Abstract Congruence Closure and
Specializations*

Leo Bachmair and Ashish Tiwarl

Department of Computer Science
State University of New York
Stony Brook, NY 11794-4400, U.S.A
{leo,astiwari}@cs.sunysb.edu

Abstract. We use the uniform framework of abstract congruence closure
to study the congruence closure algorithms described by Nelson and Op-
pen [9], Downey, Sethi and Tarjan [7] and Shostak [11]. The descriptions
thus obtained abstracts from certain implementation details while still
allowing for comparison between these different algorithms. Experimen-
tal results are presented to illustrate the relative efficiency and explain
differences in performance of these three algorithms. The transition rules
for computation of abstract congruence closure are obtained from rules
for standard completion enhanced with an extension rule that enlarges a
given signature by new constants.

1 Introduction

Algorithms to compute “congruence closure” have typically been described in
terms of directed acyclic graphs (dags) representing a set of terms, and a union-
find data structure storing an equivalence relation on the vertices of this graph.
In this paper, we abstractly describe some of these algorithms while still main-
taining the “sharing” and “efficiency” offered by the data structures. This is
achieved through the concept of an abstract congruence closure, c¢.f. [2, 3].

A key idea of abstract congruence closure is the use of new constants as
names for subterms which yields a concise and simplified term representation.
Consequently, complicated term orderings are no longer necessary or even appli-
cable. There usually is a trade-off between the simplicity of terms thus obtained
and the loss of term structure. In this paper, we get a middle ground where
we keep the term structure as much as possible while still using extensions to
obtain a simplified term representation. The paper also illustrates the use of an
extended signature as a formalism to model and subsequently reason about data
structures like the term dags, which are based on the idea of structure sharing.

In Section 2 we review the description of abstract congruence closure as a
set of transition rules [2, 3]. The transition rules are derived from standard
completion [1] enhanced with extension and suitably modified for the ground

* The research described in this paper was supported in part by the National Science
Foundation under grant CCR-9902031.

case. Taking such an abstract view allows for a better understanding of the
various graph-based congruence closure algorithms (Section 3), and also suggests
new efficient procedures for constructing congruence closures (Section 4).

Preliminaries

Given a set X = U, Y, of function symbols and constants—called a signature-the
set of (ground) terms 7 (X) over X is the smallest set containing Xy and such
that f(t1,...,tn) € T(X) whenever f € X, and t; € 7(X). The index n of the
set X, to which a function symbol f belongs is called the arity of the symbol
f. Elements of arity 0 are called constants. A symbol f € X} of anty k is also
said to be a k-ary function symbol. The symbols s,%, u, ... are used to denote
terms in 7(X); f, g, ..., function symbols. We write [s] to indicate that a term ¢
contains s as a subterm and (ambiguously) denote by ¢[u] the result of replacing
a particular occurrence of s by u. A subterm of a term ¢ is called proper if it 1s
distinct from ¢.

An equation is a pair of terms, written as s & t. The replacement or single-
step rewrite relation! — g induced by a set of ground (or variable-free) equations
E is defined by: u[l] —g u[r] if, and only if, [&~ r is in E. If — is a binary
relation, then < denotes its inverse, ¢+ its symmetric closure, —7 its transitive
closure and —* its reflexive-transitive closure. Thus, <% denotes the congruence
relation?, which is the same as the equational theory when E is ground, induced
by a set E of ground equations. Equations are often called rewrite rules, and a
set B a rewrite system, if one 1s interested particularly in the rewrite relation
—% rather than the equational theory <7%.

If E is a set of equations, we write F[s] to denote that the term s occurs as
a subterm of some equation in F, and (ambiguously) use E[t] to denote the set
of equations obtained by replacing an occurrence of s in E by .

A term t i1s in normal form with respect to a rewrite system R if there is
no term t' such that ¢t —p t'. We write s —% ¢ to indicate that ¢ is a R-
normal form of s. A rewrite system R is said to be (ground) confluent if every
(ground) terms ¢ has at most one normal form, i.e., if there exist s, s’ such that
s 5t =% s then s =% o <% ¢ It is terminating if there exists no infinite
sequence sg —p $1 —R S2--- of terms. Rewrite systems that are (ground)
confluent and terminating are called (ground) convergent.

2 Abstract Congruence Closure

We first review the concept of an abstract congruence closure [2, 3]. Let X be a
signature and K be a set of constants disjoint from X. A D-rule (with respect
to 2 and K) is a rewrite rule of the form ¢ — ¢ where ¢ is a term from the set

! There is no difference between the replacement relation and the rewrite relation in
the ground case.

2 A congruence relation is a reflexive, symmetric and transitive relation on terms that
is also a replacement relation.

T(YXUK)— K and c is a constant in K3. A C-rule (with respect to K) is a rule
¢ — d, where ¢ and d are constants in K. For example, if ¥y = {a,b, f}, and
Ey={amb ffa= fb} then Dy = {a — co, b — ¢1, ffa — co, fb— c3} is
a set of D-rules over Xy and Ky = {co, €1, ¢2, es}. Original equations in Fy can
now be simplified using Dy to give Cy = {cp & ¢1, ¢2 & ¢3}. The set Do UCy may
be viewed as an alternative representation of Fy over an extended signature. The
equational theory presented by Dy Uy is a conservative extension of the theory
Ey. This reformulation of the equations Ej in terms of an extended signature is
(implicitly) present in all congruence closure algorithms, see Section 3.

A constant ¢ in K is said to represent a term ¢ in 7 (X U K) (via the rewrite
system R) if t <%, ¢. A term t is represented by R if it is represented by some
constant in K via R. For example, the constant c; represents the term ffa via
Dy.

Definition 1. Let X be a signature and K be a set of constants disjoint from X.
A ground rewrite system R = DU C of D-rules and C'-rules over the signature
YUK is said to be an (abstract) congruence closure (with respect to X and K)
if (i) each constant ¢ € K that is in normal form with respect to R, represents
some term t € T(X) via R, and (ii) R is ground convergent.

If E is a set of ground equations over T (X U K) and in addition R is such
that (iii) for all terms s and t in T(X), s &% t if, and only if, s =% o <5 ¢,
then R will be called an (abstract) congruence closure for E.

Condition (i) essentially states that no superfluous constants are introduced;
condition (ii) ensures that equivalent terms have the same representative; and
condition (iii) implies that R is a conservative extension of the equational theory
induced by E over T (X).

The rewrite system Ry = Do U{cg — ¢1, ¢ — c3} above is not a congruence
closure for Ey, as it is not ground convergent. But we can transform Ry into a
suitable rewrite system, using a completion-like process described in more detail
below, to obtain a congruence closure

R1 = {a—)cl, b—)Cl, f61 —> C3, ng —> C3, Cop —> C1, C3 —)C3}.

Construction of Congruence Closures

We next present a general method for construction of congruence closures. Our
description is fairly abstract, in terms of transition rules that manipulate triples
(K, E, R), where K is the set of constants that extend the original fixed signature
X, E is the set of ground equations (over X' U K) yet to be processed, and R is
the set of C-rules and D-rules that have been derived so far. Triples represent
states in the process of constructing a congruence closure. Construction starts
from initial state (0, E,0), where E is a given set of ground equations.

® The definition of a D-rule is more general than the definition presented in [2, 3] as
it allows for arbitrary non-constant terms on the left-hand side.

The transition rules can be derived from those for standard completion as
described in [1], with some differences. In particular, (i) application of the transi-
tion rules is guaranteed to terminate, and (ii) a convergent system is constructed
over an extended signature. The transition rules do not require any reduction
ordering? on terms in 7(X), but only only a simple ordering > on terms in
T(X UU)® where U is an infinite set of constants from which new constants
K C U are chosen. In particular, if we assume > is any ordering on the set U,
then > is defined as: ¢ > dif ¢ =y d and ¢ = cif t — cis a D-rule. In this paper,
the set U = {cp, c1,¢a,. ..}, and we will assume ¢; »¢ ¢; iff i < j.

A key transition rule introduces new constants as names for subterms.

(K, E[t], R)
(K U{c}, E[e], RU{t — ¢})

Extension:

where ¢ — ¢ is a D-rule, ¢ is a term occurring in (some equation in) F, and
cg VUK.

Following three rules are identical to the corresponding rules for standard
completion.

(K, E[t], RU{t = ¢})
(K, E[e], RU {t — ¢})

Simplification:

where ¢ occurs in some equation in £.

It is fairly easy to see that by repeated application of extension and simpli-
fication, any equation in ¥ can be reduced to an equation that can be oriented
by the ordering >.

(KU{c}, FU{t~c}, R)
(KU{c},E,RU{t > ¢})

Orientation:
ift = c.
Trivial equations may be deleted.

(K,EU{t~t},R)
(K,E,R)

Deletion:

In the case of completion of ground equations, deduction steps can all be
replaced by suitable simplification steps. In particular, most of the deduction
steps can be described by collapse, and hence, the deduction rule considers only
simple forms of overlap.

(K, E,RU{t =5 ¢, t > d})
(K,EU{c~d},RU{t = d})

* An orderingis any irreflexive and transitive relation on terms. A reduction ordering
is an ordering that is also a well-founded replacement relation.
® Terms in T(X) are uncomparable by >.

Deduction:

In our case the usual side condition in the collapse rule, which refers to the
encompassment ordering, can easily be stated in terms of the subterm relation.

(K, E,RU{s[t] = d, t = ¢})
(K,E,RU{s[c] > d, t = ¢c})

Collapse:

if ¢ 18 a proper subterm of s.

As in standard completion the simplification of right-hand sides of rules in
R by other rules is optional and not necessary for correctness. The right-hand
side term in any rule in R is always a constant.

(K,E,RU{t > ¢, c—>d})
(K,E,RU{t > d, c—>d})

Composition:

We use the symbol - to denote the one-step transition relation on states
induced by the above transition rules. A derivation is a sequence of states

([(OaEO;RO) '_ ([(1,E1’R1) '— Cee

Ezample 1. Consider the set of equations Ey = {a ~ b, ffa =~ fb}. An ab-
stract congruence closure for Ey can be derived from (Ko, Eq, Ro) = (0, Fo, 0)
as follows:

|i|Constants Ki|Equations E; |Rules R; |Transition Rule|
0[0 Ey [}

1{eo} {com b, ffams fb}{a — co} Ext
2|{eo} {ffaw fb} {a = eo,b— co} Ori
3{co} {ffeom feo} {a = eo,b— co} Sim?

4 {CQ, Cl} {f61 [fCo} R3 U {fCQ — Cl} Ext

5 {CQ, Cl} {f61 [Cl} R3 U {fCQ — Cl} Sim

6 [\75 {} R5 U {f61 — Cl} Ori

The rewrite system Rg 1s the required congruence closure.

The correctness of the transition rules presented here can be established in
a way similar to the correctness of the transition rules for computing a congru-
ence closure modulo associativity and commutativity [3]. The differences arise
from the more general definition of D-rules, and the lack of any associative and
commutative functions here.

The set of transition rules presented above are sound in the following sense: if
(Ko, Eo, Ro) & (K1, By, Ry), then, for all terms s and ¢ in 7 (YU Ko), s <35 (g,
if and only if s <% g, ¢ Additionally, let Ko be a finite set of constants
(disjoint from X), Ey be a finite set of equations (over X U Ky), and Ry be
a finite set of D-rules and C-rules such that for every C-rule ¢ — d € Ry,
we have ¢ =y d. Then, any derivation starting from (Kjy, Eg, Ro) is finite. If
(Ko, Eo, Ro) F* (K, Em, Rin), then Ry, is terminating. We call a state (K, £, R)
final if no transition rule (except possibly composition) is applicable.

Theorem 1. Let X be a signature and K a finite set of constants disjoint from
Y. Let By be a finite set of equations over XU K1 and Ry a finite set of D-rules
and C-rules such that for every ¢ € Ky represents some term t € T(X) via
E1U Ry, and ¢ =u d for every C-rule ¢ — d in Ry. If (K, En, Ry) is a final
state such that (K, E1, R1) * (K,, FEn, Ry), then E, = 0 and R,, is an abstract
congruence closure for E1 U Ry (over X and K1).

3 Congruence Closure Strategies

The literature abounds with various implementations of congruence closure algo-
rithms. We next describe the algorithms in [7], [9] and [11] as specific variants of
our general abstract description. That is, we provide a description of these algo-
rithms (modulo some implementation details) using abstract congruence closure
transition rules.

Term directed acyclic graphs (dags) is a common data structure used to
implement algorithms that work with terms over some signature—such as the
congruence closure algorithm. In fact, many algorithms that have been described
for congruence closure assume that the input is an equivalence relation on ver-
tices of a given dag, and the desired output is an equivalence on the same dag
that is defined by the congruence relation.

Figure 1 illustrate how a given term dag is (abstractly) represented using D-
rules. The solid lines represent subterm edges, and the dashed lines represent a
binary relation on the vertices. We have a D-rule corresponding to each vertex,
and a C-rule for each dashed edge. Note that the D-rules corresponding to a
conventional term dag representation are all of a special form f(eq,...,¢x) = ¢,
where f € X is a k-ary function symbol, and ¢1, ..., ¢k, ¢ are all new constants.
Such rules will be called simple D-rules. The definition of D-rules given in Sec-
tion 2 is more general, and allows for arbitrary terms on the left-hand sides. In
a sense this corresponds to storing contexts, rather than just symbols from X,
in each node (of the term dag). This is an attempt to keep as much of the term
structure information as possible and still get advantages offered by a simplified
term representation via extensions.

We need to specify a U set and an ordering ¢ on this set. Since elements of
U serve only as names, we can choose U to be any countable set of symbols. An
ordering =gy need not be specified a-priori but can be defined on-the-fly as the
derivation proceed. (The ordering has to be extended so that the irreflexivity
and transitivity properties are preserved).

Traditional congruence closure algorithms also employ other data structures
such as the following:

(i) Input dag: Starting from the state (@, Fy,#), if we apply extension and sim-
plification using strategy (Ext o Sim™)* and making sure we create only simple
D-rules, we finally get to a state (K1, E1, D1) where all equations in F, are of
the form ¢ & d, for ¢,d € K. The set Dy, then, represents the input dag and E,
represents the (input) equivalence on the vertices of this dag. Note that due to
eager simplification, we obtain representation of a dag with maximum possible

D-rules representing the term dag:

a—c1 gcicr = c2 feiea = cs

O b heae ol
\ J——— /\ d— cr her = cg gcecs — Co
2 @ \\ fC509 — C10
e ST ~

i\ / \ C-rules representing the relation on ver-
h tices:
® ®C ~®
~
T Cl1 ~2 Cs Cy &2 Cg C3 =2 Cl0
i Cq4 RV C7 Cg W Cs Cp RoC8

Fig. 1. A term dag and a relation on its vertices

sharing. For example, if By = {a & b, ffa ~ fb}, then K1 = {co, c1,c¢a,c3,ca},
Ei={comci,es 8 ceat and Ry = {a — co,b — ¢y, feo — ca, fea = ez, fer —
64}.

(ii) Signature table: The signature table (indexed by vertices of the input dag)
stores a signature® for some or all vertices. Clearly, the signatures are fully left-
reduced D-rules.

(iii) Use table: The use table (also called predecessor list) is a mapping from the
constant ¢ to the set of all vertices whose signature contains ¢. This translates,
in our presentation, to a method of indexing the set of D-rules.

(iv) Union Find: The union-find data structure that maintains equivalence
classes on the set of vertices is represented by the set of C rules. If we ap-
ply orientation and simplification to the state (K, F1, D1) described above,
using the strategy (Orio Sim™)*, we obtain a state (Ki,%, Dy U). The set
(1 1s a representation of the Union-Find structure capturing the input equiv-
alence on vertices. Continuing with the same example, 7 would be the set
{CO — C1,C3 — 64}.

We note that, D-rules serve a two-fold purpose: they represent the input term
dag, and also a signature table. We shall also note that Composition is used
only implicitly in the various algorithms via path-compression on the union-find
structure.

Shostak’s Method

Shostak’s congruence closure procedure was first described using simple D-rules
and C-rules by Kapur [8]. We show here that Shostak’s congruence closure proce-
dure is a specific strategy over the general transition rules for abstract congruence
closure presented here.

Shostak’s congruence closure is dynamic: it can accept new equations after
it has processed some equations, and can incrementally take care of the new

® The signature of a term f(t1,...,tx) is defined as f(c1,...,cx) where ¢; is the name
of the equivalence class containing term ¢;.

equation. Its input state is (f, Fo, #). Shostaks procedure can be described (at a
fairly abstract level) as:

Shos = ((Sim" o Ext™)" o (DelU Ori) o (Col o Ded*)*)*

which is implemented as (i) pick an equation s & ¢ from the E-component, (ii)
use simplification to normalize the term s to a term s’ (iii) use extension to create
simple D-rules for subterms of s’ until s’ reduces to a constant, say ¢, whence
extension is no longer applicable. Perform steps (ii) and (iii) on the other term
t as well to get a constant d. (iv) if ¢ and d are identical then apply deletion
(and continue with (i)), and if not, create a C-rule using orientation. (v) Once
we have a new C-rule, perform all possible collapse step by this new rule, where
each collapse step is followed by all the resulting deduction steps arising out of
that collapse. The whole process is now repeated starting from step (i).

Shostak’s procedure uses indexing based on the idea of the use() list. This
use() based indexing is used to identify all possible collapse applications.

If the E-component of the state is empty while attempting to apply step (i),
Shostak’s procedure halts. It is fairly easy to observe that Shostak’s procedure
halts in a final state. Hence, Theorem 1 establishes that the R-component of
Shostak’s halting state contains a convergent system and is an abstract congru-
ence closure.

Ezrample 2. We use the set Ey used in Example 1 of Section 2 to illustrate
Shostak’s method. We show some of the important intermediate steps of a
Shostak derivation.

|i|Constants Ki|Equations Ei|Rules R; |Transition |
00 Fy 0

1{co, 1} {ffa~ fb} [Ha —=co, b= c1, co = c1} [Ext” o Ori
2/{co, c1} {ffer = fb} {a—co, b—c1, co = c1} |Sim

3 {Co,...,Cg} {63 [fb} RzU{fcl — Ca, sz —)Cg}]i)Xt2

4 {CQ, ey 63} {63 [Cz} R3 Slmz
5{60,...,63} 0 R4U{C3—)Cz} Ori

The Downey-Sethi-Tarjan Algorithm

The Downey, Sethi and Tarjan [7] procedures assumes that the input is a dag
and an equivalence relation on its vertices, which, in our language, means that
the starting state for this procedures is (K1,%, D1 U C), where D; represents
the input dag and (' represents the initial equivalence. It can be succinctly
abstracted as:

DST = ((Col o (Ded U {c}))” o (Sim" o (Del U Ori1))")*

where € is the null transition rule. This strategy is implemented as follows (i) if
any collapse rule is applicable, it is applied and if, as a result any new deduction
step 1s possible, it is done. This is repeated until no more collapse steps are

possible. (ii) if no collapse steps are possible, then each C-equation in the E-
component is picked up sequentially, fully-simplified (simplification) and then
either deleted (deletion) or oriented (orientation).

Although the above description captures the essence of the Downey, Sethi and
Tarjan procedure, a few implementation details need to be pointed out. Firstly,
the Downey, Sethi and Tarjan procedure keeps the original dag (represented by
Dy) intact”, but changes signatures in a signature table. Hence, in the actual
implementation described in [7], the (Col o (Ded U {¢}))* strategy is applied
by: (i) deleting all signatures that will be changed, i.e., deleting all D-rules
which can be collapsed; (ii) computing new signatures using the original copy of
the signatures stored in the form of the dag D;; and, finally, (iii) inserting the
newly computed signatures into the signature table and checking for possible
deduction steps. Our description achieves the same end result, but, by doing
fewer inferences.

Secondly, in the Downey, Sethi and Tarjan procedure, for efficiency, an equa-
tion ¢ & d is oriented to ¢ — d if the ¢ occurs fewer times than d in the signature
table. This is done to minimize the number of collapse steps. Additionally, in-
dexing based on the use() tables is used for efficiently implementing the specific
strategy.

Let (K1,0,D; UCYy) F (Kn, E,, Dy U Cy) be a derivation using the DST
strategy. Then, it is easily seen that the state (K, Fn, D, UC),) is a final state,
and hence the set D, UC), is convergent, and also an abstract congruence closure.
We remark here that D,, holds the information that is contained in the signature
table, and C}, holds information in the union-find structure. The set (', is usually
considered the output of the Downey, Sethi and Tarjan procedure.

Ezrample 3. We illustrate the Downey-Sethi-Tarjan algorithm by using the same
set of equations Ey, used in Example 1 of Section 2. The start state is (K1, 0, D1U
Cy) where K = {cg,...,ca}, D1 ={a = ¢co, b > c1, feog = ¢a, fea = ca, far —
ca}, and, Cp = {eg = ¢1, ¢35 = cal.

|i|Consts Ki|Eqns E; |Rules R; |Transition|
11Ky [} DyuCy
21K, [} {a = co, b= c1, fer = ¢a, [Col
sz —> C3, f61 — 64} U
3 [\71 {Cz [64} R2 Ded
41K [} Rg—{fcl —)CQ}U{C4—)CQ} Ori

Note that ¢4 & ¢y was oriented in a way that no further collapses were needed
thereafter.

The Nelson-Oppen Procedure

The Nelson-Oppen procedure is not exactly a completion procedure and it does
not generate a congruence closure in our sense. The initial state of the Nelson-

7 We could make a copy of the original D; rules and not change them, while keeping
a separate copy as the signatures.

Oppen procedure is given by the tuple (K, F1, D1), where D is the input dag,
and FE; represents an equivalence on vertices of this dag. The sets Ky and Dy
remain unchanged in the Nelson-Oppen procedure. In particular, the inference
rule used for deduction is different from the conventional deduction rule®.

(K,E,DUC)
(K,EU{c~d},DUC)

NODeduction:

if there exist two D-rules f(c1,...,c5) = ¢, and, f(di,...,dg) = d in the set D;
and, ¢; —>'C o F'C di,fore=1,... k.
The Nelson-Oppen procedure can now be (at a certain abstract level) repre-
sented as:
NO = (Sim” o (OriU Del) o NODed")"

which is applied in the following sense: (i) select a C-equation ¢ & d from the
E-component, (ii) simplify the terms ¢ and d using simplification steps until
the terms can’t be simplified any more, (iii) either delete, or orient the sim-
plified C-equation, (iv) apply the NODeduction rule until there are no more
non-redundant applications of this rule, (v) if the EF-component is empty, then
we stop, otherwise continue with step (i).

Certain details like the fact that newly added equations to the set E are
chosen before the old ones in an application of orientation and indexing based
on the use() table, are abstracted away in this description.

Using the Nelson-Oppen strategy, assume we get a derivation (Ky, Ey, D1)-

No (Kyn, En, DoUC,). One consequence of using a non-standard deduction rule,
NODeduction, is that the resulting set D, UC,, = Dy U (), need not necessarily
be convergent, although the the rewrite relation D, /C), [6] is convergent.

Ezrample 4. Using the same set Ey as equations, we illustrate the Nelson-
Oppen procedure. The initial state is given by (K, Fy, Dy) where K; =
{co,c1,¢2,¢3,cat; B1 = {com c1, es mea}; and, Dy = {a — ¢co, b = ¢y, feo —
Ca, sz — C3, f61 — 64}.

|i|Constants Ki|Equations E; |Rules R; |Transition|
11Ky Eq Dy

2 [\71 {63 [64} D1 U {CO — Cl} Ori

3 [\71 {Cz R Cqy, C3 R 64} R2 NODed

4 [\71 {63 [64} R2 U {Cz — 64} Ori

5[(1 0 R4U{63—>C4} Ori

Consider deciding the equality fa & ffb. Even though fa <%, ffb, the terms
fa and ffb have distinct normal forms with respect to R5. But terms in the
original term universe have identical normal forms.

& This rule performs deduction modulo C-equations, i.e., we compute critical pairs
between D-rules modulo the congruence induced by C-equations. Hence, the Nelson-
Oppen procedure can be described as an estended completion [6] (or completion
modulo C-equations) method over an extended signature.

10

4 Experimental Results

We have implemented five congruence closure algorithms, including those pro-
posed by Nelson and Oppen (NO) [9], Downey, Sethi and Tarjan (DST) [7],
and Shostak [11], and two algorithms based on completion—one with an index-
ing mechanism (IND) and the other without (COM). The implementations of
the first three procedures are based on the representation of terms by directed
acyclic graphs and the representation of equivalence classes by a union-find data
structure. The completion procedure COM uses the following strategy:

((Sim™ o Ext™)” o (Del U Ori) o (Com o Col)* o Ded")*.
The indexed variant IND uses a slightly different strategy
((Sim™ o Ext™)* o (Del U Ori) o (Col o Com o Ded)*)*.

Indexing in the case of completion refers to the use of suitable data structures
to efficiently identify which D-rules contain specified constants.

In a first set of experiments, we assume that the input is a set of equations
presented as pairs of trees (representing terms). We added a preprocessing step
to the NO and DST algorithms to convert the given input terms into a dag
and initialize the other required data-structures. The other three algorithms
interleave construction of a dag with deduction steps. The published descriptions
DST and NO do not address the construction of a dag. Our implementation
maintains the list of terms that have been represented in the dag in a hash table
and creates a new node for each term not yet represented. We present below a
sample of our results to illustrate some of the differences between the various
algorithms.

The input set of equations E can be classified based on: (i) the size of the
input and the number of equations, (ii) the number of equivalence classes on
terms and subterms of F, and, (iii) the size of the use lists. The first set of
examples are relatively simple and developed by hand to highlight strengths and
weaknesses of the various algorithms. Example (a)? contains five equations that
induce a single equivalence class. Example () is the same as (a), except that it
contains five copies of all the equations. Example (¢)! requires slightly larger
use lists. Finally, example (d)!! consists of equations that are oriented in the
“wrong” way.

In Table 1 we compare the different algorithms by their total running time,
wncluding the preprocessing time. The times shown are the averages of several
runs on a Sun Ultra workstation under similar load conditions. The time was
computed using the gettimeofday system call.

® The equation set is {f*(a) = a, f1%(a) = f1°(b),b = £°(b),a = f*(a), f°(b) ~ b}.

19 The equation set is {g(a,a,b) = f(a,b), gabb =~ fba, gaab = gbaa, gbab
gabb, gbba = gbab, gaaa = faa, a ¢, cxd, d=e, bcl, clzdl, dl & el}.

" The set is {g(fi(a), h'°(®)) = g(a,b),i = {1,---,25}, h*"(b) = b,b = h*’(b), k(D)

0,0~ cl,cl me2,c2r 3,3 cd,cdxa,ax f(a)}.

Q

Q

11

Eqns|Vert|Class|| DST| NO|SHO| COM| IND
Ex.a 5| 27 1| 1.286| 1.640(0.281| 0.606|0.409
Ex.b| 20| 27 1|| 2.912| 2.772(0.794| 1.858(0.901
Ex.c 12| 20 6| 1.255| 0.733]0.515| 0.325]|0.323
Ex.d| 34| 105 2(|10.556(22.488|7.275(12.077|4.416

Table 1. Total running time (in milliseconds) for Examples (a) — —(d). Eqns refers to
the number of equations; Vert to the number of vertices in the initial dag; and Class
to the number of equivalence classes induced on the dag.

Table 2 contains similar comparisons for considerably larger examples con-

sisting of randomly generated equations over a specified signature. Again we

show total running time, including preprocessing time!?.

Eqns | Vert|Xo|Xy |3
Ex.1|10000|17604
Ex.2| 5000| 4163
Ex.3| 5000| 7869
Ex.4| 6000| 8885
Ex.5| 7000| 9818
Ex.6| 5000| 645
Ex.7| 5000| 1438| 10

Class|| DST NO| SHO| IND
7472|/11.087 3.187(10.206|13.037
2.276| 306.194| 3.092| 0.774
2745|| 2.439 1.357| 3.521] 3.989
9|| 3.551|1152.652(52.353| 7.069
1|| 4.633|1682.815|47.755| 5.471
23| 77| 1.224 1.580| 0.371] 0.363
23| 290 1.452 3.670| 0.392| 0.374

Wlw|w|lw|w|a
w

B Wl Wl W oo

[CIR V] el ol Nal FTH Re)
o|lo|~|~|—=|—|

Table 2. Total running time (in seconds) for randomly generated equations. The
columns Y; denote the number of function symbols of arity ¢ in the signature and
d denotes the maximum term depth.

In Table 3 we show the time for computing a congruence closure assuming
terms are already represented by a dag. In other words, we do not include the
time it takes to create a dag. Note that we include no comparison with Shostak’s
method, as the dynamic construction of a dag from given term equations is inher-
ent in this procedure. However, a comparison with a suitable strategy (in which
all extension steps are applied before any deduction steps) of IND is possible.
We denote by IND* indexed completion based on a strategy that first constructs
a dag. The examples are the same as in Table 2.

Several observations can be drawn from these results. First, the Nelson-
Oppen procedure NO is competitive only when few deduction steps are per-
formed and thus the number of equivalence classes is large. This is because it
uses a non-standard deduction rule, which forces the procedure to unnecessarily
repeat the same deductions many times over in a single execution. Not sur-
prisingly, straight-forward completion without indexing is also inefficient when

12 Times for COM are not included as indexing is indispensable for larger examples.

12

DST NO|IND*
Ex.10.919 0.296/0.076
Ex.2|0.309| 319.112|1.971
Ex.3|0.241 0.166|0.030
Fx.4|0.776{1117.239|7.301

DST NO|IND*
Ex.5(0.958|1614.961|9.770
Ex.6|0.026 0.781/0.060
Ex.7]0.048 2.470|0.176

Table 3. Running time (in seconds) when input is in a dag form.

many deduction steps are necessary. Indexing is of course a standard technique
employed in all practical implementations of completion.

The running time of the DST procedure critically depends on the size of the
hash table that contains the signatures of all vertices. If the hash table size is
large, enough potential deductions can be detected in (almost) constant time. If
the hash table size is reduced, to say 100, then the running time increased by a
factor of up to 50. A hash table with 1000 entries was sufficient for our examples
(which contained fewer than 10000 vertices). Larger tables did not improve the
running times.

Indexed Completion, DST and Shostak’s method are roughly comparable
in performance, though Shostak’s algorithm has some drawbacks. For instance,
equations are always oriented from left to right. In contrast, Indexed Completion
always orients equations in a way so as to minimize the number of applications of
the collapse rule, an idea that is implicit in Downey, Sethi and Tarjan’s algorithm.
Example (b) illustrates this fact. More crucially, the manipulation of the use lists
in Shostak’s method is done in a convoluted manner due to which redundant
inferences may be done when searching for the correct non-redundant ones'?.
As a consequence, Shostak’s algorithm performs poorly on instances where use
lists are large and deduction steps are many such as in Examples (¢), 4 and 5.

Finally, we note that the indexing used in our implementation of completion
1s simple—with every constant ¢ we associate a list of D-rules that contain ¢ as a
subterm. On the other hand DST maintains at least two different ways of indexing
the signatures, which makes it more efficient when the examples are large and
deduction steps are plenty. On small examples, the overhead to maintain the
data structures dominates. This also suggests that the use of more sophisticated
indexing schemes for indexed completion might improve its performance.

5 Related Work and Conclusion

Kapur [8] considered the problem of casting Shostak’s congruence closure [11]
algorithm in the framework of ground completion on rewrite rules. Our work has
been motivated by the goal of formalizing not just one, but several congruence
closure algorithms, so as to be able to better compare and analyze them.

13 The description in Section 3 accurately reflects the logical aspects of Shostak’s algo-
rithm, but does not provide details on data structures like the use lists.

13

We suggest that, abstractly, congruence closure can be defined as a ground
convergent system; and that this definition does not restrict the applicability
of congruence closure. The rule-based abstract description of the logical as-
pects of the various published congruence closure algorithms leads to a better
understanding of these methods. It explains the observed behaviour of imple-
mentations and also allows one to identify weaknesses in specific algorithms.
Additionally, using the abstract rules, we can also get efficient implementation
of completion based congruence closure procedure—one can effectively utilize
the theory of redundancy to figure out and eliminate inferences which are not
necessary, and moreover also use knowledge about efficient indexing mechanisms.

The concept of an abstract congruence closure is also relevant for describing
applications that use congruence closure algorithms. Some of these applications
include efficient normalization by rewrite systems [4, 2], computing a complete
set of rigid E-unifiers [13], and combination of decision procedures [11]. The
notion of an abstract congruence closure is naturally extended to handle presence
of associative-commutative operators, and this application is described in [3].
We believe that theories other than associativity and commutativity can also be
incorporated with the inference rules for abstract congruence closure.

Congruence closure has also been used to construct a convergent set of ground
rewrite rules in polynomial time by Snyder [12] and other works. Plaisted et.
al. [10] gave a direct method, not based on using congruence closure, for com-
pleting a ground rewrite system in polynomial time. Hence our work completes
the missing link, by showing that congruence closure is nothing but ground com-
pletion. In fact, the process of transforming a set of rewrite rules over an extended
signature (representing an abstract congruence closure) into a convergent set of
rewrite rules over the original signature can be easily described by additional
transition rules [3]. Our approach is different from that of Snyder, and can be
used to obtain a more efficient implementation partly because Snyder’s algo-
rithm needs fwo passes of the congruence closure algorithm, whereas we would
need to compute the abstract congruence closure just once.

The concept of an abstract congruence closure as detailed here and the rules
for computation open up new frontiers too. For example, the transition rules
presented in Section 2 can be naturally implemented in MAUDE [5]. Moreover,
specific strategies, such as the ones presented in Section 3 can be encoded easily
too. This might provide a basis for automatically verifying the correctness of
congruence closure algorithms'.

Acknowledgements. We would like to thank the anonymous reviewers for their
helpful comments.

References

[1] L. Bachmair and N. Dershowitz. Equational inference, canonical proofs, and proof
orderings. J. ACM, 41:236-276, 1994.

14 Personal communication with Manuel Clavel.

14

(2]

(3]

[10]
[11]
[12]

[13]

L. Bachmair, C. Ramakrishnan, [. Ramakrishnan, and A. Tiwari. Normalization
via rewrite closures. In P. Narendran and M. Rusinowitch, editors, 10th Int. Conf.
on Rewriting Techniques and Applications, pages 190-204, 1999. LNCS 1631.

L. Bachmair, I. Ramakrishnan, A. Tiwari, and L. Vigneron. Congruence closure
modulo associativity and commutativity. In H. Kirchner and C. Ringeissen, ed-
itors, Frontiers of Combining Systems, 3rd Intl Workshop FroCoS 2000, pages
245-259, 2000. LNAI 1794.

L. P. Chew. Normal forms in term rewriting systems. PhD thesis, Purdue Uni-
versity, 1981.

M. Clavel and et. al. Maude: Specification and Programming in Rewriting Logic.
http://maude.csl.sri.com/manual/, SRI International, Menlo Park, CA, 1999.

N. Dershowitz and J. P. Jouannaud. Rewrite systems. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science (Vol. B: Formal Models and Seman-
tics), Amsterdam, 1990. North-Holland.

P. J. Downey, R. Sethi, and R. E. Tarjan. Variations on the common subexpres-
sions problem. J. ACM, 27(4):758-771, 1980.

D. Kapur. Shostak’s congruence closure as completion. In H. Comon, editor,
Proceedings of the 8th International Conference on Rewriting Techniques and Ap-
plications, pages 23-37, 1997. Vol. 1232 of Lecture Notes in Computer Science,
Springer, Berlin.

G. Nelson and D. Oppen. Fast decision procedures based on congruence closure.
Journal of the Association for Computing Machinery, 27(2):356-364, Apr. 1980.
D. Plaisted and A. Sattler-Klein. Proof lengths for equational completion. Infor-
mation and Computation, 125:154-170, 1996.

R. E. Shostak. Deciding combinations of theories. Journal of the ACM, 21(7):583—
585, 1984.

W. Snyder. A fast algorithm for generating reduced ground rewriting systems
from a set of ground equations. Journal of Symbolic Computation, 15(7), 1993.
A. Tiwari, L. Bachmair, and H. Ruess. Rigid E-unification revisited. In
D. McAllester, editor, 17th Intl Conf on Automated Deduction, CADFE-17, 2000.

15

