enrich our definition of move to include the (name of the)
parametric strangd and the substitutionsandé used when
inserting a new strand in a configuration. Simple adapta-
tions of the properties in this section hold in this extended
setting. The definitions and proofs become more technical
and will be discussed in the full paper [1].

Moves Bundles

D)

Figure 4. Relating Moves and Bundles

The two constructions we have just defined are essen-
tially inverse of each other, as schematized in Figure 4.
Given a bundle, the first returns the set of all the move se-
guences that produce it. Given a move sequence, the sec-
ond returns the resulting bundle. In particular, obserag th
when starting from a bundle, chaining these transformation
yields the same bundle. However, if we start from a move
sequence, their cascaded application will return the set of

tion to playback the sequence of moves and exactly recon-|| sequences that construct its same target bundle. These

structo. This is done as follows.

Given a sequence of movés= (o1,
(v;, 0, 0f) fori = 1...|d], we define thestrand space as-
sociated witha, written oz, as the triple(Sz, =5, —5)
given as follows:

e Sy ={y;ri=1...|0}.

P —

o == {(vi,v)) : 7] = v}
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remarks are summarized in the following corollary and Fig-
ure 4.

Corollary 3.4 Let (0,0") be a configuration over a set of
parametric strandss.
1. For everyd such that(-, -)—=% (o, 0%), we have that
G € Opy.
2. Foreverys € O,, o5 is isomorphic tas.



Proof: The first statement reduces to Property 3.1 after ob- need to mention each variable ih This amounts to

serving thatO,, = O, sinceo; is isomorphic too. The setting initial values in the first step of a role, rather
second part is a consequence of Properties 3.2 and 813. than prior to any message exchange.

These considerations allow us to extract a useful notion Nonces: We transform protocol theories so that all nonces
of equivalence between move sequencés:and 3, are generated by a role are preem_ptlvely chosen.ln the first
equivalentf they produce the same bundle, which can be rule of that role. We accomplish this by adding extra
tested by verifying whethes;, and o, are isomorphic. arguments to role state predicates, and pass the nonces
The equivalence class to which a move sequetoelongs generated in the first rule to subsequent uses through
is therefore0,.. Notice also that, in general, symmetry fresh variables in the role state predicates. Since roles
considerations do not allow selecting a unique element of ~ &ré bounded, there are only a small finite number of
0, as “the” normal move sequence fram-) to a config- nonces that need to be generated in an entire role.
uration embedding a bundte this suggeéts that is the This transformation intuitively means that a participant
most compact representation of the equivalence @lass should roll all her dice immediately, and look at them
of 5. as needed later.

This intuitive description should be detailed enough taspa
4 From Multisets to Strands formalizing this transformation. A fine understanding, es-
pecially of the placement df, is best gained by interpret-
The basic idea behind our translation will be to map a ing our extended multiset rewriting in linear logic, whih i
set of multiset rewrite rules specifying a role to a paramet- however beyond the scope of this paper. As a result, we are
ric strand. In particular, rules will correspond to nodesj a  left with the followingnormalized rules
the role state predicates will be replaced by the backbone .
(=) of the strand. In Section 4.1, we transform a regular ROI€ generation rules:

protocol theory into an equivalent normal form. This trans- ® Iyt (%)
formation is novel and applies to a more general setting than — 3. A, (Z,7), N(m(Z, 7)), n(£)
the mulnset rewr|t|ng'spe0|f|cat|on qf cryptoprotocols | . o iy (%), N(m(Z, 7))
Section 4.2, we describe the translation proper and preve it — 3. A, (2,7, 7)), ©(F)
correctness.

Other rules:
4.1 Normal Protocol Theories o vt A(T) — AL (F),N(m(T))

o Tpit1 1 Ap(Z),N(m(Z. 7)) — Ayt (Z,9)
We present two transformations which demonstrate that,
without loss of generality, we can subsequently considerwhere we have written a short line above the transformed
only normalized protocol theories. Their purpose is to re- role state predicates. Given a rglewe denote the normal-
strict protocol theories so that they are closer to the dtran ized specification ag. We write R for the application of
model. Note that these transformations are used for math-this transformation to a protocol theofy. Given a state
ematical convenience: non-normal protocol theories are of S, we write S for the open statehat replaces each instan-

ten more perspicuous than their normalized counterparts. tiated role state predicat,; () in S with A ,;(#, i) where
71 contains a distinct new variable for each argument added

Role generation rule: We subsume the role generation oA ;. Open states are instantiated to regular states through

rule of every rolep, i.e. the ruler,y : 7(¥) —  substitutiong that map each variable Fito a distinct fresh
Apo(7), w(Z), into the first rule ofp. For each ofits  constant that does not appeardn Observe thaB, = S
two schematic forms: since the initial state does not contain role state pregscat

It is fairly easy to prove that the above transformation is
sound and complete with respect to our original definition
of a regular role, even in the presence of the intruder (see

ot Ao(®) — 3. A (F,7), N(m(Z, )
Tp1 - ApO(f)7N(m(fg)) — Apl (fg)

. . i 2
we obtain the following rules: Appendix A):
2The original version of this paper stated this lemma redativ gen-
ro s w(@) — AL (E,7), N(m(E, 7)), 7(F) eral rather than regular protocol theories. This is inairr@assume that
> = - - - S1—>x S thanks to the initialization rule,o of some rolep. Assume
rpr s (@), N(m(Z, 7)) — An(Z,§), (L) o the tt S ’

also that the first message exchange ryle of this role contains a per-

. . sistent predicate which does not have any instantiatiori.imhe normal
respectively. In both cases, the parametémsclude form of r,0 would then contain this constraint, making it inapplicatte
the arguments of the elidedl,q, andm(Z) does not  any stateS; would be mapped to.
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Lemma 4.1 LetR be a regular protocol theory, the ini-
tial state, andS a state. Let moreovef be an arbitrary
substitution from the variables ifi to distinct unused con-
stants. Then,

1. If So—5% S, thenSy—% S[¢].
2. If Sy—5%5[¢], thenSy—% S.
3. If So-5o% 4 S, thenSy -5  S[¢].

4. If So—"+7% S[€], thenSo—55% £ S.

wherer is obtained by normalizing.

Proof: By induction on the length of the given transition
sequences. O

4.2 Translation

We are now in a position to translate roles expressed in
the transition system formalisms into parametric strafids.
each normalized role specificatign we associate a para-
metric strand 5 of the following form

p(Z,y,7) |7 fresh,n(Z)
wherefi are the existential variables mentioned in the first
rule 7,; of this role, 7 (%) are the persistent predicates ac-
cessed in this rule, anglare the other variables appearing
inthe role (7, 7/, 7 appear therefore in its last role state pred-
icate).

Next, we associate a parametric noegde with each rule

7,;. The embedded message is the message appearing in the

antecedent or the consequent of the rule, the distinction be
ing accounted for by the associated action. More precisely,
we have the following translation (where we have omitted
the argument of the state predicates, the indication of the
variables occurring in the message, persistent informatio
and the existential quantifiers appearing in the role genera
tion rule):

I—Ap,j — Api+1,N(m)—l

'—Ap,N(m) — Api+1—|

where™ _7 is our translation function.

Finally, we set the backbone of this parametric strand ac-
cording to the order of the indices of the nodes (and rules):

l/fpi — l/fp]. iff ] =1 + 1.

In this way, we are identifying the role state predicates
of the transition system specification with the>-edges
constituting the backbone of the corresponding parametric
strand. Notice that the well-founded ordering over rolgéessta
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predicates is mapped onto the acyclicity of the--arrows
of the strand constructions.
This completes our translation as far as roles, and there-

fore protocols, are concerned. Applying it to the Needham-

Schroeder protocol yields exactly the parametric strand

specification of Figure 3 presented in Section 3. Given a
set of rolesR in the transition system notation, we indicate

the corresponding set of parametric strand$s&S. We

will give correctness results at the end of this sectionrafte

showing how to translate global states. The translation of
the intruder model is discussed in Appendix A.

In order to show that a transition system specification
and its strand translation behave in the same way, we need
to relate states and configurations. We will refrain from
giving an exact mapping, since a configuration embeds a
bundle expressing the execution up to the current point in
fine detail. A state is instead a much simpler construction
that does not contain any information about how it has been
reached. Therefore, we will consider some properties that a
configuration should have to be related to a state.

We say that a stat¢ = II, A, N(m), [(m') is com-
patible with a strand configuratiofw, %), written S ~%
(o, 0*) relative to a protocol theor, if the following con-
ditions hold:

> 1

e Fr(o) =m,m'.
e LetA,;(1i,,1,)in Abethe instantiation of theth role
state predicate of a rolg in R with noncesii, and

termst,. Then,

— o contains a strand” (17, t,), obtained by in-
stantiating the strangf = " 5" with “fresh” con-
stantsi, and terms,.

— o contains an initial prefix of”(f) whose last
node has index

Moreover every non-penetrator strand in o) is ob-
tained in this way.

e Every instance of a penetrator stranddno*) is com-
pletely contained i (see Appendix A).

Intuitively, we want the state and the configuration to men-
tion the same nonces, to have the same messages in transit
(including the data currently processed by the intruder), t

be executing corresponding role instances and have them be
stopped at the same point.

Given this definition, we can state the correctness re-
sult for our translation of transition systems into strand
constructions as follows, where details about how the in-
truder models are related to each other can be found in Ap-
pendix A.



Theorem 4.2 Let I, be some initial intruder knowledge Final state: Dually, we alter the definition of strands to

and "I, its strand translation as from Appendix A. If contain a final node, say, again without any incom-
I1, Iy i)}RS is a regular multiset rewriting transition se- ing or outgoing—-edge, and with one incomirg=-
guence over, R from the empty state to statg then there arrow from the original last node of the strand.
is a configuration(o, o) and a sequence of movésuch , n )
that This corresponds to redefining strands as strings drawn
N 4 from the languager (£ M)* L, rather than jus{+=M)*.
(7)'—>pr11 rﬁ1(0-70-) :
(o), Notice that now every (proper) event has both a predecessor
is a strand transition sequence from the empty configurationand a successet=-edge.
(,+) 1o (0,0%), andS ~% (o,0%), i.e.S is compatible with With the addition of these auxiliary nodes, we can la-
(a,0%). bel each—>-arrow in a strand with parameterg;, 75 (75

markedfresh) with a predicate constam,; with progres-
sive indicesi. In the case of parametric strands, we equip
these labels with arguments drawn from its set of parame-
ters as follows:

Proof: The proof proceeds by induction @hmapping ev-
ery step to a corresponding move in the strand world, while
preserving the compatibility relation.

Initial arrow: T = v

5> From Strands to Multisets This is the predicatd\ s, labeling the=—--edge that

links the added initial nod& to the first node of the

We will now show how to translate a set of parametric original strand. The arguments Af, will be 7.

strands into a set of transition rules that preserve melist
transitions. Again, there is a slight mismatch between the Successor arrow to a positive node:

two formalisms which is addressed in Section 5.1. This A () .

technical adjustment of our definition of strands will pro- o= 4m(E ) = .

duce precisely the regular role transition rules we oriyna Let A,;(#) be the label of the incoming=--edge of

defined in Section 2. We describe the translation itself and a positive noder = +m(Z, ), wherem mentions

prove it correct in Section 5.2. known variables amongand unused noncésamong
is. Then the outgoing=>--arrow of v will have label

5.1 Decorated Strands Agiy1(Z, ).

In the previous section, we have observed and taken ad-Successor arrow to a negative node:

vantage of the fact that there is a close affinity between the A%‘@ —m(#,§) =

rules in the transition system specification of a role and the o e o

nodes in a parametric strand. More precisely, a node to-  Let A,;(Z) be the label of the incoming=--edge

gether with the outgoing or incoming—-edge and an indi- of a positive nodev = —m(7,y), wherem men-

cation of what to do next corresponds to a transition. In-tran tions known variables among, and unseen datg

sition systems, “what to do next” is specified through the Then, the outgoing—--arrow of n will have label

role state predicates,;; in strand constructions, by means Asiv1 (Z, 7).

g];t;ieon::evsge;i'”-I;rhaenr;f;[gjggetziosigtee'nt:gg?cr;?essm Given a parametric strand we denote the result of apply-
’ : -edges t P .~ _ing these transformations as If S is a set of paramet-
We need to equip these predicates with the appropriate ar-

: . : ric strands specifying a protocol, we writefor the trans-
guments (while we were able to simply drop them in the . . .
. : formed set. Applying this transformation to the Needham-
inverse translation).

Before describing how to do so. we will address two Schroeder protocol yields the enhanced strand specificatio
other minor s ntactigc discre anciesI the absence of an (ex-in Figure 5, where the additions have been grayed out,
- ynt P ' . , Since we have changed the syntax of a parametric strand,
plicit) strand equivalent of the role generation rulg) — : ) . .
4 . : - we need to upgrade its dynamics, originally presented in
Ao (%), n(Z), and the fact that, in the transition system : . : . ; o
specification of a role, there is a final state predicate thatSQCtIon 2. First, an obvious alteration to the instantiato
IiE ers in the global st’ate no matter what othper transitions a parametric strand: we apply the substitution to the labels
talge lace 9 of the=—--edges as well as to the messages embedded in the
P ' nodes. We carry on this change to the resulting bundles and
Role Generation transition: We add a dummy initial  configurations: every=--edge between two nod?g, %md
node, sayT, to every strand, with no incoming or out- v, now carries a labeh,; (). We indicate this as; el )
going —-edges, and one outgoing=--edge to the  (or with its vertical equivalent). Notice that we erasedthi
original first node of the strand. information in the opposite translation. Given a bundle
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Alice(A, B, Na, N5) ‘ N fresh, (A, B) ‘

-
Ao(A, B)
{NA)\A}KB —
Ai(A,B,Nya)
— {Na,Ns}xk,
As(A, B, Na, N)
{NB}Kpg —

As(A, B,Na, Ng)

1
where 74 (A, B)
nB(A, B)

Bob(4, B, N4, N5) ‘ N fresh,m5 (A, B) ‘
T
Bo(A, B)
VA A
Bi(A, B, Na)
(NaNohe, —
Ba2(A, B, Na, Ng)
— {No}rs
Bs(A, B, N4, Ng)
L
Pr(A), PrvK(A,K '), Pr(B), PubK (B, Kp)
Pr(B), PrvK(B,Kg"), Pr(A), PubK(A, K 4)

Figure 5. Extended Strand Specification of the Needham-Schr

and a configuratiorio, o*) relative to a set of parametric
strandsS, we writes and(a, &%) for the corresponding en-
tities relative taS.
The definition of one-step transition, in symbols
(61,00 —5(9, %), changes as follows:
Extension of an existing strand: We proceed exactly as
in Section 2, except for the fact that situatidg and
Ry in Section 3.3 do not apply.

Installation of a new strand:

We select a parametric strapdrom S, instantiate it

with a substitutiort for its fresh variables and add the
resulting strang[¢] to 65. This corresponds to upgrad-
ing caseCy in Section 3.3 as outlined in the following
figure. We do not formalize this transformation (call it
C¢') it in full detail since it should be obvious how to

obtain it.
50\3 5 T S0\§
—s l
S ple]

Transition C; is consequently upgraded ;' de-
scribed in the following figure. Notice that we add the
first node,T, of p[¢, 6] to o9

9]
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3 T 50\3
-l .
2 ol€] 2 nl€.0]
L] L]
As in the original case, multistep transitions are obtained
by taking the reflexive and transitive closure of the above
judgment.
This transformation is sound and complete with respect
to our original system.

Lemmab5.1 Let S be a set of parametric strands, and
(01,0%) and(o3, o%) two configurations on it. Then,
iff

(0170$)'i)t9(02:ag) (5‘1,5‘?)@%(5‘2,5%)
whered is obtained fromy by extending the given transfor-

mation to traces.

Proof: In the forward direction, we add the labels as from
the definition (they do not constrain the construction in any
way); every use of transitiolC¢ that introduces a new
strand is mapped t€¢’, which also installs the nod€.

In the reverse direction, we simply forget about labels and
extra nodes. |

5.2 Translation

We are now in a position to present a translation of para-
metric strands to the coordinated sets of transition r@ps r



T
Ao () ~  w(@) — Aso(d), m(T)
Ay (T)
m(Z,7) — ~ Agi (%) — 3. Asip1 (£, %), N(m(F, 7))
Asit1(Z, 1)
Ay (T)
—  m(@,7) ~ AG(@). N, 7)) — A (T )
Asit1(Z,9)
Ags(#)
€ ~> (No corresponding rule

Figure 6. Transforming Extended Strands to Multiset Rewrit ing Rules

resenting a role. Each node is mapped to a rule, the label ofset notatior{. . .}:
!ts incoming and outgoing=--edge will be the state 'pred— e N = {N(m): v € TFr(s),visnotona penetrator
icates in the antecedent and consequent, respectively, and
. 4 strand, and’ has labek-m§.
the network message will be the message embedded in the R
: e . ; e I =[l(m): v e Fr(a),visona penetrator strand,
node, its polarity dictating on which side of the arrow it
: andv has labek-m§.
should be appear. More formally, we have the translation Asi () i\ -
displayed in Figure 6, where the parameters of the added® 4 = (Asilf) : 5i1 =='si € 5%\ 7 ands; 1 € Fr(o)§.
state predicates are classified as in the above definition.  Intuitively, we collect the messages in transit coming from
_ Given a set of (decorated) parametric strafigdae write honest principal’'s strands iV, the current knowledge of
"'S™for the set of protocol rules resulting from this transfor- the intruder inI, and the labels of the=--edges at the
mation. Observe that it yields regular rules. Applying this boundary betweea? and s as the multiset of role state
translation to the enhanced parametric strands repragenti predicatesA.
the Needham-Schroeder protocol in Figure 5 produces ex- Then, sequences of moves in the strand world and their
actly the original transition system specification given in translation as transition system steps are related asv@|llo
Figure 1. where the treatment of the intruder models is described in
Appendix A:

We will now show that the translation we just outlined e
preserves transition sequences. In order to do so, we need t¢'€0rém 5.2 Let P be some initial penetrator knowledge,
and " P, its multiset translation as in Appendix A. Let

extract a state from a configuration and show that steps be-

# # . . )
tween configurations are mapped to steps between the corl?1-71) @nd (2, o) be two configurations on the penetra
responding states. tor strandsP(F,) and a set of parametric strand$ such

Let S be a set of parametric strandsS™ its transla- that all penetrator strands have been completed. For every

tion as a set of transition rules, atel o) a configuration ~ Multistep strand transition
overS, P(Py) where all penetrator strands have been com-
pleted. We define thetate associated withz, &%), writ-

ten Sg(a, o), as the statél, A, N, I obtained as follows, and everylj C "P,~, there exists a regular multiset transi-
where we writd . . . § for the multiset equivalent of the usual tion sequencé such that

(”1=‘7§)'i>‘5>(190)75(02: Ug);
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S5(F2, a4, 1. multiset rewriting constructions in linear and other nasel
sical logics, as well as in process specification languages
such as colored Petri nets.

rpaoQ (& Ay ok
Py 755(0-]70-])—>I’,"§7

Proof: The proof of this result proceeds by induction on

the structure ofi. The only non-obvious aspect is that, as

observed in Appendix A.4, we need to insert applications of
the rulerec’ when processing a message that flows from an Acknowledgements
honest principal’s to a penetrator strands. We add uses of

snd’ in the dual case. We would like to thank Joshua Guttman, Javier Thayer

Fabrega, Jonathan Herzog, and Al Maneki for the stimulat-
Notice that we do not need to start from the empty configu- ing discussions about strands. We are also indebted to Syl-
ration. van Pinsky for his encouragements to write down our ideas
The mapping from strands to multiset rewriting we have about the relationship between strand construction and our
just finished outlining, and the translation from multiset protocol theories. Finally, this work profitted from fruit-
rewriting to strand constructions described in Sectione4 ar ful discussions with Jon Millen, Cathy Meadows, and Paul
inverse of each other. We defer a further discussion of this Syverson.
aspect to the full version of this paper [1].
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o If S35 7S5, thenS; 5% 1,5,

o If 5 —>;‘QI Sy, then there is an intruder staté such
thatS; ——2% ;S.,I'.
[10] 1 R,IF2:
Proof: The idea underlying the proof of the first statement
is that every rule ir¥ can be emulated by the corresponding
rule in 7' preceded by one or more applicationsdaip.
Ruledel is never used. The transition sequefcis derived
from 7 according to this strategy.
The proof of the second half of this property is based on

. ) ) ) the observation that ruléup can be emulated i by ap-
In this appendix, we describe the intruder models usedp|ying snd andrec in succession. The additional intruder

in the multiset rewriting formalism (Section A.1) and inthe gtate/’ consists of copies of intermediate information pro-

strand constructions (Section A.2). In Section A.1, we also q4,ced by the rules of plus whatever data were explicitly
propose an alternate formulation of the former, that easesyiscarded usingel. 0O

the translation between the two formalisms in Sections A.3

A Intruder Models

and A.4.

A.1 Intruder Theory

The knowledge available at any instant to the intruder

consists of the persistent informationTihy of unused por-
tion of the initial knowledged.g.the keys of dishonest prin-
cipals), and of intercepted or inferred messages. We us
the state predicatk_) to contain each piece of informa-
tion known to the intruder. In particular, we represent the
fact that the intruder “knowsfn (a message, a key, etc.) as
I(m). The overall knowledge of the intruder at any particu-
lar instant is indicated witth. We write [, for the intruder’s
initial knowledge.

The capabilities of the intruder are modeled by $ken-
dard intruder theoryZ displayed in Figure 7. These rule
are taken verbatim from [2, 5]Z implements the Dolev-
Yao model [4, 9] in our notation. For the sake of readabil-
ity, we have grayed out the information produced by eac
rule. Observe that these rules display an overly conseevati
bookkeeping strategy for the known messages: knowledg

is never discarded, but carried along as new messages are

inferred.

The intruder capabilities formalized in the strand model
relies on a slightly different strategy for managing cap-
tured knowledge: inferring new information has the effect
of deleting the data it was constructed from. Moreover, it
can discard information. However, explicit duplication is
possible. We express this behavior by the rdiés Fig-
ure 8.

Clearly, our original intruder modél can easily be sim-
ulated by a systematic use of the duplication rul&'ofGo-
ing in the other direction is slightly trickier @ never dis-
cards any information. The substantial equivalence ofghes
two systems is summarized in the following result.

Property A.1 LetR be an arbitrary protocol theory, and
Sy andS, two states.

49

e

A.2 Penetrator Strands

We now formalize the intruder model of [6, 10], which
consists of patterns callguknetrator strandsand of a set
of message#, expressing the intruder’s initial knowledge.
The corresponding parametric strands are shown in Fig-
ure 9, which includes a case to handle intruder-generated
nonces. This possibility is missing from [6, 10], but the
completion is straightforward. We also distinguished sase
M (m) andM'(m), which are identified in [6, 10]. We refer
to the collection of (parametric) penetrator strands in Fig
ure 9 asP(F).

Several observations need to be made. First, the in-
truder specification underlying penetrator strands faflow
the Dolev-Yao model [4, 9]. The parametric strands in Fig-
ure 9 are indeed closely related to the intruder model

h above. A translation can be found in Sections A.3 and A.4

below, while a proof-sketch is embedded in the main results

é'n Sections 4.2 and 5.2.

As a final remark, notice that the transition system spec-
ification distinguishes between messages transmittedeon th
network (identified by the predicate symhg) and mes-
sages intercepted and manipulated by the intruder. Indeed,
the predicaté implements a private database, a workshop
for the fabrication of unauthorized messages, hidden from
the honest principals of the system. No such distinction ex-
ists in the strand world. Therefore, it may seem that the
intruder dismantles and puts together messages in the open,
under the eyes of the other principals in the system. This
is not the case: the privacy of the intruder is guaranteed by
the fact that the— relation is functional (see 3.2). Only
the intruder can make use of intermediate results of penetra
tor manipulations since any other principal observing such
messages would make them unavailable to the intruder (and
it would not be an intermediate, but a final product of mes-
sage forgery): since only one-»-edge can leave a negative



rec N(m) — I(m)
dcmp: |(m1 m')) — |(m1),|(m2) ,I(m1,m2)
decr : I({m}x), |(K'), KeyP(k, k') — I(m) ,I({m}s),|(k"), KeyP(k, k")
snd I((m) — N(m) ,I(m)
cmp [(m1),I(m2) —  l(mi,m2) ,1(m1),(m2)
encr : I(m),I(k) — 1({m}r) ,1(m), (k)
nnc — 3n. I(n)
pers : w(m) — |(m) ,m(m)
Figure 7. The Standard Intruder Theory 7
red N(m) — I(m)
demg : [(m1,m2) — I(m1),1(m2)
dect : I({m}x),|(K'), KeyP(k,k') —> I(m), KeyP(k, k")
snd I(m) — N(m)
cmg [(m1),I(m2) — [(m1, m2)
enct : [(m),I(k) — ({m}x)
nnd — 3n.l(n)
pers : w(m) — I(m),w(m)
dup I(m) — I(m),l(m)
del I(m) —

Figure 8. The Modified Intruder Theory 7'

node and such an arrow is the only way to communicate (orwhere we have equipped the intruder rules with arguments
observe somebody else’s) data, the intruder could notaccesin the obvious way. We also need to méapto a setF,

the message in this node for further processing. of messages initially known to the intruder, to be processed
by the penetrator strantl’: "I, = {m : I(m) € Ip}.
Every access to a messalge:) in I, will be translated to

A.3 From Intruder Theory to Penetrator Strands \LCe
an application of the penetrator stramf (m).

The introduction of the alternate intruder thedfy in
Section A.1 enables a trivial mapping to penetrator strands
we simply map every intruder rule to the corresponding
penetrator strand, with the exceptiorref’ andsnd’, which
do not have any correspondent. In symbols:

A.4  From Penetrator Strands to Intruder Theory

The translation of the penetrator strarfd&F;,) in Fig-
ure 9 essentially is the inverse of the above mapping. Our
target intruder model, in the multiset rewriting worldZis

Trec’(m)” = none FS(my, ma)” demp’ (my, my)
Tsnd'(m)7 = none TC(my,mz)"” = cmp’(mq, ms)
Tdemp’ (mqy,my)7 = S(my, ms) "D(m, k)" = decr’ (m, k)
Temp' (my, ma)” = C(my,m2) CE(m, k)7 = encr’(m, k)
Tdecr’ (m, k)7 = D(m, k) "N(n)" = nnc'(n)
Cencr’'(m, k)™ = E(m,k) TM(m)"” = pers’'(m)
Tnnc'(n)” = N(n) T (m)" = dup(m)
pers’(m)” = M(m) FF(m)"” = del(m)
’_dup(m)—' = T(m) FM'(m)"” = (see below)
Tdel(m)"™ F(m)
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Persistent Initial Nonces Intercept
M (m) (m persisten} : M'(m) (m € Py): N(n) : F(m) :
m —» m — n — —m
Compose Decompose Encrypt Decrypt Duplicate
C(m1, ms) : S(mi,m2) : E(m,k) : D(m,k, k') . | KeyP(k, k') T(m) :
— m — (m1, ma) —m — {m}x —m
— M m; — — k — K m —»
(m1,m2) — mo —> {m}r — m —> m —>

Figure 9. The Penetrator Strands P

where we have again equipped the intruder transition rules
with the obvious arguments.

Notice that no penetrator strand is made to correspond
to rulesrec’ orsnd’. When translating transition sequences
from the strand world to the transition system setting, we
will insert these rules whenever a message sent by a prin-
cipal's strand is received by a penetrator strand, and vice-
versa, respectively. We maf, to a multisetl, of mes-
sages initially known to the intruder in the multiset rewrit
ing framework:" Py, = {I(m) : m € P,§. Uses ofM'(m)
with m € P, are translated to accessesltm) € "F,7,
possibly preceded by an application of rdlep if A'(m)
is accessed more than once.
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