TCP SYN Flooding Defense*

Livio Ricciulli Patrick Lincoln
{livio,lincoln }@csl.sri.com
Computer Science Laboratory
SRI International
333 Ravenswood Avenue
Meunlo Park, CA 94025

Keywords: SYN flooding, Random drop, Dis-
tributed simulation, TCP signaling, TCP denial-of-
service
Abstract

The TCP SYN flooding denial-of-service attack
pointed out a weakness of then-current Internet pro-
tocols. There have since been many proposals to de-
fend against SYN flooding, some requiring significant
changes to TCP. Several solutions attempting to re-
solve the TCP weakness are now generally available.
We document these existing solutions and qualitatively
compare them. We refine the analysis of the random
drop approach and derive a simple and general way
to improve its performance. Finally we show, through
both analytical and packet-level simulations, the effi-
cacy of the random drop approach in a variety of op-
erating conditions.

1 Introduction

The TCP SYN flooding denial-of-service attack
hinders the signaling mechanism that is used to es-
tablish TCP connections. HTTP and FTP are ex-
amples of two widely used TCP-based protocols that
are becoming more important for the exchange of in-
formation over the Internet and that are affected by
this type of denial-of-service. SYN flooding attacks
are performed by the attacker submitting a stream of
TCP SYN (connection request) packets to the target
system, filling its connection request queue, and thus
reducing (or eliminating) the target system’s ability to
respond to legitimate connection requests. The com-
mon TCP timeout for unsuccessful connections is sev-
eral tens of seconds; thus an attacker can leisurely
fill the TCP SYN queue before earlier SYNs time
out. The SYN flooding denial-of-service attack, if not
dealt with properly, requires very little computation

This work was supported by the Defense Advanced Re-
search Projects Agency, under contract number DABT63-97-
C0040.

Pankaj Kakkar
pankaj@Qcsl.sri.com

Dept of Computer and Information Science

University of Pennsylvania
200 S 33rd St
Philadelphia, PA 19104

and bandwidth commitment from malicious users. Al-
though SYN flooding requires an attacker to continu-
ously flood a target (otherwise within a few minutes
the target will revert to normal operation), it is diffi-
cult to trace to the source of SYNs. Thus, SYN flood-
ing remains a viable attack.

Potential loss of revenue caused by preempting re-
liable TCP communication is enormous, and there-
fore adequate mechanisms for dealing with SYN flood-
ing should be sought. Current SYN flooding defense
mechanisms seem to have greatly mitigated the prob-
lem by making it harder for an attacker to negatively
affect service. The most popular approach [2] solves
the problem by “brute” force. In this approach the
TCP “connection pending” data structure is made
so large that an average attacker, to be successful,
would need to flood connection requests at a rate ex-
ceeding reasonable bandwidth capabilities. This solu-
tion, although sometimes very practical, requires large
amounts of protected kernel memory and may slow
down the server response time for looking up con-
nections in the vast “connection pending” data struc-
ture. Other less popular techniques use one-way hash
functions (cookies) to verify the authenticity of con-
nection requests and therefore eliminate unnecessary
memory allocation [3]. Some of these latter tech-
niques can introduce changes in the TCP signaling
behavior and are therefore less favored. Firewall ap-
proaches actively monitor the TCP signaling traffic
to detect possible attacks and inject ad-hoc signal-
ing messages in the network to mitigate the denial-of-
service. These approaches are awkward because they
introduce additional administrative complexity, may
introduce significant delays for legitimate connection
establishment, or may expose the system to different,
though arguably less severe, kinds of vulnerabilities.

No one mechanism seems to provide an optimal so-
lution, and thus an approach should be constructed
by using a combination of techniques. In particular,
both the brute force approach and some of the firewall

mechanisms could be greatly improved if they were to
be coupled with some kind of admission control mech-
anism that can optimize, in a probabilistic sense, their
resource utilization.

To this end, we revisit a well-known defense mech-
anism (random drop) and show its effectiveness. This
mechanism, in its simplest form, always accommo-
dates new SYNs and drops at random a connection-
pending entry if the connection pending data structure
is full. The rationale is that even though legitimate
entries may be forced out by spoofed SYNs, one can
probabilistically guarantee success. The performance
of the random drop scheme has been incorrectly as-
sessed through defective models, and its performance
has been underestimated. The main contribution of
this paper is to provide a detailed analytical model
for characterization of the random drop scheme and
to provide the specification of an “early drop” filter to
improve its overall performance.

Section 2 of this paper reviews some popular SYN
flooding defense mechanisms and introduces our re-
vised version of random drop. Section 3 qualitatively
compares the defense mechanism outlined in Section 2
with respect to key properties that characterize their
effectiveness. Section 4 details an analytical study of
the random drop scheme applied to TCP signaling
admission control. Section 5 reports on some high-
fidelity simulation of the random drop scheme. We
present our conclusions in Section 6.

2 SYN Flooding Defenses

A normal TCP connection is established by a three-
step handshake protocol. The initiator (the client)
sends a SYN message; the responder (the server) sends
a SYNACK message back to the client and waits for
the third and final message (ACK) from the client. In
a SYN flooding attack the client is spoofed, and the
SYNACK message is simply lost in the network. The
server, therefore, keeps waiting in vain for an ACK
and keeps a queue entry allocated for several seconds.

In a proactive approach, adequate monitoring of
the network traffic can detect patterns that indicate a
possible attempt to deny service through TCP flood-
ing. Upon detection of the anomaly, the attacker can
then be isolated from the network and prosecuted.

In some situations, the inter-domain cooperation
necessary to trace an attacker may not be possible.
Thus, it is necessary to adopt some local defense mech-
anisms. In this more reactive approach, the malicious
requests are allowed to reach the target server, which
can react to anomalous conditions and turn on spe-
cific mechanisms aimed at minimizing the impact of
the denial-of-service attacks. Several such mechanisms

have been proposed, each of which has tradeoffs with
respect to effectiveness, robustness, and resource re-
quirements.

Berkeley Cookie Berkeley Software Design Inc.’s
solution [2] increased the capacity of storing outstand-
ing connection pending entries, thus requiring that an
attacker send a much greater number of SYNs. This
mechanism offers limited protection, essentially just
increasing the cost of an attack. The parameters cho-
sen by the developers are well suited for today’s net-
work technology and, although requiring the server to
devote more resources to prevent the SYN attacks,
they seem to be adequate to discourage attacks car-
ried out by individuals with limited bandwidth at their
disposal. Coordinated attacks or attacks carried out
from high-bandwidth links could still circumvent this
defense mechanism. Although the Berkeley Cookie
scheme does not semantically solve the SYN flooding
problem, we believe it is the best current approach
for defending large and heavyweight TCP servers (like
WWW servers) with large amounts of kernel memory
space.

Linux Cookies This idea was proposed initially by
Bernstein and Bona [5] and later refined through a
discussion in [1]. In this approach, the incoming
SYN'’s sequence number, and the source and desti-
nation addresses are combined with a secret number
(which is changed at regular intervals) and are run
through a one-way hash function. The resulting cookie
is used as the sequence number of the reply. The re-
play (SYNACK) is then sent to the source, using the
cookie, but no record is kept locally of the connection
request. If and when the ACK arrives from the source
as the third step of the handshake, the sequence num-
ber of the received message is used to authenticate
the source. If the source is properly authenticated,
the connection is established; otherwise, the ACK is
discarded.

The scheme exchanges memory for CPU time,
which makes sense because CPU time is much cheaper
than memory. The biggest problem with this approach
is that it breaks TCP semantics by not letting the
server retransmit SYNACKS in case of packet loss.
Other minor problems include loss of the initial round
trip time measurement and the incoming maximum
segment size, but those can be circumvented.

Reset Cookie Shenk [11] has devised a mechanism
that, while not requiring changes to TCP, allows a
server under attack to establish security associations

with clients before connection requests are processed.
In this approach, when the server is under attack and
it receives a SYN packet, it will first see if the client
had previously established a security association. If
the client has a security association, the SYN is pro-
cessed normally; if not, the server triggers a mecha-
nism to create a security association with the client
and discards the received SYN. The creation of the
security association is triggered by the server. The
server sends to the client an illegal SYNACK message
with its sequence number replaced by a cookie.

In this scenario, according to the standard TCP
specifications, the client responds to the anomalous
SYNACK with a TCP reset (RST) bearing the server’s
cookie. When the server receives the reset, it veri-
fies the cookie and records a security association with
that particular client. This mechanism is backward
compatible, it does not permit the unwarranted allo-
cation of resources on the server 2 but has the obvious
drawback of significantly increasing the first connec-
tion setup time. Servers with a small turn-around time
with millions of clients like popular WWW services
may significantly reduce their response time.

Random Drop Random drop can be seen as a
generic, simple, and effective admission control mecha-
nism for systems that support preemption and cannot
support the storing of large amounts of state upon
which to base admission decisions. We revisit ran-
dom drop as a fourth SYN flooding defense solution.
Although this idea has been already proposed and im-
plemented [4, 7], it has not been correctly analyzed
and assessed. Random drop maintains the TCP con-
nection establishment protocol unchanged and allows
the flexible tradeoff of defense effectiveness with re-
source requirements. In addition, this mechanism can
be used in isolation or in conjunction with the Berke-
ley cookie scheme to dramatically reduce memory re-
quirements.

In the random drop approach, when a SYN message
reaches a server with a full connection pending queue,
it replaces one of the pending requests chosen at ran-
dom. The client whose connection entry is dropped
is notified with a RST. If the replaced entry was pre-
viously generated by the attacker, the RST is simply
lost in the network. If the replaced entry was from a
legitimate client, the RST will cause the client’s first
attempt to communicate with the server to fail (re-
turning end of file). The rationale for this approach
is that by making the queue large enough, a server

2the number of security associations is proportional to the
number of good clients only

Table 1: SYN Flooding Defense Mechanisms Compar-
ison

BSDI Linux Reset Random

Cookies | Cookies | Cookies Drop
Guarantee NO YES YES Prob.
Memory NO YES YES YES
Immunity
Computing NO NO NO YES
Immunity
Robustness YES NO YES YES
Good YES YES NO YES
Performance

under attack can still offer an arbitrarily high prob-
ability of successful connection establishment. The
obvious drawback is that the attacker can still occa-
sionally deny connection establishment to a legitimate
client. As we will see in the following Sections, both
new analytical models and experimental evidence con-
firm that this scheme is extremely resilient to very high
bandwidth attacks (or coordinated attacks) or attacks
carried out against clients with relatively small con-
nection pending queues.

3 Qualitative Comparison

The four approaches we described all have pros and
cons and therefore should be carefully compared for an
understanding of the tradeoffs. To this end, we sum-
marize the key characteristic differences in the four
approaches with respect to some main attributes. The
first attribute, Guarantee, is the ability of the mech-
anism to provide availability to the clients in worst-
case scenarios. This is perhaps the most important
attribute because it directly impacts the usefulness of
the mechanism. The Memory and Computing Immu-
nity attributes signals when the server employing the
mechanism cannot be forced to spend more memory
or computing resources in proportion to the volume of
SYNs sent by an attacker (for example, by comput-
ing cookies or allocating table entries as a result of
malicious SYNs). The fourth attribute, Robustness,
signals when a mechanism causes the TCP signaling
semantics to be partially compromised. Finally, Good
Performance, estimates whether a mechanism does
not significantly affect TCP performance. Although
these attributes are open to different interpretations
that could result in completely different characteriza-
tions, in table 1 we report our intuitive analysis.

As shown in the table no mechanism is optimal.
The BSDI approach fails to guarantee service and can
be forced to compute cookies by an adversary. Al-
though we listed this approach as providing robust-
ness, we should point out that to reduce the size of the

connection pending data structure this technique of-
ten also reduces the timeout that triggers the garbage
collection of non-acknowledge SYN-ACKs. We do be-
lieve that the current TCP standard timeout of 75
seconds is a bit extreme but, for fairness, we should
point out that lowering the garbage collection timeout
could be interpreted as compromising the robustness
of the approach.

The Linux cookie scheme guarantees service, but
it is vulnerable to computing immunity compromises
and, most importantly can compromise the TCP sig-
naling semantics. Because no record is kept of re-
ceived SYN messages, the server cannot retransmit
SYN-ACKs to the client. If the last ACK message
sent to the server is lost because of congestion, the
client enters a state that is not directly addressed by
the TCP standard and that can therefore compromise
proper operation. The reset cookies scheme is the only
one that provides both guarantee and robustness but
fails in performance-related attributes. Finally, in our
interpretation, the random drop scheme has the only
drawback of guaranteeing service in a probabilistic,
but not absolute, manner?®

4 Random Drop Revisited

Randomly dropping connection pending entries
when the queue is filled by SYN requests was one of
the first proposed defense mechanisms. In the origi-
nal formulation, the server simply replaces at random
one of the entries in the queue and lets the client time
out and later retry the connection with another SYN.
To maximize the overall response time of a server un-
der attack, this mechanism was modified by having the
server send a RST message to the client. With this ad-
dition, if a client’s SYN entry happens to be dropped
by the server, the client is notified immediately with
an EQOF signal at the application level. Subsequently,
the client can retry the connection establishment until
the connection goes through (we will show, both ana-
lytically and experimentally, that with a finely tuned
dropping scheme, a client is guaranteed connection es-
tablishment under most conditions).

4.1 Revised Analytical Model

It has been proposed that the rate of successful con-
nection establishment C,04 in a random drop scheme
is

Cyood = Ryooa(1 — 1/q)(Rgoad+Rbad)T (1)

where Rg,,q4 and T are the average rate of arrival and
the average round-trip time of all clients attempting a

3Most communication services today only offer probabilis-
tic guarantees and therefore this drawback could be cast as a
normal expected characteristic of the network.

connection to the server, ¢ is the size of the connection
pending queue, and Ry,4 is the constant rate at which
spoofed SYNs arrive to the server. The expression
(1—1/q) is the probability that a new arrival will not
cause an existing entry to be dropped. Because each
arrival is statistically independent, by elevating (1 —
1/q) to the power of the number of expected arrivals
during the servicing of the requests ((Rgo0d + Rpad)T),
one can find the probability that a legitimate request
will succeed.

An initial objection to equation 1 is that for a queue
of size 1 it would wrongly predict a 100% success rate
for the legitimate users. For this reason ¢ should be
really defined as the size of the connection pending
queue plus 1. Another minor inaccuracy of equation
1 is that it does not take into account the fact that
spoofed TCP SYNs expire after 70 seconds thus free-
ing some queue space. In practice both of these facts
have a very small impact on the estimate of Cy,,4 and,
therefore, for the remainder of the paper we will ignore
them.

It is important to note, though, that the above es-
timate is grossly pessimistic because it does not take
into account the fact that when successful connections
are completed, entries are removed from the queue
to mitigate the replacement probability. This phe-
nomenon, which we accurately reproduced by analyt-
ical simulation, can be modeled with the expression

Cgood = -Rgood(1 - 1/q)(ngd+Rbadiogwd)T (2)

which reduces the frequency at which connections are
randomly knocked out by the rate of success (Cyooq)-

All current TCP SYN admission control schemes
drop all incoming SYNs when the receive queue is full.
Equation 2 models a scheme in which incoming SYNs
that find a full queue always cause some other entry in
the queue to be dropped. Intuitively, one could guess
that the best solution is somewhere in between these
two extremes.

Preempting existing entries is not always best, be-
cause in some situations the queue may contain a large
number of legitimate clients. In fact, Rpqq is 0 when
there are no SYN flooding attacks or other network
problems leading to similar behavior. Obviously, well-
intentioned connection requests should not be evicted,
even if the queue gets full. In other words, we should
maximize the chance that legitimate users be given
the possibility of completing a connection if possible.
To model the above idea, we introduce a factor K that
determines the probability that any incoming SYN is
accepted in the queue. This modifies equation 2 to

Connection Probability for T=1 second and q=128

0.4 T T T T T T T
|
| _
035 _I|I‘| 1\ Rg/Rb=8, 4,2, 1, 1/2,1/4,1/8 |
0) W K=-1In(Q)(Rg+Rb)T
.3 [| AR\
| - -
- —||| | ‘\ W K=1
2 o2 AN
= i\ AR A\
§ 02 A\
IR ECE S AN
fan P\ \\ N
01! AN
8 I\‘ \ N N
— \ \ N
005 [1\ \ S~
g \ \\ N = =
E 0 S e B S RS S S
8 100 200 300 400 500 600 700 800 900

Rb (SYNs/sec.)

Figure 1: Connection probabilities for high ratios of
spoofed SYNs

yield

Ogood — K x Rgood % (1 _ 1/q)(K(Rgood+Rbad)7cgood)T
(3)
This expression uses the parameter K (truncated to be
in the range [0 1], to modulate the rate at which both
legitimate users and spoofed packets are accepted. To
find the optimal value for K, we differentiate equation

3 and set d%’—;’d to zero. Solving then for K we get
-1
K= (4)

ln(l — 1/Q)(Rgood + Rbad)T

Equation 4 suggests that a simple filtering tech-
nique could be used to maximize (or minimize if ex-
pressing a minimum) the connection rate of legitimate
users. Through both further analytical derivation and
empirical evidence (See Figure 1) it can be shown that
this indeed an expression to maximize (not minimize)
the success rate.

It is interesting that the filter only requires knowl-
edge of the total incoming SYN rate and can therefore
easily be implemented by recording the inter-arrival
periods and combining them with simple integer arith-
metic.

To demonstrate the effectiveness of the random
drop scheme augmented by early drop filtering, we
conducted some analytical simulations that plot the
probability of success of legitimate users as a function
of Rgo0a and Ryqq for a fixed time T.

Figure 1 shows the client success rates for the two
different random drop systems: (1) K = 1 (i.e., no

-1

filtering), (2) K = =T/ Faeoa TR T (with filter-

ing). The simulated system has a queue size of 128

and a round trip delay time T of 1 second. These ex-
periments were designed to highlight the effectiveness
of the filtering, and therefore the parameters were cho-
sen to explore a region of operation where the spoofed
SYNs can greatly reduce the connection probability.

Although these worst-case conditions would seldom
be encountered in practice, these results show that,
in these cases, random drop with filtering is strictly
better than random drop with no filtering. In addi-
tion Figure 1 shows that even for extremely adverse
conditions (very high T and Ryp.q frequencies up to
300 SYNs/sec.) random drop augmented with filtering
would still guarantee some limited amount of service
to legitimate connection requests.

4.2 High-fidelity Simulation

We measure the performance of the random drop
scheme with a high-fidelity distributed simulation tool
developed in the ANCORS project [6]. ANCORS'’s
simulation and prototyping environment was obtained
by modifying a Linux operating system to allow its
execution in user mode. The modifications of the op-
erating system substituted the lower-level hardware-
dependent procedures and interfaces with user-level
counterparts. We deleted the file system support and
incorporated all necessary configuration procedures
(like ifconfig and route) into the service itself. Mem-
ory management was completely deleted and replaced
by user-level memory allocation functions (malloc and
free). The scheduling was also completely replaced
by nonpreemptive threading offered by the simulation
package CSIM [10].

The resulting service executes on a virtual
timescale, and offers networking behavior identical to
that of a real Linux kernel, providing a vehicle to in-
stantiate high-fidelity distributed simulations of vir-
tual networks [8]. One of the model’s configuration
functions accepts several different timing configura-
tions to approximate the protocol stack timing behav-
ior of four different kernels (SunOS 4.13, SunOS 5.5,
Linux 2.02, and FreeBSD 2.2).

The virtual kernel offers the network application
programming interface (API) of the real Linux coun-
terpart and therefore can be used to reproduce a wide
range of loading conditions. ANCORS’s ability to add
and delete threads can be used in this application to
dynamically change loading conditions (by adding or
deleting user-defined loading threads) or by injecting
user-defined monitoring probes into the kernel so that
specific parameters can be observed.

4.3 Simulated Network

Twelve workstations were configured, each with an
ANCORS virtual host and were arranged in the topol-

0000 _®
0066 [

Figure 2: Simulated network

ogy depicted in Figure 2. Four clients Cy, Cs,C5 and
C, generate TCP connection requests to the server
S1, send data requests to the server, receive data from
the server, and then close the connection. This be-
havior reproduces a typical scenario where an HTTP
server replies to HT'TP GET requests from a num-
ber of clients. The client and server replies are routed
through nodes R; and Ry, which simply forward the
data back and forth. Four additional hosts L, Lo, L
and L, and another server Sy communicate through
router Ry, thus causing congestion and routing delay.
By varying the amount of data exchanged between
Ly,Ls, L3 and L4 and server Sy, one can adjust the
level of congestion in the experiments. L, also serves
as the host from which the SYN attack is launched
against Si.
4.4 Simulation Parameters

An important parameter for the experiments is the
determination of a reasonable rate at which an at-
tacker can send SYN packets to the server. We vary
this rate from 500 to 25 SYNs per second to cap-
ture typical rates that could be achieved on the In-
ternet. Note that although these rates only translate
to quite small effective bandwidths (a 60-byte SYN
packet would consume 30,000 and 600 Kbyte/s, re-
spectively) they capture the overheads that the pack-
ets may encounter in a realistic routing environment.

The routing delay encountered by the clients in all
SYN flooding defense mechanisms, except the BSD
cookie scheme, plays an important role in the effec-
tiveness of defense. All approaches suffer in differ-
ent ways from high routing delays. In the random
drop mechanism this delay determines the likelihood
that a malicious SYN may preempt a legal connection
request while it is being acknowledged by the client
(large T values). As the delay increases the probabil-
ity of a preemption also increases. In the Linux cookie
scheme, high routing delay and therefore high conges-
tion can cause the loss of the last ACK packet of the
TCP signaling handshake. If the last ACK packet is
lost, the client enters in a half-open state and may pay
a high penalty by having to time out on a reply from

Table 2: Random Drop Packet-level Simulation

Load | Rpeq | Model | Actual | T Total Loss due
Drop Rate (ms) | Loss to drop

high 25 3% 1.25% 109 11.16% | 0.48%

high 50 5% 2.25% 105 6% 0.88%

high 100 10% 5.5% 130
high 200 25% 13.75% | 179
high 250 31% 14% 185
high 333 43% 15.25% | 201
high 500 78% 16.25% | 336

22.29% | 2.21%
40.86% | 5.77%
44.11% | 5.73%
49.29% | 6.18%
63.37% | 7.93%

low 25 0.2 0% 8 -1.02% | 0%
low 50 0.5 0% 11.6 1.5% 0%
low 100 1% 0.5% 12.4 7.3% 0.24%
low 200 3 2.75 14 21.4% 1.3%
low 250 3% 3.25% 16.25 | 28.3% 1.57%
low 333 5% 5.25% 18 36.6% 1.91%
low 500 10% 8.25% 24 52.7% 3.91%

the server. In the reset cookie scheme, routing delay
proportionally deteriorates performance by a factor of
66% because two more messages are necessary for each
new client’s connection.

In assessing the performance of the random drop
scheme we chose to load our virtual network in such
a way that clients experience average delays of 50 to
200 ms. Although these delays may seem optimistic
and do not represent worst-case conditions, the queue
size could be increased in proportion to the expected
higher routing delays and thus outweigh higher values
of T.

4.5 Results

In these experiments the virtual clients Cy,Csy, Cs
and Cy each connect to server S; 100 times. For each
connection the clients send a small packet to the server
and receive a reply. This behavior tries to model the
downloading of a large HTML page containing nu-
merous HTTP objects. As the page is loaded, the
client opens a number of connections with the server
to download all the different parts of the page. The ex-
periments performed through our virtual network are
very revealing and further strengthen our belief that
random drop is an adequate defense mechanism.

Table 2 shows the predicted and actual rates of
connection drop for different loading conditions and
spoofed SYN rates. In the low congested network the
model agrees fairly accurately with the behavior. For
high SYN rates and high congestion the actual be-
havior is much better than analytically predicted. In
fact, in this case, as the SYN rates increase the ac-
tual behavior diverges more and more from the ana-
lytical model. This behavior is due, in large part, to
the fact that as the SYN rate increases in a highly
congested network, many spoofed messages are lost,
thus allowing higher-than-expected numbers of legiti-

mate connections to go through. We have to perform
more detailed experiments to further investigate this
important phenomenon because, if confirmed under a
wide range of loading conditions, may definitively ar-
gue that brute force defense approaches like the BSDI
cookie scheme or probabilistic approaches like the ran-
dom drop may be the best solutions.

Table 2 also shows the average performance degra-
dation of the four clients when the server is under
attack. We report the total loss in performance (due
to both failed connection retries and the congestion
caused by the SYN stream) and the performance loss
due to connection retries only. As shown in the ta-
ble, because we send RST messages upon a drop, the
drop rates translate to relatively low losses in perfor-
mance due to connection retries. Most of the perfor-
mance loss is due to the higher congestion introduced
by high SYN rates. Notice, though, that as the con-
gestion increases, both because of more legitimate user
traffic and more spoofed SYN traffic, the relatively low
drop rates translate into relatively high performance
losses. This occurs because in highly congested net-
works each connection retry takes longer and therefore
increasingly impacts overall performance.

Two important conclusions may be drawn from
these experiments. One result indicates that a brute
force defense approach or a more efficient probabilistic
approach like the random drop may be the best solu-
tion because very high SYN rates are not possible in a
realistic environment. Another result is that random
drop works well in both low congestion as well as high
congestion by keeping the clients performance losses
below 10% even for very high spoofed SYN rates.

5 Conclusion

We have qualitatively compared several mecha-
nisms to defend against the SYN flooding denial-of-
service attack and have shown that no solution is op-
timal. We revisited the adoption of the random drop
approach by producing a better analytical model of
its behavior in the context of defending against the
TCP SYN flooding attack. With the new model, we
derived a simple filter that can improve random drop
performance in worst-case scenarios. High-fidelity dis-
tributed packet-level simulations partially agree with
our analytical model and illustrate that in a real en-
vironment with high congestion the random drop ap-
proach would behave much better than expected. We
have also shown that performance loss due to connec-
tion retries stays well below 10% under a wide range
of loading conditions.

References
[1] Syncookies mailing list.
ftp: //koobera. math. uic. edu/pub/docs/
syncookies-archive, 1996.

[2] Inc. Berkeley Software Design. Bsdi releases defense for
internet denial-of-service attacks. http: //www. bsdi. com/
press/19961002. html , October 1996.

[3] D.J. Bernstein. Syn floods — a solution. http://www. op.
net/ “jaw/ syn-fiz. html, 1996.

[4] Alan Cox. Linux tcp changes for protection against the
syn attack. htip://www. weug. wwu. edu/ lists/netdev/
199609/ msg00091 . html , September 1996.

[5] Rex di Bona. Tcp syn attacks
- a simple solution. http://www. cctec. com/maillists/
nanog/historical/9610/msg00155. html , Oct 1996.

[6] P. Porras L. Ricciulli, N. Shacham. Ancors: Adaptable
network control and reporting system. SRI technical report
SRI-CSL-9801, 1998.

[7] Sun Microsystems. Sun’s tcp syn flooding solu-
tions. http://ciac. linl. gov/ciac/bulletins/h-02.
shtml , October 1996.

[8] L. Ricciulli. High-fidelity distributed simulation of local
area networks. Proceedings of the 31st Annual Simulation
Symposium, Boston, April 1998.

[9] C. L. Schuba, I. V. Krsul, M. G. Khun, E.H. Spafford,
A. Sundram, and D. Zamboni. Analysis of a denial of
service attack on tcp. 1997 IEEE Symposium on Security
and Privacy, 1997.

[10] H. Schwetman. CSIM: a C-based, process-oriented simula-
tion language. Technical report, MCC, 1989.

[11] E. Shenk. Another new thought on dealing with syn flood-
ing. http://www. wcug. wwu. edu/ lists/netdev/ 199609/
msg00171. html , Sept 1996.

