
Acknowledgements. Friedrich von Henke (SRI, currently at U. of Ulm, Ger-many), David Cyrluk (Stanford), Judy Crow (SRI), Steven Phillips (Stanford), CarlWitty (currently at MIT), contributed to the design, implementation, and testing ofPVS. We also thank Mark Moriconi, Director of the SRI Computer Science Labora-tory, for his support. Development of PVS was funded entirely by SRI International.References[1] R. S. Boyer and J S. Moore. A Computational Logic. Academic Press, New York, NY,1979.[2] Robert S. Boyer and J Strother Moore. MJRTY|a fast majority vote algorithm. InRobert S. Boyer, editor, Automated Reasoning: Essays in Honor of Woody Bledsoe,volume 1 of Automated Reasoning Series, pages 105{117. Kluwer Academic Publishers,Dordrecht, The Netherlands, 1991.[3] M. Gordon, R. Milner, and C. Wadsworth. Edinburgh LCF: A Mechanized Logic ofComputation, volume 78 of Lecture Notes in Computer Science. Springer Verlag, 1979.[4] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine generals problem.ACM Transactions on Programming Languages and Systems, 4(3):382{401, July 1982.[5] John Rushby. Formal speci�cation and veri�cation of a fault-masking and transient-recovery model for digital ight-control systems. In Vytopil [10], pages 237{257.[6] John Rushby and Friedrich von Henke. Formal veri�cation of algorithms for criticalsystems. In SIGSOFT '91: Software for Critical Systems, pages 1{15, New Orleans,LA, December 1991. Expanded version to appear in IEEE Transactions on SoftwareEngineering , January 1993.[7] James B. Saxe, Stephen J. Garland, John V. Guttag, and James J. Horning. Usingtransformations and veri�cation in circuit design. Technical Report 78, DEC SystemsResearch Center, Palo Alto, CA, September 1991.[8] Natarajan Shankar. Mechanical veri�cation of a generalized protocol for Byzantinefault-tolerant clock synchronization. In Vytopil [10], pages 217{236.[9] R. E. Shostak. Deciding combinations of theories. Journal of the ACM, 31(1):1{12,1984.[10] J. Vytopil, editor. Formal Techniques in Real-Time and Fault-Tolerant Systems, Ni-jmegen, The Netherlands, January 1992. Springer Verlag, volume 571 of Lecture Notesin Computer Science. 6



Proof Strategies. It is useful to be able to compose frequently used patterns ofproofs into single steps. We call these strategies in PVS. Typical PVS strategies arepropositional simpli�cation, which applies all the proposition proof rules and returnswith the remaining subgoals. A more powerful version of this strategy employs thedecision procedures as well. Rewriting with a de�nition or lemma is also describedby a strategy. We have implemented a simple language with two basic constructsfor describing strategies. The (IF condition strategy1 strategy2) constructevaluates the condition against the current proof goal and applies strategy1or strategy2 accordingly. The (TRY strategy1 strategy2 strategy3) appliesstrategy1 to the current goal and if that succeeds, then strategy2 is applied tothe resulting subgoals, otherwise strategy3 is applied to the current proof goal.These simple constructs can be combined to achieve the e�ects of tactics and tacti-cals in LCF-style systems [3]. For example, the propositional simpli�cation strategy(prop*) has the form(prop*) = (TRY (propax) nil (TRY (dsimp) (prop*) (TRY (split) (prop*) nil)))where nil indicates that there are no further steps and the current goal should bepostponed, (propax) checks if the current goal is propositional axiom, and (dsimp)and (split) represent the primitive inference steps for disjunctive simpli�cationand conjunctive splitting, respectively.4 Experience and ProspectsOnly a few modest-sized example veri�cations have so far been carried out usingPVS; these include the correctness of the Boyer-Moore majority algorithm [2], theproof that insertion into an ordered binary tree preserves order, the Oral MessagesAlgorithm for Byzantine Agreement [4], Cantor's theorem, the Schr�oder-Bernsteintheorem, and the equivalence of a pipelined and an unpipelined microprocessordesign [7]. All of these examples took on the order of a day or less of human e�ortto verify on the �rst attempt using PVS. The time taken to rerun �nished proofs ison the order of minutes.Future Work. Although we are reasonably satis�ed that PVS is an e�ective toolfor developing readable speci�cations and formal proofs with considerable humane�ciency, we are still signi�cantly short of our goal of employing mechanization toproduce proofs that humans �nd truly perspicuous. We would also like to extractrobust and reusable proof outlines from individual proofs. We plan to enhance theexpressive power of the speci�cation language by introducing structural subtypes,inductive de�nitions, and re�nement mappings between theories. We also plan tode�ne powerful higher-level proof strategies to further mechanize proof construction,and enhance the user-interface to the system.5



Goal-directed Proof Search. A proof is constructed by starting from the con-clusion sequent and progressively applying the inference steps to generate subgoalsuntil the subgoals are trivially provable. This makes it easy to present the proof asit is being developed.Primitive Inferences. The inference steps in PVS were chosen to be powerfulin comparison with the simple rules given in textbook introductions to logic. Pow-erful primitive inferences make the composed inference steps correspondingly morepowerful, and allow the proof to be represented in a manner that is robust and canbe rerun e�ciently. A small and carefully chosen set of primitive inferences makesthe system easier to learn and use. Each inference step is exible, so it can be usedin a variety of related ways, and takes optional parameters that adjust its behav-ior. For example, the beta reduction rule eliminates all redexes (and for exibilitymany things are regarded as redexes) from a set of sequent formulas speci�ed by aparameter (the default is all formulas).The primitive inferences in PVS include the propositional and quanti�er steps,beta-reduction, equality replacement, and the use of decision procedures and lem-mas. The propositional rules of inference include a propositional axiom rule, a dis-junctive simpli�cation rule, a conjunctive splitting rule, the Cut rule for introducingcase splits, a rule for lifting IF-conditionals to the top level of a formula (to enablethe corresponding case splits), and a rule for deleting formulas from a goal sequent(the weakening rule). The quanti�er rules consist of a rule for replacing universallyquanti�ed variables with Skolem constants, and a rule for instantiating existentiallyquanti�ed variables with terms. The equality rules include a rule for beta-reducingredexes, and one for replacing one side of an equality premise by another.In addition to the rules above, there are rules for introducing an instance of alemma as a premise formula in a goal sequent, for introducing an extensionalityaxiom for a given type as a premise formula, for introducing the type constraintsof a given expression as premise formulas, for invoking the decision procedures on agoal sequent, and for enabling and disabling the automatic use of rewrite rules.Decision Procedures. Formal proofs of even trivial facts can be quite di�cultto construct, and the typical user is seldom curious about the trivial details. De-cision procedures help to automatically discharge such trivial subgoals. PVS usesdecision procedures for ground equalities and linear inequalities (based on the workof Shostak [9]) in order to simplify IF-expressions, datatype expressions, functionde�nitions, and conditions of conditional rewrite rules. As a result, the user usuallyonly sees the relevant case of a large de�nition and often never has to deal with theconditions of a conditional rewrite rule. Through this use of decision procedures,there are fewer cases to a proof and the sequents themselves are kept to manageablesize. 4



with tuple, record, and function types, and also dependent forms of these typeconstructions. Numerous other features of the language are omitted from this briefdescription.Just as the use of powerful inference procedures during typechecking allows thespeci�cation language to be enriched, so, conversely, do several of the features of thespeci�cation language contribute to the e�ectiveness of the proof checker: construc-tions such as abstract datatype de�nitions, predicate subtypes, and dependent typessupply constraints that can be used e�ectively by the inference mechanisms. Thuswe �nd a synergistic interaction between the language and inference capabilities.3 The PVS Proof CheckerOur experience with mechanical veri�cation of complex designs and algorithms hasled us to conclude that, just as with software, there is a lifecycle to a mechanically-checked proof. In the initial exploratory phase of proof development, we are mainlyinterested in debugging the speci�cation and putative theorems, and in testing andrevising the key, high-level ideas in the proof. An important requirement in thisphase is early and useful feedback when a purported theorem is, in fact, false. Oncethe basic intuitions have been acquired and the formalization is stable, the proofchecking enters a development phase where we take care of the details and constructthe proof in larger leaps. E�ciency of proof development is a key requirement here.In the third, presentation phase, the proof is honed and polished for presentationin order to be scrutinized by the social process. Readability and intellectual per-spicuity of the output is the goal here. The �nal phase is generalization where wecarefully analyze the �nished proof, weaken and generalize the assumptions, extractthe key insights and proof techniques, and make it easier to carry out subsequentveri�cations of a similar nature. Maintenance, is a special application of generaliza-tion, where we adapt a veri�cation to slightly changed assumptions or requirements.Robustness of the proof procedure is a useful attribute here.The goal of the PVS proof checker is to support the e�cient development ofreadable proofs in all stages of the proof development lifecycle. The PVS proofchecker implements a small set of powerful primitive inference rules, a mechanismfor composing these into proof strategies, a facility for rerunning proofs, and anotherto check that all secondary proof obligations (such as type correctness conditions)have been discharged. The �rst two of these are described below.Representation. A sequent representation is used for proof goals since it nicelyencapsulates all the information that is relevant to a branch of the proof for presen-tation to a user as well as the machine. 3



2 The PVS Speci�cation LogicThe philosophy behind the PVS logic has been to exploit mechanization in order toaugment the expressiveness of the logic. PVS features a strongly typed higher-orderlogic with a rich type system. Higher-order logic was chosen since we and others havefound it conducive to the construction of compact and perspicuous speci�cations.Strong typing is needed to keep higher-order logic consistent, but typechecking isalso a simple and e�ective way to discover very many errors in speci�cations.PVS speci�cations are structured into parameterized theories that can have con-straints attached to the parameters. Constraints can also be attached to the typesin a PVS speci�cation. These choices make it possible to be very explicit aboutallowed instantiations of theories, and about the domains and ranges of functions,thereby contributing to the clarity of the speci�cation. The price paid is that type-checking in PVS is not algorithmically decidable: it can require theorem proving toestablish that expressions satisfy the constraints attached to parameters and types.However, the inference mechanisms of PVS perform most of the necessary theoremproving automatically, and thereby allow an enriched speci�cation language at littlecost.For instance, the division operation is typed so that it is constrained to nonzerodivisors. Constraints are attached to types in PVS using predicate subtypes , so thatthe signature for division can be given as:nonzero : TYPE = fx : rational | x /= 0g/ : [rational, nonzero -> rational]where rational is the (built-in) type of rational numbers, and nonzero is de�nedhere to be the subtype of the rational numbers di�erent from zero. When the PVStypechecker is invoked on the formula:x /= y IMPLIES (y - x)/(x - y) < 0it recognizes that the divisor expression (x - y) must be shown to be nonzero andgenerates a proof obligation (known as a type correctness condition) of the form:(FORALL (y, x: rational): x /= y IMPLIES (x - y) /= 0)Notice that the logical context in which (x - y) occurred appears as part of the hy-pothesis to the proof obligation. The PVS decision procedures are powerful enoughto automatically discharge the large majority of proof obligations, such as the oneabove; more di�cult ones must be proved under user-guidance, and can be post-poned until convenient.PVS also has a mechanism for automatically generating theories for abstractdatatypes that generalizes the shell principle of the Boyer-Moore prover [1]. ThePVS type system includes numbers, enumerations and uninterpreted types, together2



PVS: A Prototype Veri�cation SystemReprint from: Deepak Kapur, editor, 11th International Conference onAutomated Deduction (CADE), Saratoga, NY, 1992, pages 748{752; Volume607 of Springer Verlag Lecture Notes in Arti�cial Intelligence.S. Owre, J. M. Rushby, and N. ShankarSRI International Computer Science LaboratoryMenlo Park, CA 94025 USA1 IntroductionPVS is a prototype system for writing speci�cations and constructing proofs. Itsdevelopment has been shaped by our experiences studying or using several othersystems1 and performing a number of rather substantial formal veri�cations (e.g.,[5,6,8]). PVS is fully implemented and freely available. It has been used to constructproofs of nontrivial di�culty with relatively modest amounts of human e�ort. Here,we describe some of the motivation behind PVS and provide some details of thesystem.Automated reasoning systems typically fall in one of two classes: those thatprovide powerful automation for an impoverished logic, and others that featureexpressive logics but only limited automation. PVS attempts to tread the middleground between these two classes by providing mechanical assistance to support clearand abstract speci�cations, and readable yet sound proofs for di�cult theorems. Ourgoal is to provide mechanically-checked speci�cations and proofs that contribute tothe social process by which purported theorems come to be discarded or accepted,and designs for critical systems get certi�ed.PVS combines an expressive logic with a powerful but highly interactive proofchecker that supports top-down proof exploration and construction. In addition toits proof checker, the PVS system includes a parser, prettyprinter, and typechecker.We describe the PVS logic and proof checker in the following sections.1Lack of space prevents us from discussing or explicitly referencing the many systems and no-tations that have inuenced us in one way or another. These include A�rm, Automath, Ehdm,EKL, EVES, FDM, Gypsy, HOL, IMPLY, IMPS, LCF, LP, Muse, Nqthm, Nuprl, OBJ, Ontic,PC-Nqthm, RAISE, RRL, STP, TPS, Tecton, VDM, Veritas, and Z among others. Most of ourideas can be traced to one or other of these earlier e�orts.1


