
[dBHdRR91] J. W. de Bakker, C. Huizing, W.P. de Roever, and G. Rozenberg,editors. Real Time: Theory in Practice, volume 600 of Lecture Notesin Computer Science, REX Workshop, Mook, The Netherlands, June1991. Springer Verlag.[HJL93] C. Heitmeyer, R. Je�ords, and B. Labaw. A benchmark for comparingdi�erent approaches for specifying and verifying real-time systems. InProc. Tenth IEEE Workshop on Real-Time Operating Systems andSoftware, New York, 1993.[HMP91] T. A. Henzinger, Z. Manna, and A. Pnueli. Timed transition systems.In de Bakker et al. [dBHdRR91], pages 226|251.[JM86] Farnam Jahanian and Aloysius Ka-Lau Mok. Safety analysis of tim-ing properties in real-time systems. IEEE Transactions on SoftwareEngineering, SE-12(9):890{904, September 1986.[Lam87] Leslie Lamport. A fast mutual exclusion algorithm. ACM Transac-tions on Computer Systems, 5(1):1{11, February 1987.[Lam90] Leslie Lamport. The temporal logic of actions. Technical Report 57,DEC Systems Research Center, Palo Alto, CA, April 1990. A sub-stantially modi�ed version is available dated January 1991.[MMP91] O. Maler, Z. Manna, and A. Pnueli. From timed to hybrid systems.In de Bakker et al. [dBHdRR91], pages 447|484.[ORS92] S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype veri�-cation system. In Deepak Kapur, editor, 11th International Confer-ence on Automated Deduction (CADE), volume 607 of Lecture Notesin Arti�cial Intelligence, pages 748{752, Saratoga, NY, June 1992.Springer Verlag.[Pnu77] A. Pnueli. The temporal logic of programs. In Proc. 18th Symposiumon Foundations of Computer Science, pages 46{57, Providence, RI,November 1977. ACM.[SBM91] F. B. Schneider, B. Bloom, and K. Marzullo. Putting time into proofoutlines. In de Bakker et al. [dBHdRR91], pages 618|639.[Sha92] N. Shankar. Mechanized veri�cation of real-time systems using PVS.Technical Report SRI-CSL-12, SRI International Computer ScienceLaboratory, Menlo Park, CA, 1992.[SRRC92] J. U. Skakkeb�k, A. P. Ravn, H. Rischel, and Zhou Chaochen. Spec-i�cation of embedded, real-time systems. In Proceedings of 1992 Eu-romicro Workshop on Real-Time Systems. IEEE Computer SocietyPress, 1992. 15

of functions such as Inv in order to bring the expressions into a form thatthe decision procedures can handle. The �rst attempt at verifying mutualexclusion protocol took a few hours of e�ort, whereas the �rst attempt atverifying railroad crossing controller took nearly a week.6 Conclusions and Future WorkWe have shown how nontrivial real-time protocols can be formalized and ver-i�ed within the higher-order logic of PVS. The approach we have adopted informalizing real-time state transition systems works equally well for systemswhere real time is irrelevant. We illustrated our approach with two exam-ples: Fischer's real-time mutual exclusion protocol and a real-time railroadcrossing controller. The key safety properties of these two systems have beenproved using the PVS interactive proof checker. Once a reasonable informaloutline of the proof has been obtained, the mechanical veri�cation is largelystraightforward since PVS employs decision procedures for equalities andarithmetic inequalities.As formalized above, these systems are not �nite-state systems. We allowarbitrarily many processes in the mutual exclusion protocol and arbitrarilymany trains in the case of the railroad crossing. Our future e�orts will bedirected towards making the mechanical veri�cation of real-time systemsmore systematic, automatic, and compositional. We believe that with suchimprovements, mechanical veri�cation based on interactive theorem provingcan be competitive with model-checking in terms of human e�ort on similar�nite-state systems.References[AH91] R. Alur and T. A. Henzinger. Logics and models of real time: Asurvey. In de Bakker et al. [dBHdRR91], pages 74|106.[AL91] M. Abadi and L. Lamport. An old-fashioned recipe for real time. Inde Bakker et al. [dBHdRR91], pages 1|27.[CHR92] Zhou Chaochen, C. A. R. Hoare, and A. P. Ravn. A calculus ofdurations. Information Processing Letters, 40(5):269{276, 1992.[CM88] K. Mani Chandy and Jayadev Misra. Parallel Program Design: AFoundation. Addison-Wesley, Reading, MA, 1988.[CM92] J. A. Carruth and J. Misra. Proof of a real-time mutual-exclusionalgorithm. Notes on UNITY: 32-92, 1992.14

The type (behavior?) signi�es the subtype of sequences of state satisfy-ing the behavior? predicate. The type statepred is the type of predicateson state. The two axioms (step1) and (step2) (in Section 2) are capturedby the following axiom de�ning since where aa ranges over behavior. The(init) axiom is not needed since it is implicit in the de�nition of the typeof rooted behaviors.since: [statepred -> [state-> time]]since_ax: AXIOMsince(pp)(aa(i+1)) = (IF pp(aa(i))THEN (Time(aa(i+1)) - Time(aa(i)))ELSE since(pp)(aa(i)) +(Time(aa(i+1)) - Time(aa(i)))ENDIF)The notion of invariance is de�ned for an assertion pp and a behavior aaas below.Inv(pp)(aa) : bool = (FORALL (n : nat) : pp(aa(n)))An atomic program action is expressed as a binary predicate which re-lates a precondition and a postcondition state, as illustrated by the predicateCheck which corresponds to the Try action encountered in Section refMutex.program_counter : TYPE = {init, try, wait, cs}x : [state -> nat]PC: [state -> [process -> program_counter]]Check(s0, s1): bool =(EXISTS i: PC(s0)(i) = init AND x(s0) = 0 AND x(s1) = x(s0) ANDPC(s1) = PC(s0) WITH [(i) := try])The predicate program is de�ned to hold of a behavior if and only if theinitial condition holds of the initial state of the behavior and every adjacentpair of states satis�es one of the atomic actions. The mutual exclusionproperty is stated below, where the variable s ranges over state.safety: THEOREMprogram(aa) AND hi < lo IMPLIESInv(LAM s: (FORALL i, j:PC(s)(i) = cs AND PC(s)(j) = cs IMPLIES i = j))(aa)The proof of the mutual exclusion example follows the outline given inSection 3. The veri�cation using PVS makes moderately heavy use of in-duction and the arithmetic decision procedures. Since the PVS proof makesexplicit use of state, there is some overhead work in unwinding de�nitions13

statements below range over state predicates.invariantfj(jP j � x)j � y � jP j � x+ yg:invariantfP � Qg) invariantfjQj � jP jg:invariantfjP _Qj = jP j _ jP _Qj = jQjg:invariantfjP ^Qj = jP j _ jP ^ :Qj = jP jg:invariantfjP j � jP ^ Qjg:5 Veri�cation Using PVSWe have described our approach to the formalization of real-time behav-ior and illustrated it by sketching informal correctness proofs. These proofshave been mechanically veri�ed using the PVS speci�cation/veri�cation sys-tem [ORS92]. PVS consists of a speci�cation language based on higher-orderlogic and an interactive proof checker that uses powerful arithmetic decisionprocedures. The higher-order logic underlying PVS employs a rich type sys-tem but only a small part of the expressiveness of the type system is used forthe real-time examples above. A computation trace is a sequence of states,where the type state is an unde�ned base type. A sequence of type T isa function from the built-in type nat of natural numbers to T. A programvariable of type T is just a function from the type state to type T. Thetype of non-negative rational numbers can be de�ned in PVS as a predicatesubtype of the built-in type rational. The program variable Time has thetype shown below.time : TYPE = {x : rational| x >= 0}Time: [state -> time]The notion of behavior can be captured by the following PVS declara-tions.seq: VAR sequence[state]i, j, k: VAR natnondec?(seq): bool =(FORALL i, j: i>j IMPLIES Time(seq(j)) <= Time(seq(i)))nonzeno?(seq): bool =(FORALL (x: rational): (EXISTS i: x < Time(seq(i))))behavior?(seq): bool = nondec?(seq) AND nonzeno?(seq)behavior : TYPE = (behavior?) 12

Program RRdeclare train : [nat -> fsafe, approaching, crossingg],signal : flower, raiseg,gate : fup, down, moving up, moving downginitially h8 p: train(p) = safeiassignh[]p : train(p) := approaching, if train(p) = safe[] train(p) := crossing, if train(p) = approaching[] train(p) := safe, if train(p) = crossingi [] signal := lower, if Approaching ^ signal 6= lower[] signal := raise, if Safe ^ signal = lower[] gate := moving_down, if signal = lower ^ gate 6= down[] gate := down, if gate = moving_down[] gate := moving_up, if signal = raise ^ gate 6= up[] gate := up, if gate = moving_upend fRRgAs with the mutex example, the timing constraints associated with thetrains, controller, and gate are expressed as invariants. We omit these herebut the full details appear in a technical report [Sha92].The key safety requirement can be stated as the invariant asserting thatif there is a train in the crossing, the gate is down.Lemma 4.1invariantfCrossing � gate = down ^ signal = lowerg:An additional utility requirement has also been proved. It asserts thatif the crossing has been safe (i.e., no train has either been approaching orcrossing) for a certain number of time units, then the gate is up.We omit the details of the proof of safety for the railroad crossing. Itis signi�cantly more complicated than the proof of the mutual exclusionprotocol. The proof employs various important laws regarding invariantsand the since operator which are listed below. The variable P and Q in the11

Lemma 3.6 invariantf8i: PC(i) = cs � x = ig:Proof. By induction. Initially, the antecedent is false. The Try ac-tion is the only action that can falsify the invariant, but by Invariant 3.5,(8j: PC(j) 6= try), so that either PC(i) 6= cs is true and the invariant triv-ially holds, or no Try action is enabled.Lemma 3.7invariantf8i; j: PC(i) = cs ^ PC(j) = cs � i = jgProof. Follows trivially from Invariant 3.6.4 Verifying the Safety of a Railroad CrossingControllerWe next consider a railroad crossing system consisting of a gate, a controller,and an arbitrary number of trains (see [HJL93]). Relative to the crossing,any train is either safe, approaching, or crossing. A train goes frombeing safe to approaching, then to crossing and back to being safe.The controller senses when a train starts approaching and sets a signal tolower within a delay of D time units. Within G time units after the signalis set to lower, the gate is either down or starts moving down. Once a gatestarts moving down, it is down within L time units. The gate then startsmoving up only when no train is either approaching or in the crossing. Nobounds are placed on the time it takes for the gate to start moving up or tobe up once it has started moving up. The main correctness criterion for thesystem is that when a train is in the crossing, the gate must be down. Toensure this, we must assume that a train cannot go from safe to crossingwithin D+G+L time units. Let Approaching de�ne a state predicate thatholds if there is some train that is approaching in the given state. Similarly,Crossing is a state predicate that holds if some train is crossing, and thestate predicate Safe is de�ned to hold when no train is approaching orcrossing. The railroad crossing system without the timing constraints canbe written as the Unity program shown below.10

Lemma 3.4invariantf8i: PC(i) = try � jx = 0j � jPC(i) = initjgProof. By induction. Initially, the antecedent is false. For a Try(j)action, for any j, by (step1), we haveftrueg Try(j) fjx = 0j = jtruej � jPC(i) = initjg:In the case of a Wait(j) action, for any j, we have two cases. If x = 0holds in the precondition then by (step1) and (step2), we havefx = 0 ^ Y = jPC(i) = initjgWait(j)fjx = 0j = jtruej � (Y + jtruej) = jPC(i) = initjg: :Otherwise, by (step2) we havefX = jx = 0j � Y = jPC(i) = initjgWait(j)fjx = 0j = (X + jtruej) � (Y + jtruej) = jPC(i) = initjg: :The Cs(j) action, for any j, similarly preserves the invariant by using(step2) to add the same delay to both sides of the precondition inequalityyielding the postcondition invariant.The next lemma is the main step in the proof and does not mention timein its statement. It asserts that when process i is in its critical section andx is equal to k, then no process j is in its try state.Lemma 3.5invariantf8j; i: PC(i) = cs ^ x = i � PC(j) 6= tryg:Proof. Suppose PC(j) = try, then by Invariants 3.1 and 3.4, we havejx = 0j � jPC(j) = initj � hi:By Invariants 3.3 and 3.2, this yieldslo � jPC(i) = tryj � jx = 0j � hisince jPC(i) = waitj � 0. Hence, by the Inequality (1), we get a contradic-tion.As a consequence of the above invariant, if process i is in its criticalsection and x is i, then no other process can change the value of x.9

protocol satis�es a number of invariants that lead to the statement of mu-tual exclusion. Some of these invariants are proved directly by induction onthe behaviors satisfying the mutex program, whereas others are derived con-sequences of previously proved invariants. The �rst invariant asserts thatwhenever the value of x is i, then PC(i) = try was last observed to be trueno earlier than when x was last observed to be 0. This invariant is obviouslytrue since the Try(i) action sets the value of x to i, where i is positive.Lemma 3.3 invariantf8i: x = i � jPC(i) = tryj � jx = 0jg:Proof. The invariant is established by induction over a possible pro-gram trace. Initially, the antecedent is false. The action Try(j), for anyj, trivially preserves the invariant since it ensures that x is equal to 0 thusfalsifying the antecedent. Stated as a Hoare formula, we haveftrueg Try(i) fx = 0g:The action Wait(j), for i 6= j, preserves the invariant by falsifying theantecedent. For the Wait(i) action, we get two cases. If x = 0 holds in theprecondition, we have by (step1) thatfx = 0g Wait(i) fjPC(i) = tryj = jx = 0j = jtruejg;and hence the conclusion. If x = 0 is false in the precondition, we have by(step1) and (step2) thatfx 6= 0 ^X = jx = 0jgWait(i)fjPC(i) = tryj = jtruej � (X + jtruej) = jx = 0jg:The action Cs(j), for i 6= j preserves the invariant by falsifying theantecedent since x = j in this case. For the action Cs(i), we have by(step2) that fY = jPC(i) = tryj � jx = 0j = XgCs(i)f(Y + jtruej) = jPC(i) = tryj � jx = 0j = (X + jtruej)g: :The next invariant is another obvious consequence of the mutex program.It asserts that if a process is in its try state, then x was equal to 0 morerecently than when the process was last in its init state.8

Program mutexdeclare x : nat, PC: [posnat -> finit, try, wait, csg]initially x = 0 k h k i : posnat :: PC(i) = init iassignh[]i : posnat ::PC(i) := try if x = 0 ^ PC(i) = init[] x, PC(i) := i, wait if PC(i) = try[] PC(i) := cs if x = i ^ PC(i) = waitiend fmutexgTwo timing invariants are associated with timing constraints on theactions.2 Note that the variables i, j, and k in the assertions belowrange over positive natural numbers. The �rst axiom associates an upperbound hi with the time that any process spends in its try state by bound-ing the time that has elapsed since the process was last in its previous initstate.Axiom 3.1invariantf8i: PC(i) = try � jPC(i) = initj � hig:The second timing axiom associates a lower bound lo with the amount oftime separating the try state and a subsequent cs state of any process. Theaxiom as actually stated is more complicated than necessary but has thee�ect of asserting that the try state must occur at least lo time units priorto any cs state of a process.Axiom 3.2invariantf8i: PC(i) = cs � jPC(i) = waitj+ lo � jPC(i) = tryjg:Note that we require hi < lo: (1)We now informally argue that the mutex protocol guarantees each pro-cess mutually exclusive access to its critical section. We prove that the2These constraints are presented as axioms in this proof but they are more appropri-ately viewed as a part of the program. 7

The third axiom asserts that if P is false in the precondition of an action,then the postcondition value of jP j is got by adding the delay for the actionto the precondition value of jP j.fr = Time ^ t = jP j ^ :Pg S fjP j = t+ (Time� r)g; for all P: (step2)With the since operator and the above axioms, conventional techniquescan be used to establish the correctness of programs that exhibit real-timebehavior. The next two sections illustrate the use of the above formalizationof real-time state transition systems with the examples of a mutual exclusionprotocol and a railroad crossing controller.3 An Example: Fischer's Mutual Exclusion Pro-tocolWe now discuss the informal use of the above formalization of state transitionsystems in verifying a simple protocol that exploits real time. This protocolis described by Lamport [Lam87] and attributed to Michael Fischer. Weuse the Unity notation to informally present the protocol but we are notdirectly using the Unity logic. Also, unlike Unity, we are not placing anyfairness constraints on the transitions. An arbitrary number of processesare represented by the positive natural numbers of the type posnat below.To each process i, there is a program counter PC(i). There is a programvariable x which controls the entry into the critical section. The programcounters are initially set to init, and the value of x is initially 0. Thissimpli�ed version of the protocol omits any exit action from the criticalsection or a recovery action upon failure to enter the critical section. Weprove that this protocol guarantees that no two processes are simultaneouslyin their critical section. In the protocols below, each process can take oneof three actions labeled:Try(i): Takes process i from the init to the try state if x is 0.Wait(i): Takes process i from the try state to the wait state while settingx to i. There is an upper bound of hi on the amount of time that aprocess spends in its try state, and a lower bound of lo on the amountof time a process spends in its wait state, where hi < lo.Cs(i): Takes process i from the wait state into its critical section cs pro-vided x is equal to i. 6

(based on that of Henzinger, Manna, and Pnueli [HMP91]) similarly doesnot permit time and state to both change in any single atomic action butinterleaves time and state changes. They also associate with each programtransition, lower and upper bounds on the time that a transition can becontinuously enabled and not taken. The reasons for these restrictions aresomewhat technical but we feel that they make the model complicated andcontribute little to the formalization. The lower and upper bounds on ac-tions ought to be part of the program speci�cation and not part of thecomputational model.We concentrate here on the veri�cation of invariance properties. Time-bounded versions of certain liveness properties can also be expressed asinvariance properties. For notational convenience, state predicates are writ-ten with references to state suppressed. The property that the value of thevariable x in a state is at least two greater than than the value of variable yis stated as x > y+2. An initialization assertion has the form initiallyfPg.An invariant assertion on the state predicate P is stated as invariantfPg.To prove that invariantfPg holds of a program with initialization predi-cate init and atomic actions Si, we show that init � P and that the Hoareassertion fPgSifPg holds for each atomic action Si.Some additional axioms about `since P ' or jP j are needed to capturereal-time behavior. The �rst axiom asserts that the initial value jP j for anystate predicate P is 1. Any positive initial value of jP j would be �ne (aslong as it is the same for every state predicate P) since this guarantees forexample that the value of jfalsej at any state is always greater than the valueof Time at that state. This makes it clear that there is never a previousstate where false held since such a state would have a negative Time value.initiallyfjP j = 1g; for all P: (init)The second axiom asserts that if P is true in the precondition of an atomicaction, then the value of jP j in the postcondition is equal to the delay forthe action.fr = Time ^ Pg S fjP j = Time� rg; for all P: (step1)Note that the value of jP j in the postcondition does not depend on whetherP is true or false in the postcondition state; it only depends on the priorpart of the computation. With the above axiom, the di�erence between thepostcondition and precondition times (i.e., the delay for the action) is equalto the value of jtruej in the postcondition state.5

a counter that measures elapsed time for any given P without requiring ex-plicit counters to be introduced. The main claim of this paper, however,is that it is feasible to undertake mechanical veri�cation of real-time proto-cols using a simple computational model and a straightforward extension ofexisting techniques for concurrent program veri�cation.2 Modeling and Proving Properties of Real-timeSystemsWe now state the computational model that we use to describe real-timesystems. Intuitively, a state is taken to be a mapping of program variablesto values. A trace is de�ned to be a in�nite sequence of states . Each programvariable maps a given state to the value of the variable in that state. Timeis a special program variable whose value is not modi�ed by a program.For our purpose, the value of Time ranges over the non-negative rationalnumbers. A behavior is a trace where the value of Time is non-decreasingand eventually increases above any bound (non-Zeno1) [AL91]. A rootedbehavior is a behavior where the initial value of Time is 0. A programidenti�es a set of rooted behaviors. A speci�cation also identi�es a set ofbehaviors so that a program is also a kind of speci�cation. A programsatis�es a speci�cation if the set of behaviors given by the program is asubset of the behaviors identi�ed by the speci�cation.A state predicate is a predicate on states. A program is typically given interms of an initialization state predicate and a set of atomic actions . Eachatomic action is a binary relation between states. In any behavior satisfyinga given program, the initial state must satisfy the initialization predicateand each pair of adjacent states must satisfy one of the atomic actions of theprogram. Speci�cations are often stated in terms of invariance assertions: astate predicate P is invariant over a behavior if it holds of each state in thebehavior. To show that a program satis�es an invariant, it is typical to useinduction over the states of an arbitrary behavior satisfying the program.There are a few small di�erences here with respect to previous ap-proaches to modeling time. In the work of Abadi and Lamport [AL91],there is an explicit process that increments time so that ordinary actionsthemselves take no time, but time-increment actions are interleaved withordinary actions. The approach of Maler, Manna, and Pnueli [MMP91]1The non-Zeno constraint is not used in any of the proofs in this paper.4

assertions on states and not on entire temporal formulas as is the case intemporal logic. TLA is a modi�cation of temporal logic; it avoids the next-state operator and replaces it with a notion of action that is a binary relationbetween adjacent states. Real-time extensions to these logics have been dis-cussed in the past. Abadi and Lamport [AL91] present what they call \anold-fashioned recipe for real time" where they model time within TLA usinga special process that increments the value of time in discrete steps. Specialcounter variables that track the value of time are used to specify timingconstraints. Schneider, Bloom, and Marzullo [SBM91] have extended ProofOutline Logic to handle real time. The logic contains control predicates toindicate where the control is in a program. They employ an operator thatrecords the time when a control predicate last became true. Carruth andMisra [CM92] employ a similar extension to Unity where for any assertionP , P (read \punch P") records the absolute time at which P last went frombeing false to true. In this approach, P is initially equal to the time in theinitial state if P is true in the initial state, otherwise, P is some negativevalue (since time ranges only over nonnegative values). Maler, Manna, andPnueli [MMP91] introduce a duration operator �, where for a temporal for-mula �, the value of �(�) at any state s in an execution of a program is thelargest time duration ending in s for which � has continuously held. If � isfalse at state s, then the value of �(�) at s is 0.These latter approaches are straightforward extensions of conventionalreasoning techniques. The work we describe here is along the lines of theselatter approaches to real-time system behavior. We present a computationalmodel that includes a notion of real time. This model is embedded in thehigher-order logic of PVS but could also be applied to temporal logic, TLA,or Unity. Either of the punch or the duration operators could have beenused in our veri�cation, but we employ a new operator for reasoning aboutreal-time behavior and illustrate its use with the examples of Fischer's mu-tual exclusion protocol [Lam87] and a railroad crossing controller [HJL93].Like the punch operator above, this new operator, called since, operates onassertions. The value of jP j (read \since P") at a given state in a programexecution is the time that has elapsed since P last held. For any P , thevalue of jP j in the initial state of the computation is arbitrarily set to somepositive value (say 1) since there is no previous state where P held and theinitial value of Time is 0. Proofs involving the punch or the duration op-erators can easily be recast in terms of the since operator, and vice-versa.The since operator is inspired by, and is somewhat a generalization of, thecounter variables used by Abadi and Lamport [AL91], so that jP j provides3

1 IntroductionTime is used in several ways in computing to ensure, for instance, that tasksare scheduled in a timely manner, deadlines are met, processes are synchro-nized, and race conditions are avoided. Since real-time systems are oftenused in critical contexts, it is important to rigorously demonstrate that cer-tain crucial requirements are satis�ed by the system. We extend existing ver-i�cation frameworks for concurrent programs such as temporal logic [Pnu77],the temporal logic of actions (TLA) [Lam90], and Unity [CM88] to handlereal-time behavior. We introduce a new operator whose value at any statein a computation for a given condition corresponds to the time that haselapsed since the condition last held in the computation. With this new op-erator, conventional reasoning techniques can be applied to demonstrate thereal-time behavior of programs. Our approach to the veri�cation real-timesystems is similar to some existing proposals but, to our knowledge, noneof these proposals has yet been employed in mechanized veri�cation. Also,the model of computation we employ is simple in contrast to previous mod-els of real-time computation. We have mechanically veri�ed some simplereal-time protocols using PVS [ORS92], a general-purpose speci�cation andveri�cation environment based on higher-order logic.There are numerous real-time extensions to propositional temporal log-ics that can be applied to the veri�cation of �nite-state systems with real-time constraints. A large class of problems can be handled in this manner.Alur and Henzinger [AH91] survey the above variants of temporal logicfrom the point of view of expressiveness and decidability. Real-time logic(RTL) [JM86] is an extension of the traditional approach to formalizing timewith an occurrence function that records the time when an event occurs forthe i'th time. The Duration Calculus (DC) [CHR92] is a very expressiveinterval temporal logic that can be used to reason about time-varying quan-tities. Skakkeb�k, Ravn, Rischel, and Chaochen [SRRC92] illustrate theuse of the duration calculus for specifying and verifying a realistic railroadcrossing controller.We are interested here in an approach to real-time that extends more con-ventional approaches to the veri�cation of state transition systems. In thisregard, Lamport's Temporal Logic of Actions (TLA) [Lam90] and Chandyand Misra's Unity logic [CM88] are both elegant logics dealing with statetransition systems. Unity is a simpli�ed temporal logic (with no nesting oftemporal operators) for nondeterministic state transition systems. It pro-vides a small set of useful temporal operators that can be applied only to2

Veri�cation of Real-Time Systems Using PVS�Reprint from Computer Aided Veri�cation, CAV '93, Costas Courcoubetis, editor,Elounda, Greece, June/July 1993. Volume 697 of Springer Verlag Lecture Notesin Computer Science, pages 280{291.N. ShankarComputer Science LaboratorySRI InternationalMenlo Park CA 94025Phone: +1 (415)859-5272shankar@csl.sri.comAbstractWe present an approach to the veri�cation of the real-time behav-ior of concurrent programs and describe its mechanization using thePVS proof checker. Our approach to real-time behavior extends pre-vious veri�cation techniques for concurrent programs by proposing asimple model for real-time computation and introducing a new op-erator for reasoning about absolute time. This model is formalizedand mechanized within the higher-order logic of PVS. The interactiveproof checker of PVS is used to develop the proofs of two illustrativeexamples: Fischer's real-time mutual exclusion protocol and a railroadcrossing controller.�This work was supported by National Aeronautics and Space Administration LangleyResearch Center and the US Naval Research Laboratory under contract NAS1-18969 andby the US Naval Research Laboratory contract N00015-92-C-2177. Connie Heitmeyer(NRL) suggested the railroad crossing example. Sam Owre (SRI) assisted with the use ofPVS. The helpful comments of John Rushby (SRI), Jayadev Misra (University of Texas atAustin), Ralph Je�ords (Locus, Inc.), Jens Skakkeb�k (Technical University of Denmark),and the anonymous referees are gratefully acknowledged.1

