
Combining Theorem Proving and ModelCheking through Symboli Analysis ?Invited Paper at CONCUR 2000Natarajan ShankarComputer Siene LaboratorySRI InternationalMenlo Park CA 94025 USAfshankarg�sl.sri.omURL: http://www.sl.sri.om/~shankar/Phone: +1 (650) 859-5272Abstrat. Automated veri�ation of onurrent systems is hindered bythe fat that the state spaes are either in�nite or too large for modelheking, and the ase analysis usually defeats theorem proving. Com-binations of the two tehniques have been tried with varying degreesof suess. We argue for a spei� ombination where theorem provingis used to redue veri�ation problems to �nite-state form, and modelheking is used to explore properties of these redutions. This deom-position of the veri�ation task forms the basis of the Symboli AnalysisLaboratory (SAL), a framework for ombining di�erent analysis tools fortransition systems via a ommon intermediate language. We demonstratehow symboli analysis an be an e�etive methodology for ombining de-dution and exploration.1The veri�ation of large-sale onurrent systems poses a diÆult hallengein spite of the substantial reent progress in omputer-aided veri�ation. Teh-nologies based on model heking [CGP99℄ an typially handle systems withstates that are no larger than about a hundred bits. Tehniques suh as symme-try and partial-order redutions, partitioned transition relations, in�nite-statemodel heking, represent important advanes toward ameliorating state explo-sion, but they have not dramatially inreased the overall e�etiveness of au-tomated veri�ation. Model heking does have one advantage: it needs only amodest amount of human guidane in terms of the problem desription, possi-ble variable orderings, and manually guided abstrations. Veri�ation based ontheorem proving, on the other hand, requires areful human ontrol by way ofsuitable intermediate assertions, invariants, lemmas, and proofs. Can automatedveri�ation ever ombine the automation of model heking with the generalityof theorem proving?? This work was funded by DARPA Contrat No. F30602-96-C-0204 Order No. D855and NSF Grants No. CCR-9712383 and CCR-9509931.1 The SAL projet is a ollaborative e�ort between Stanford University, SRI Interna-tional, and the University of California, Berkeley.

It has often been argued that model heking and theorem proving ould beombined so that the former is applied to ontrol-intensive properties while thelatter is invoked on data-intensive properties. Ahieving an integration of theo-rem proving and model heking is not hard. Both tehniques verify laims thatlook similar and it is possible to view model heking as a deision proedure fora well-de�ned fragment of a spei�ation logi [RSS95℄. However, most systemsontain a rih interation between ontrol and data so that there is no simpledeomposition between data-intensive and ontrol-intensive properties.For the purpose of this paper, we view model heking as a tehnique forthe veri�ation of temporal properties of a program based on the exhaustive ex-ploration of a transition graph represented in expliit or symboli form. Modelheking methods typially use graph algorithms, automata-theoreti onstru-tions, or �nite �xed point omputations. Theorem proving is usually based onformalisms suh as �rst-order or higher-order logi, and employs proof tehniquessuh as indution, rewriting, simpli�ation, and the use of deision proedures.Some in�nite-state veri�ers and semi-deision proedures an be lassi�ed asboth dedutive and model heking tehniques, but this ambiguity an be over-looked for the present disussion.We make several points regarding the use of theorem proving and modelheking in the automated veri�ation of onurrent systems:1. Corretness is over-rated. The objetive of veri�ation is analysis, i.e., thearetion of useful observations regarding a system. Verifying orretness isan important form of analysis, but orretness is usually a big property ofa system that is demonstrated by building on lots of small observations. Ifthese small observations ould be heaply obtained, then the demonstrationof larger properties would also be greatly simpli�ed. The main drawbak oforretness is its exatitude. The veri�ation of a orretness laim an onlyeither fail or sueed. There is no room for approximate answers or partialinformation.2. Theorem proving is under-rated. Dedution remains the most appropriatetehnology for obtaining insightful, general, and reusable automation in theanalysis of systems, partiularly those that are too omplex to be analyzedby a blunt instrument like model heking. Theorem proving an exploit themathematial properties of the ontrol and data strutures underlying analgorithm in their fullest generality and abstratness3. Theorem proving and model heking are very similar tehniques. In the ver-i�ation of transition systems, both tehniques employ some representationfor program assertions, they ompute the image of the transition relationwith respet to these assertions, and usually try to ompute the least, great-est, or some intermediate �xed point assertion for the transition relation.The di�erene is that in theorem proving,{ The image onstrutions are usually more ompliated sine they involvequanti�ation in domains where quanti�er elimination is either ostly orimpossible.{ The least and greatest �xed points an seldom be e�etively omputedand human guidane is needed to suggest an intermediate �xed point.2

{ Showing that one assertion is the onsequene of another is typiallyundeidable and requires the use of lemmas and human insight.4. Theorem proving and model heking an be usefully integrated. Suh anintegration requires a methodology that deomposes the veri�ation task sothat{ Dedution is used to onstrut valid �nite-state abstrations of a system.The onstrution of a property-preserving abstration generates simpleproof obligations that an be disharged, often fully automatially, usinga theorem prover. These are typially assertions of the form: if propertyp holds in a state s from whih there is a transition R to a state s0, thenproperty q holds in s0. Similar proof obligations arise during veri�ation(in the form of veri�ation onditions) but these are usually not validand the assertions have to be strengthened in order to obtain provableveri�ation onditions. While theorem proving is useful for examiningthe loal onsequene of properties, it is not very e�etive at deduingglobal onsequenes over a large program or around an iterative loop.Suh omputations an be extremely ineÆient and the omputation of�xed points around a loop rarely terminates.{ Exploration by means of model heking is used to alulate global prop-erties of suh abstrations. This means that model heking is not usedmerely to validate or refute putative properties but is atually used toalulate interesting invariants that an be extrated from the reaha-bility prediate or its approximations. Finite-state exploration of largestrutures an also be ineÆient but it is muh easier to make �nite-stateomputations onverge eÆiently.{ Dedution is used to propagate the onsequenes of suh properties. Forexample, model heking on a �nite-state abstration might reveal anassertion x > 5 to hold at a program point simply beause it was trueinitially and none of the intermediate transitions a�eted the value of x.If the program point has a suessor state that an only be reahed by atransition that inrements x by 2, then we know that this suessor statemust satisfy the assertion x > 7. Suh a onsequene is easily deduedby theorem proving.In summary, we advoate a veri�ation methodology where dedution is em-ployed in the loal reasoning steps suh as validating abstrations and propagat-ing known properties, whereas model heking is used for deriving global on-sequenes. In ontrast, early attempts to integrate theorem proving and modelheking were direted at using model heking as a deision proedure withina theorem prover. These attempts were not all that suessful beause it is notommon to �nd �nite-state subgoals within an in�nite-state dedutive veri�a-tion.1 BakgroundWe review some of the bakground and previous work in the ombined use oftheorem proving and model heking tehniques.3

1.1 Model Cheking as a Deision ProedureJoye and Seger ombined the theorem prover HOL [GM93℄ with the symbolitrajetory evaluation tool Voss [JS93℄ by treating the iruits veri�ed by Vossas uninterpreted onstants in HOL. This integration is somewhat ad ho sinethe de�nitions of the iruits veri�ed by Voss are not available to HOL. Dingeland Filkorn [DF95℄ use a model heker to establish assume{guarantee proper-ties of omponents and a theorem prover to disharge the proof obligations thatarise when two omponents are omposed. Rajan, Shankar, and Srivas [RSS95℄integrate a mu-alulus [Par76,BCM+92℄ model heker [Jan93℄ as a deisionproedure for a fragment of the PVS higher-order logi orresponding to a �-nite mu-alulus. While this integration smoothly inorporates CTL and LTLmodel heking into PVS, the work needed to redue a problem into model-hekable form an be substantial. This integration has reently been extendedwith an algorithm for onstruting �nite-state abstrations of mu-alulus ex-pressions [SS99℄.21.2 Extending Model Cheking with Lightweight Theorem ProvingSeveral alternative approahes to the integration of model heking and theoremproving have emerged in reent years. Some of these have taken the approah ofsupplementing a model heker with a proof assistant that provides rules for de-omposing a veri�ation goal into model-hekable subgoals. MMillan [MM99℄in his work with Cadene SMV has extended the SMV model heker with thefollowing deomposition rules that are used to redue in�nite-state systems tomodel-hekable �nite-state ones.1. Temporal splitting : Transforms a goal of the form 2(8i : A) into 2v = i � Afor eah i.2. Symmetry redution: Typially, the system being veri�ed and the propertyare symmetri in the hoie of i so that proving 2v = i � A for a sin-gle spei� value for i is equivalent to proving it for eah i. Examples ofsuh symmetri hoies inlude the memory address or the proessor in theveri�ation of multiproessor ahe onsisteny.3. Data abstration: Large or in�nite datatypes an be redued to small �nitedatatypes by suitably reinterpreting the operations on these datatypes. Forexample, with respet to the hoie of i in temporal splitting, the remainingvalues of the datatype an be abstrated by a single value non-i.4. Compositional veri�ation: The veri�ation of PkQ j= A^B is deomposedas P j= :(B U :A) (B fails before A does) and Q j= :(A U :B). Thisallows di�erent omponents to be separately veri�ed up to time t + 1 byassuming the other omponents to be orret up to time t.These and other proof tehniques have been used to verify an out-of-orderproessor, a large ahe oherene algorithm, and safety and liveness for a ver-sion of Lamport's N-proess bakery algorithm for mutual exlusion [MQS00℄.2 These features are part of PVS 2.3 whih is aessible at the URL pvs.sl.sri.om.4

MMillan's approah is substantially dedutive. The rules of inferene, suh assymmetry redution and ompositional veri�ation, are speialized but quitepowerful.Seger [Seg98℄ has extended the Voss tool for symboli trajetory evaluationwith lightweight theorem proving. Symboli trajetory evaluation (STE) whih isa limited form of linear temporal logi model heking. A few simple proof rulesare used to deompose proof obligations on the basis of the logial onnetivessuh as onjuntion, disjuntion, and impliation. These rules an be used todeompose a large model heking problem into smaller ones.1.3 Abstration and Model ChekingAbstration has been studied in the ontext of model heking as a tehniquefor reduing in�nite-state or large �nite-state models to �nite-state models ofmanageable size [BBLS92,Kur94,CGL94,LGS+95,Dam96,BLO98℄.Some of the work on abstration is based on data abstration where a vari-able X over a onrete datatype T is mapped to a variable x over an abstrattype t. For example, a variable over the natural numbers ould be replaed bya boolean variable representing the parity of its value. Clarke, Grumberg, andLong [CGL94℄ gave a simple riterion for abstrations that preserve 8CTL�+properties. Let the onrete transition system be given by hIC ; NCi where IC isthe initialization prediate and NC is the next-state relation. Then the veri�a-tion of a onrete judgement hIC ; NCi j= PC an be redued by means of the ab-stration funtion � to the veri�ation of an abstrat judgement hIA; NAi j= PAprovided1. IC v IA Æ �2. NC v NA Æ h�; �i3. PA Æ � v PCData abstration has the advantage that the abstrat desription an bestatially onstruted from the onrete program. The drawbak is that manyuseful abstrations are on relations between variables rather than on individualvariables.Graf and Sa��di [SG97℄ introdued prediate abstration as a way of repla-ing prediates or relations over a set of variables by the orresponding booleanvariables. For example, given two variables x and y over the integers, and theprediate x < y over these variables, prediate abstration would replae thevariables x and y by a boolean variable b that represents the behavior of theprediate.The appliation of prediate abstration makes signi�ant use of theoremproving. Graf and Sa��di used prediate abstration to onstrut an abstratreahability graph for a onrete program by a proess of elimination. If a rep-resent an abstrat state, a0 a putative suessor, (a) the onrete state orre-sponding to a, and (a0) the onrete state orresponding to a0, then if(a) � wp(P)(:((a0)))5

is provable, the orresponding transition between a and a0 an be ruled out.3However, if a proof attempt fails, the orresponding suessor node an be on-servatively inluded in the abstrat reahability graph. Using prediate abstra-tions with the PVS theorem prover [ORS92℄, Graf and Sa��di [SG97℄ were able toverify a variant of the alternating bit protool alled the bounded retransmissionprotool [HSV94℄. Das, Dill, and Park [DDP99℄ extended this tehnique usingthe SVC deision proedures [BDL96℄ and were able to verify suh impressiveexamples as the FLASH ahe oherene protool, and a ooperative garbageolletor.Prediate abstration an also be used to onstrut an abstrat transitionrelation instead of the abstrat reahability graph. It is typially less expen-sive to onstrut the abstrat transition relation sine fewer proof obligationsare generated, but it typially results in a oarser abstration than one thatis obtained by diretly omputing the abstrat reahability graph. In the lat-ter onstrution, information about the urrent set of abstrat reahable statesan be used to rule out unreahable suessor states. Bensalem, Lakhneh, andOwre [BLO98℄ desribe an abstration tool alled InVeSt that uses the elimi-nation method to onstrut an abstrat transition system from a onrete onein a ompositional manner. Colon and Uribe [CU98℄ give another ompositionalmethod for onstruting abstrations with the framework of the STeP theoremprover [MtSG95℄.All of the above abstration tehniques preserve only 8CTL�+ proper-ties, namely those in the positive fragment of CTL� with universal pathquanti�ation. For more general aluli, riteria for abstrations that preserveCTL* [DGG94℄ and mu-alulus [LGS+95℄, but these results are quite tehnial.Sa��di and Shankar [SS99℄ gave a simple method for onstruting prediate ab-strations over the full relational mu-alulus [Par76℄. The two key observationsin this work are:1. The operators of the mu-alulus are monotoni with respet to upper andlower approximations.2. The over-approximation of a literal (an atomi formula or its negation) anbe eÆiently omputed in onjuntive normal form by using a theorem proveras an orale.Veri�ation diagrams [MBSU99℄ an also be seen as a form of prediate ab-stration. These diagrams employ graphs whose nodes are labeled by assertionsand the edges orrespond to program transitions within the diagram. Propertiesan be diretly heked with respet to the veri�ation diagram.The primary advantage of prediate abstration is that it is suÆient toguess a relevant prediates without having to guess the exat invariant in theseprediates. For n prediates, the onstrution of the abstrat transition system3 All programs are assumed to be total as transition system, i.e., the domain of thenext-state relation is the set of all states. Thus, wp(P)(A) is the set of states thathave no transitions in P to states in :A. The dual notion sp(P)(A) is the set ofstates reahable from some state in A by a transition of P .6

generates of the order of 2n proof obligations. The resulting abstrat model analso be model heked in time that is exponential in n to yield useful invariants.With dedution, there are 22n boolean funtions that are andidate invariantsin these n prediates so that it is harder to guess suitable invariants.1.4 Automati Invariant GenerationAutomati invariant generation has been studied sine the1970s [CH78,GW75,KM76,SI77℄. This study has reently been revivedthrough the work of Bj�rner, Browne, and Manna [BBM97℄, and Bensalem,Lakhneh, and Sa��di [BLS96,Sa��96,BL99℄.The strongest invariant of a transition system P is given by the least �xedpoint starting from the initial states of P of the strongest postondition operatorfor P , �X:IP _ sp(P)(X). If this omputation terminates, it would yield the setof reahable states of P whih is its strongest invariant. Unfortunately, the least�xed point omputation rarely terminates for in�nite-state systems. A programwith a single integer variable x that is initially 0 and is repeatedly inrementedby one, yields a nonterminating least �xed point omputation. Widening teh-niques [CC77℄ are needed to aelerate the �xed point omputation so that itdoes terminate with a �xed point that is not neessarily the least one.A di�erent, more onservative approah to invariant generation is givenby the omputation of the greatest �xed point of the strongest postondition�X:sp(P)(X). For example, a greatest �xed point omputation on a programwith a single variable x and a single guarded transition x � 0 �! x := x + 1would terminate and yield the invariant x � 0. The greatest �xed point invari-ant omputation also may not terminate and ould require narrowing as a wayof aelerating termination. However, one ould stop the greatest �xed pointomputation after any bounded number of iterations and the resulting prediatewould always be a valid invariant.Dually, a putative invariant p an be strengthened to an indutive one byomputing the greatest �xed point with respet to the weakest preonditionof the program of the given invariant �X:p ^ wp(P)(X). If this omputationterminates, the result is an invariant that is indutive.Automati invariant generation is not yet a suessful tehnology. Right now,it is best used for propagating invariants that are omputed from other souresby taking the greatest �xed point with respet to the strongest post-onditionstarting from a known invariant. However, as theorem proving tehnology be-omes more powerful and eÆient, invariant generation is likely to be quite afruitful tehnique.2 Symboli AnalysisSymboli analysis is simply the omputation of �xed point properties of programsthrough a ombination of dedutive and explorative tehniques. We have alreadyseen the key elements of symboli analysis as7

1. Automated dedution, in omputing property preserving abstrations andpropagating the onsequenes of known properties.2. Model heking , as a means of omputing global properties of by means ofsystemati symboli exploration. For this purpose, model heking is used foratually omputing �xed points suh as the reahable state set, in additionto verifying given temporal properties.3. Invariant generation, as a tehnique for omputing useful properties andpropagating known properties.2.1 SAL: A Symboli Analysis LaboratorySAL is a framework for integrating di�erent symboli analysis tehniques in-luding theorem proving and model heking. The ore of SAL is a desriptionlanguage for transition systems. The design of this intermediate language hasbeen inuened by SMV [MM93℄, UNITY [CM88℄, Murphi [MD93℄, and Rea-tive Modules [AH96℄. Transition systems desribed in SAL onsist of moduleswith input, output, global, and loal variables. Initializations and transitionsan be either spei�ed by de�nitions of the form variable = expression or byguarded ommands. The assignment part of a guarded ommand onsists of as-signments of the form x0 = expression , meaning the new value of x is the valueof the expression , as well as seletions x0 2 set , meaning the new value of xis nondeterministially seleted from the value of the nonempty set set . SAL isa synhronous language in the spirit of Esterel [BG92℄, Lustre [HCRP91℄, andReative Modules [AH96℄, in the sense that transitions an depend on lathedvalues as well as urrent inputs. SAL modules an be omposed by means of1. Binary synhronous omposition PkQ whose transitions onsist of lok-stepparallel transitions of P and Q.2. Binary asynhronous omposition P [℄Q whose transitions are the interleav-ing of those of P and Q.3. N-fold synhronous omposition (jj (i) : P [i℄)4. N-fold asynhronous omposition ([℄ (i) : P [i℄)The implementation of SAL is still ongoing. The version to be released sometime in 2000 will onsist of a parser, typeheker, translators to SMV and PVS,a translator to Java (for animation), and a translator from Verilog, among othertools.Sine the SAL implementation is still inomplete, we informally desribe someexamples that motivate the need for a symboli analysis framework integratingabstration, invariant generation, theorem proving, and model heking.2.2 Analysis of a Two Proess Mutual Exlusion AlgorithmAs a �rst example, we use a simpli�ed 2-proess version of Lamport's Bakeryalgorithm for mutual exlusion [Lam74℄. The algorithm onsists of two proessesP and Q with ontrol variables pp and pq, respetively, and shared variables8

x and y. The ontrol states of these proesses are either sleeping, trying,or ritial. Initially, pp and pq are both set to sleeping and the ontrolvariables satisfy x = y = 0. The transitions for P arepp = sleeping �! x0 = y + 1; pp0 = trying[℄ pp = trying^ (y = 0 _ x < y) �! pp0 = ritial[℄ pp = ritial �! x0 = 0; pp0 = sleepingSimilarly, the transitions for Q arepq = sleeping �! y0 = x+ 1; pq0 = trying[℄ pq = trying^ (x = 0 _ y � x) �! p0 = ritial[℄ pq = ritial �! y0 = 0; pq0 = sleepingThe invariant we wish to establish for P [℄Q is :(pp = ritial ^ pq =ritial. Note that P [℄Q is an in�nite-state system and in fat the values ofthe variables x and y an inrease without bound. We an therefore attempt toverify the invariant by means of a property-preserving prediate abstration toa �nite-state system.The abstration prediates suggest themselves from the initializations,guards, and assignments. We therefore abstrat the prediate x = 0 with theboolean variable x0, the prediate y = 0 with the boolean variable y0, and theprediate x < y with the boolean variable xy. The resulting abstrat system anbe omputed as P 0 and Q0, where in the initial state, x0 ^ y0 ^ :xy, and thetransitions for P 0 arepp = sleeping �! x00 = false; xy0 = false; pp0 = trying;[℄ pp = trying^ (y0 _ xy) �! pp0 = ritial;[℄ pp = ritial �! x00 = true;xy0 2 ftrue; falseg; pp0 = sleeping;The transitions for Q0 arepq = sleeping �! y00 = false; xy0 = true; pq0 = trying;[℄ pq = trying^ (x0 _ :xy) �! pp0 = ritial;[℄ pp = ritial �! y00 = true;xy0 = false; pp0 = sleeping;Model heking the abstrat system P 0 [℄Q0 easily veri�es the invariant:(pp = ritial^ pq = ritial):The theorem proving needed to onstrut the abstration is at a trivial levelthat an be handled automatially by the deision proedures over quanti�er-free formulas in a ombination of theories [RS00℄. Suh deision proeduresare present in systems like PVS [ORS92℄, ESC [Det96℄, SVC [BDL96℄, andSTeP [MtSG95℄. The above example an be veri�ed fully automatially by meansof the abstrat-and-model-hek ommand in PVS [SS99℄.9

2.3 Analysis of an N-Proess Mutual Exlusion AlgorithmWe next examine a �tional example, namely, one that has not been mehaniallyveri�ed by us. This example is a simpli�ed form of the N-proess Bakery algo-rithm due to Lamport [Lam74℄. The desription below shows a hand-exeutedsymboli analysis.In this version of the Bakery algorithm, there are N proesses P (0) toP (N �1), with a shared array x of size N over the natural numbers. The logialvariables i, j, and k range over the subrange 0::(N � 1). The operation max (x)returns the maximal element in the array x. Initially, eah P (i) is in the ontrolstate sleeping, and for eah i, x(i) = 0. Let hx; ii � hy; ji be de�ned as the lex-iographi ordering x < y _ (x = y ^ i � j). We abbreviate y = 0_ hx; ii � hy; jias hx; ii � hy; ji.The transitions of proesses P (i) for 0 � i < N are interleaved and eahnon-stuttering transition exeutes one of the following guarded ommands.p(i) = sleeping �! x0(i) = 1 +max (x);p0(i) = trying;[℄ p(i) = trying^ (8j : hx(i); ii � hx(j); ji) �! p0(i) = ritial;[℄ p(i) = ritial �! x0(i) = 0;p0(i) = sleeping;We want to prove the invariane property(8i : p(i) = ritial � (8j : p(j) = ritial � i = j)): (1)Invariant generation tehniques an be used to generate trivial invariantssuh as (8i : x(i) = 0 i� p(i) = sleeping): (2)We omit the details of the invariant generation step. The above invariant willprove useful in the next stage of the analysis.We next skolemize the mutual exlusion statement so as to obtain a orret-ness goal about a spei� but arbitrary i whih we all a. The main invariantnow beomesp(a) = ritial � (8j : p(j) = ritial� a = j) (3)The goal now is to redue the N -proess protool to a two proess protoolonsisting of proess a and another proess b that is an existential abstration ofthe remaining N�1 proesses. By an existential abstration, we mean one wherethe N�1 proesses are represented by a single proess b suh that a transition byany of the N � 1 proesses is mapped to a orresponding transition of b. In suhan abstration, b is in ontrol state ritial if any one of the N�1 proesses isritial. Otherwise, b is in ontrol state trying if none of the N � 1 proesses isin the state ritial and at least one of them is in its trying state. If none ofthe N � 1 proess is either trying or ritial, then b is in its sleeping state.10

By examining the prediates appearing in the initialization, guards, and theproperty, we an diretly obtain the following abstration prediates given bythe funtion whih maps abstrat variables to the orresponding onreteprediates: (pa) = p(a)(pb) = if (9j : j 6= a ^ p(j) = ritial)then ritialelsif (9j : j 6= a ^ p(j) = trying)then tryingelse sleeping(xa0) = (x(a) = 0)(xb0) = (8j : j 6= a � x(j) = 0)(ma) = (8j : hx(a); ai � hx(j); ji)(mb) = (9j : (8k : hx(j); ji � hx(k); ki)(ea) = (8j : p(j) = ritial � a = j)Sine mb is only relevant when p(j) = trying for j 6= a, we an use invari-ant (2) to prove thatj 6= a ^ p(j) 6= sleeping � (mb) = (:ma)thereby dispensing with mb in the abstration.With the above abstration mapping, the goal invariant (3) beomespa = ritial� ea:and the resulting abstrated transition system is one where initiallypa = sleeping ^ pb = sleeping ^ xa0 ^ xb0 ^ma ^ eaEah non-stuttering step in the omputation of the abstrat program exeutesone of the guarded ommands shown in Figure 1.Model heking the abstrat protool fails to verify the invariantpa = ritial � eaas the model heker ould generate the following ounterexample sequene oftransitions: transition pa xa ma ea pb xbinitially sleeping true true true sleeping true3 sleeping true false true trying false4 sleeping true false false ritial false1 trying false false false ritial false8 trying false true false ritial false2 ritial false true false ritial false11

pa = sleeping �! xa0 = false;ma0 = xb;pa0 = trying;[℄ pa = trying ^ma �! pa0 = ritial;[℄ pa = ritial �! pa0 = sleeping;ma0 = xb;ea0 = :(pb = ritial);xa0 = true;[℄ pb = sleeping �! pb0 = trying; xb0 = false;ma0 = :xa[℄ pb = trying ^ :ma �! pb0 = ritial; ea0 = false;[℄ pb = ritial �! pb0 = sleeping;ea0 = true;ma0 = true;xb0 = true;[℄ pb = ritial �! pb0 = trying;ea0 = true;ma0 2 ftrue;mag;[℄ pb = ritial �! ma0 2 ftrue;mag;Fig. 1. Abstrat transitions for the N-proess Bakery AlgorithmAn inspetion of the ounterexample and the abstrat model on�rms thatthe mutual exlusion invariant would follow if the invariant :xa^ma � ea wereto hold. Mapped bak in the onrete domain, this orresponds to8i : x(i) 6= 0^(8j : x(j) = 0_hx(i); ii � hx(j); ji) � (8j : p(j) = ritial � i = j):This goal an be generalized as(8i; j : x(i) 6= 0^(x(j) = 0_hx(i); ii) � hx(j); ji � (p(j) = ritial� i = j)):and further rearranged as(8i; j : p(j) = ritial � (x(i) 6= 0^(x(j) = 0_hx(i); ii � hx(j); ji)) � i = j):By the invariant (2), we an eliminate the subformula x(j) = 0 and simplify thegoal to the equivalent formula(8i; j : p(j) = ritial � x(i) = 0 _ hx(j); ji � hx(i); ii):This an be rearranged as(8j : p(j) = ritial � (8i : x(i) = 0 _ hx(j); ji � hx(i); ii)):But this is the just the invariant pa = ritial � ma whih is already impliedby the abstrat model.The safety property is thus veri�ed by using a judiious ombination of asmall amount of theorem proving and model heking. The abstrations were12

suggested by the prediates in the text of the program. Simple invariant gener-ation methods were adequate for generating trivial invariants. Theorem provingin the ontext of these invariants ould be used to disharge the proof obli-gations needed to onstrut an aurate abstration of the N-proess protool.Abstration mappings of this sort are quite standard and work for many mu-tual exlusion and ahe onsisteny algorithms [Sha97℄. The abstrat model didnot disharge the main safety invariant but it was easy to extrat the minimalondition needed to verify the invariant from the abstrat model. A reahabilityanalysis of the abstrat model delivered enough useful invariants so that a smallamount of theorem proving ould disharge this ondition. Neither the modelheking nor the theorem proving used here is espeially diÆult. While someguidane is needed in seleting lemmas and onjetures, the proofs of these anbe arried out with substantial automation.3 ConlusionWe have argued that veri�ation tehnology is best employed as an analysistehnique to generate properties of spei�ations and programs rather than asa method for establishing the orretness of spei� properties. Suh a sym-boli analysis framework an employ both theorem proving and model hekingas appropriate to generate useful abstrations and automatially derive systemproperties.Many ideas remain to be explored within the symboli analysis framework.The onstrution of the symboli analysis laboratory SAL as an open frameworkwill support the exploration of ideas at the interfae of theorem proving andmodel heking.Aknowledgments. Many ollaborators and olleagues have ontributed ideasand ode to the SAL language and framework, inluding Saddek Bensalem,David Dill, Tom Henzinger, Lua de Alfaro, Vijay Ganesh, Yassine Lakhneh,Cesar Mu~noz, Sam Owre, Harald Rue�, John Rushby, Vlad Rusu, Hassen Sa��di,Eli Singerman, Mandayam Srivas, Jens Skakkeb�k, and Ashish Tiwari. JohnRushby read an earlier draft of the paper and suggested numerous improve-ments.Referenes[AH96℄ Rajeev Alur and Thomas A. Henzinger. Reative modules. In Proeedings,11th Annual IEEE Symposium on Logi in Computer Siene, pages 207{218, New Brunswik, New Jersey, 27{30 July 1996. IEEE Computer SoietyPress.[BBLS92℄ Saddek Bensalem, Ahmed Bouajjani, Claire Loiseaux, and Joseph Sifakis.Property preserving simulations. In Computer-Aided Veri�ation, CAV '92,volume 630 of Leture Notes in Computer Siene, pages 260{273, Montr�eal,Canada, June 1992. Springer-Verlag. Extended version available with title\Property Preserving Abstrations.".13

[BBM97℄ Nikolaj Bj�rner, I. Ana Browne, and Zohar Manna. Automati generationof invariants and intermediate assertions. Theoretial Computer Siene,173(1):49{87, 1997.[BCM+92℄ J. R. Burh, E. M. Clarke, K. L. MMillan, D. L. Dill, and L. J. Hwang.Symboli model heking: 1020 states and beyond. Information and Com-putation, 98(2):142{170, June 1992.[BDL96℄ Clark Barrett, David Dill, and Jeremy Levitt. Validity heking for ombi-nations of theories with equality. In Mandayam Srivas and Albert Camilleri,editors, Formal Methods in Computer-Aided Design (FMCAD '96), volume1166 of Leture Notes in Computer Siene, pages 187{201, Palo Alto, CA,November 1996. Springer-Verlag.[BG92℄ G. Berry and G. Gonthier. The Esterel synhronous programming language:Design, semantis, and implementation. Siene of Computer Programming,19(2):87{152, 1992.[BL99℄ Saddek Bensalem and Yassine Lakhneh. Automati generation of invari-ants. Formal Methods in Systems Design, 15(1):75{92, July 1999.[BLO98℄ Saddek Bensalem, Yassine Lakhneh, and Sam Owre. Computing abstra-tions of in�nite state systems ompositionally and automatially. In Hu andVardi [HV98℄, pages 319{331.[BLS96℄ Saddek Bensalem, Yassine Lakhneh, and Hassen Sa��di. Powerful tehniquesfor the automati generation of invariants. In Rajeev Alur and Thomas A.Henzinger, editors, Computer-Aided Veri�ation, CAV '96, volume 1102 ofLeture Notes in Computer Siene, pages 323{335, New Brunswik, NJ,July/August 1996. Springer-Verlag.[CC77℄ P. Cousot and R. Cousot. Abstrat interpretation: a uni�ed lattie modelfor stati analysis. In 4th ACM Symposium on Priniples of ProgrammingLanguages. Assoiation for Computing Mahinery, January 1977.[CGL94℄ Edmund M. Clarke, Orna Grumberg, and David E. Long. Model hek-ing and abstration. ACM Transations on Programming Languages andSystems, 16(5):1512{1542, September 1994.[CGP99℄ E. M. Clarke, Orna Grumberg, and Doron Peled. Model Cheking. MITPress, 1999.[CH78℄ P. Cousot and N. Halbwahs. Automati disovery of linear restraints amongvariables. In 5th ACM Symposium on Priniples of Programming Languages.Assoiation for Computing Mahinery, January 1978.[CM88℄ K. Mani Chandy and Jayadev Misra. Parallel Program Design: A Founda-tion. Addison-Wesley, Reading, MA, 1988.[CU98℄ M. A. Col on and T. E. Uribe. Generating �nite-state abstrations of re-ative systems using deidion proedures. In Hu and Vardi [HV98℄, pages293{304.[Dam96℄ Dennis Ren�e Dams. Abstrat Interpretation and Partition Re�nement forModel Cheking. PhD thesis, Eindhoven University of Tehnology, P.O. Box513, 5600 MB Eindhoven, The Netherlands, July 1996.[DDP99℄ Satyaki Das, David L. Dill, and Seungjoon Park. Experiene with prediateabstration. In Halbwahs and Peled [HP99℄, pages 160{171.[Det96℄ David L. Detlefs. An overview of the Extended Stati Cheking system. InFirst Workshop on Formal Methods in Software Pratie (FMSP '96), pages1{9, San Diego, CA, January 1996. Assoiation for Computing Mahinery.[DF95℄ J�urgen Dingel and Thomas Filkorn. Model heking for in�nite state sys-tems using data abstration, assumption-ommitment style reasoning andtheorem proving. In Computer-Aided Veri�ation 95, 1995. This volume.14

[DGG94℄ Dennis Dams, Orna Grumberg, and Rob Gerth. Abstrat interpretationof reative systems: Abstrations preserving 8CTL*, 9CTL* and CTL*. InErnst-R�udiger Olderog, editor, Programming Conepts, Methods and Caluli(PROCOMET '94), pages 561{581, 1994.[GM93℄ M. J. C. Gordon and T. F. Melham, editors. Introdution to HOL: A The-orem Proving Environment for Higher-Order Logi. Cambridge UniversityPress, Cambridge, UK, 1993.[GW75℄ S. M. German and B. Wegbreit. A synthesizer for indutive assertions.IEEE Transations on Software Engineering, 1(1):68{75, Marh 1975.[HCRP91℄ N. Halbwahs, P. Caspi, P. Raymond, and D. Pilaud. The syn-hronous dataow programming language Lustre. Proeedings of the IEEE,79(9):1305{1320, September 1991.[HP99℄ Niolas Halbwahs and Doron Peled, editors. Computer-Aided Veri�ation,CAV '99, volume 1633 of Leture Notes in Computer Siene, Trento, Italy,July 1999. Springer-Verlag.[HSV94℄ L. Helmink, M. P. A. Sellink, and F. W. Vaandrager. Proof-heking adata link protool. Tehnial Report CS-R9420, Centrum voor Wiskundeen Informatia (CWI), Amsterdam, The Netherlands, Marh 1994.[HV98℄ Alan J. Hu and Moshe Y. Vardi, editors. Computer-Aided Veri�ation,CAV '98, volume 1427 of Leture Notes in Computer Siene, Vanouver,Canada, June 1998. Springer-Verlag.[Jan93℄ G. Janssen. ROBDD Software. Department of Eletrial Engineering, Eind-hoven University of Tehnology, Otober 1993.[JS93℄ Je�rey J. Joye and Carl-Johan H. Seger. Linking BDD-based symbolievaluation to interative theorem proving. In Proeedings of the 30th DesignAutomation Conferene. Assoiation for Computing Mahinery, 1993.[KM76℄ S. Katz and Z. Manna. Logial analysis of programs. Communiations ofthe ACM, 19(4):188{206, 1976.[Kur94℄ R. P. Kurshan. Computer-Aided Veri�ation of Coordinating Proesses|The Automata-Theoreti Approah. Prineton University Press, Prineton,NJ, 1994.[Lam74℄ Leslie Lamport. A new solution of Dijkstra's onurrent programming prob-lem. Communiations of the ACM, 17(8):453{455, August 1974.[LGS+95℄ C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Propertypreserving abstrations for the veri�ation of onurrent systems. FormalMethods in System Design, 6:11{44, 1995.[MBSU99℄ Zohar Manna, Ana Browne, Henny B. Sipma, and Tom�as E. Uribe. Visualabstrations for temporal veri�ation. In Armando M. Haeberer, editor, Al-gebrai Methodology and Software Tehnology, AMAST'98, volume 1548 ofLeture Notes in Computer Siene, pages 28{41, Amazonia, Brazil, January1999. Springer-Verlag.[MM93℄ Kenneth L. MMillan. Symboli Model Cheking. Kluwer Aademi Pub-lishers, Boston, MA, 1993.[MM99℄ K. L. MMillan. Veri�ation of in�nite state systems by ompositionalmodel heking. In Laurene Pierre and Thomas Kropf, editors, CorretHardware Design and Veri�ation Methods, number 1703 in Leture Notesin Computer Siene, pages 219{233. Springer Verlag, September 1999.[MD93℄ Ralph Melton and David L. Dill. Mur� Annotated Referene Manual. Com-puter Siene Department, Stanford University, Stanford, CA, Marh 1993.15

[MQS00℄ K. MMillan, S. Qadeer, and J. Saxe. Indution in ompositional modelheking. In E. A. Emerson and A. P. Sistla, editors, Computer-Aided Ver-i�ation, Leture Notes in Computer Siene. Springer Verlag, 2000. Toappear.[MtSG95℄ Z. Manna and the STeP Group. STeP: The Stanford Temporal Prover.In Peter D. Mosses, Mogens Nielsen, and Mihael I. Shwartzbah, editors,TAPSOFT '95: Theory and Pratie of Software Development, volume 915of Leture Notes in Computer Siene, pages 793{794, Aarhus, Denmark,May 1995. Springer Verlag.[ORS92℄ Sam Owre, John M. Rushby, and Natarajan Shankar. PVS: A prototype ver-i�ation system. In Deepak Kapur, editor, Automated Dedution - CADE-11, 11th International Conferene on Automated Dedution, Leture Notesin Arti�al Intelligene, pages 748{752. Springer Verlag, June 1992.[Par76℄ David Park. Finiteness is mu-ine�able. Theoretial Computer Siene,3:173{181, 1976.[RS00℄ H. Rue� and N. Shankar. Deonstruting Shostak. Available fromhttp://www.sl.sri.om/shankar/shostak2000.ps.gz., January 2000.[RSS95℄ S. Rajan, N. Shankar, and M.K. Srivas. An integration of model-hekingwith automated proof heking. In Pierre Wolper, editor, Computer-AidedVeri�ation, CAV '95, volume 939 of Leture Notes in Computer Siene,pages 84{97, Liege, Belgium, June 1995. Springer-Verlag.[Sa��96℄ Hassen Sa��di. A tool for proving invariane properties of onurrent systemsautomatially. In Tools and Algorithms for the Constrution and Analysisof Systems TACAS '96, volume 1055 of Leture Notes in Computer Siene,pages 412{416, Passau, Germany, Marh 1996. Springer-Verlag.[Seg98℄ Carl-Johan H. Seger. Formal methods in CAD from an industrial perspe-tive. In Ganesh Gopalakrishnan and Phillip Windley, editors, Formal Meth-ods in Computer-Aided Design (FMCAD '98), volume 1522 of Leture Notesin Computer Siene, Palo Alto, CA, November 1998. Springer-Verlag.[SG97℄ Hassen Sa��di and Susanne Graf. Constrution of abstrat state graphs withPVS. In Orna Grumberg, editor, Computer-Aided Veri�ation, CAV '97,volume 1254 of Leture Notes in Computer Siene, pages 72{83, Haifa,Israel, June 1997. Springer-Verlag.[Sha97℄ N. Shankar. Mahine-assisted veri�ation using theorem proving and modelheking. In M. Broy and Birgit Shieder, editors, Mathematial Methods inProgram Development, volume 158 of NATO ASI Series F: Computer andSystems Siene, pages 499{528. Springer, 1997.[SI77℄ N. Suzuki and K. Ishihata. Implementation of an array bound heker.In 4th ACM Symposium on Priniples of Programming Languages, pages132{143, January 1977.[SS99℄ Hassen Sa��di and N. Shankar. Abstrat and model hek while you prove.In Halbwahs and Peled [HP99℄, pages 443{454.
16

