
Intended for submission to the 28th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages

An Abstract Monte-Carlo Method for the Analysis of
Probabilistic Programs∗

David Monniaux
École Normale Supérieure
Laboratoire d’Informatique

45, rue d’Ulm
75230 Paris cedex 5

France

David.Monniaux@ens.fr

ABSTRACT

We introduce a new method, combination of random test-
ing and abstract interpretation, for the analysis of programs
featuring both probabilistic and non-probabilistic nondeter-
minism. After introducing “ordinary” testing, we show how
to combine testing and abstract interpretation and give for-
mulas linking the precision of the results to the number of
iterations. We then discuss complexity and optimization is-
sues and end with some experimental results.

1 INTRODUCTION

We introduce a generic method that lifts an ordinary ab-
stract interpretation scheme to an analyzer yielding upper
bounds on the probability of certain outcomes, taking into
account both randomness and ordinary nondeterminism.

1.1 Motivations

It is sometimes desirable to estimate the probability of cer-
tain outcomes of a randomized computation process, such
as a randomized algorithm or an embedded systems whose
environment (users, mechanical and electrical parts . . .) is
modelized by known random distributions. In this latter
case, it is particularly important to obtain upper bounds on
the probability of failure.

Let us take an example. A copy machine has a comput-
erized control system that interacts with the user through

∗This work was partially funded by Commissariat à
l’Énergie Atomique under contract 27234/VSF.

c©-Notice

some control panel, drives (servo)motors and receives infor-
mation from sensors. In some circumstances, the sensors
can give bad information; for instance, some loose scrap of
paper might prevent some optical sensor from working cor-
rectly. It is nevertheless desired that the probability that
the machine will stop in an undesired state (without having
returned the original, for instance) is very low given some re-
alistic rates of failure from the sensors. To make the system
more reliable, some sensors are redundant and the control-
ling algorithm tries to act coherently. Since adding sensors
to the design costs space and hardware, it is interesting to
evaluate the probabilities of failure even before building a
prototype. A similar case can be made of industrial systems
such as nuclear power plants were sensors have a limited life
time and cannot be expected to be reliable. Sound analysis
methods are especially needed for that kind of systems as
safety guidelines are often formulated in terms of maximal
probabilities of failures [8].

Treating the above problem in an entirely probabilistic
fashion is not entirely satisfactory. While it is possible to
modelize the user by properties such as “the probability that
the user will hit the C key during the transfer of double-sided
documents is less than 1%”, this can prevent detecting some
failures. For instance, if pressing some “unlikely” key combi-
nation during a certain phase of copying has a good chance of
preventing correct accounting of the number of copies made,
certain users might use it to get free copies. This is certainly
a bug in the system. To account for the behavior of inputs
that cannot be reliably modelized by random distributions
(for instance, malicious attacks) we must incorporate non-
determinism.

1.2 Comparison to other works

An important literature has been published on software test-
ing [11, 15, . . .]; the purpose of testing techniques is to
discover bugs and even to assert some sort of reliability cri-
terion by testing the program on a certain number of cases.
Such cases are either chosen randomly (random testing) or
according to some ad hoc criteria, such as program state-
ment or branch coverage (partition testing). Partition-based
methods can be enhanced by sampling randomly inside the
partition elements. Often, since the actual distribution in
production use is unknown, an uniform distribution is as-
sumed.

1

In our case, all the results our method gives are relative
to some fixed, known, distributions driving some inputs. On
the other hand, we will not have to assume some known
distribution on the other inputs: they will be treated as
nondeterministic. We thus avoid all problems pertaining to
arbitrary choices of partitions or random distributions; our
method, contrary to most testing methods, is fully mathe-
matically sound.

There exists a domain called probabilistic software engi-
neering [12] also aiming at estimating the safety of software.
It is based on statistical studies on syntactic aspects of source
code, or software engineering practices (programming lan-
guage used, organization of the development teams . . .),
trying to estimate number of bugs in software according to
recorded engineering experience. Our method does not use
such considerations and bases itself on the actual software
only.

Our analysis is based on a semantics equivalent to those
proposed by Kozen [6, 7, 2nd semantics] and Monniaux [9].
We proposed a definition of abstract interpretation on prob-
abilistic programs, using sets of measures, and gave a generic
construction for abstract domains for the construction of an-
alyzers. Nevertheless, this construction is rather “algebraic”
and, contrary to the one explained here, does not make use
of the well-studied properties of probabilities.

Several schemes of guarded logic commands [3] or refine-
ment [10] have been introduced. While these systems are
based on semantics broadly equivalent to ours, they are not
analysis systems: they require considerable human input and
are rather formal systems in which to construct derivations
of properties of programs.

1.3 Contribution

We introduce for the first time a method combining statisti-
cal and static analyses. This method is proven to be math-
ematically sound. While some other methods have been re-
cently proposed to statically derive properties of probabilis-
tic programs in a general purpose programming language [9],
ours is to our knowledge the first that makes use of statistical
convergences.

1.4 Structure of the paper

We shall begin by an explanation of ordinary testing and
its mathematical justification, then explain our “abstract
Monte-Carlo” method. We shall then give the precise con-
crete semantics that an abstract interpreter must use to im-
plement our method. We shall finish with some early results
from our implementation.

We shall take as an example a simple imperative language.
Our method is by no means limited to imperative program-
ming, but we found this choice to be both close to the most
common programming uses and relatively simple to explain
our method on.

2 ABSTRACT MONTE-CARLO: THE
IDEA

In this section, we shall explain, in a mathematical fashion,
how our method works.

2.1 The Ordinary Monte-Carlo Testing
Method

Let us consider a deterministic program c whose input x lies
in X and whose output lies in Z. We shall note [[c]] : X 7→ Z
the semantics of c (so that [[c]](x) is the result of the compu-
tation of c on the input x). We shall take X and Z two mea-
surable spaces and constrain [[c]] to be measurable. These
measurability conditions are technical and do not actually
restrict the scope of programs to consider [9]. For the sake
of simplicity, we shall suppose in this sub-section that c al-
ways terminates.

Let us consider W ⊆ Z a measurable set of final states
whose probability we wish to measure when x is a random
variable whose probability measure is µ. The probability of
W is therefore µ([[c]]−1(W)). Noting

tW (x) =

�
1 if [[c]](x) ∈ W
0 otherwise,

this probability is the expectation EtW . The law of large
numbers says that if we independently choose inputs xk,
with distribution µ, and compute the experimental average

t̄
(n)
W = 1

n � n
k=1 tW (xk), then limn→∞ t̄

(n)
W = EtW . We can

even evaluate the probability of underestimating the prob-
ability by more than t using the Chernoff-Hoeffding [4] [14,
inequality A.4.4] bounds:

Pr � X̄(n) −EX ≥ t � ≤ e−2nt2 (1)

Taking X = 1− tW , it follows that

Pr � EtW ≥ t̄(n)
W + t � ≤ e−2nt2 (2)

This method suffers from two drawbacks that make it un-
suitable in certain cases:

• It supposes that all inputs to the program are either
constant or driven according to a known probability
distribution. In general, this is not the case: some in-
puts might well be only specified by intervals of possible
values, without any probability measure. In such cases,
it is common [11] to assume some kind of distribution
on the inputs, such as an uniform one for numeric in-
puts. This might work in some cases, but grossly fail
in others, since this is mathematically unsound.

• It supposes that the program terminates every time
within an acceptable delay.

We propose a method that overcomes both of these prob-
lems.

2.2 Abstract Monte-Carlo

We shall now consider the case where the inputs of the pro-
gram are divided in two: those, in X, that follow a random
distribution µ and those that simply lie in some set Y . Now
[[c]] : X × Y → Z. The probability we are now trying to
quantify is µ{x ∈ X | ∃y ∈ Y [[c]]〈x, y〉 ∈ W}. Some techni-
cal conditions must be met so that this probability is well-
defined; namely, the spaces X and Y must be standard Borel

2

spaces [5, Def. 12.5].1 Since countable sets,
�
, products of

sequences of standard Borel spaces are standard Borel [5,
§12.B], this restriction does not concern most semantics.

Noting

tW (x) =

�
1 if ∃y ∈ Y [[c]]〈x, y〉 ∈W
0 otherwise,

this probability is the expectation EtW .

While it would be tempting, we cannot use a straight-
forward Monte-Carlo method since, in general, tW is not
computable.2

Let us first recall the mathematical foundations of ab-
stract interpretation [2, 1]. Let us now consider two pre-
ordered sets A] and Z] so that there exist monotone func-
tions γA : A] → � (A), where A = X × Y , and γW : Z] →

� (Z), where � (Z) is the set of parts of set Z, ordered by
inclusion. The elements in A] and Z] represent some prop-
erties; for instance, if X = � m and Y = � n, A] could be the
set of descriptions of polyhedra in � m+n and γA the function
mapping the description to the set of points inside the poly-
hedron [2]. We then define an abstract interpretation of
program c to be a monotone function [[c]]] : A] → Z] so that

∀a] ∈ A], ∀a ∈ A a ∈ γA(A])⇒ [[c]](a) ∈ γB ◦ [[c]]](a]).

Let us also suppose that we can compute the following
functions:

• I : X → A] so that ∀x ∈ X γA ◦ I(x) ⊇ {x} × Y ;

• τW : Z] → {0, 1} so that for all z] ∈ Z], τW (z]) = 0⇒
γZ(z]) ∩W = ∅.

It is then possible to compute a function TW suitable for our
needs: TW = τW ◦ [[c]]] ◦ I.

We shall see in the following section how to build abstract
interpreters with a view to using them for this Monte-Carlo
method.

1Let us suppose X and Y are standard Borel spaces [5,
§12.B]. X × Y is thus a Polish space [5, §3.A] so that the
first projection π1 is continuous. Let A = {x ∈ X | ∃y ∈
Y [[c]]〈x, y〉 ∈ W}; then A = π1([[c]]

−1(W)). Since [[c]] is a
measurable function and W is a measurable set, [[c]]−1(W)
is a Borel subset in the Polish space X × Y . A is therefore
analytic [5, Def. 14.1]; from Lusin’s theorem [5, Th. 21.10], it
is universally measurable. In particular, it is µ-measurable
[5, §17.A]. µ(A) is thus well-defined.

2Let us take a Turing machine (or program in a Turing-
complete language) F . There exists an algorithmic transla-
tion taking F as input and outputting the Turing machine
F̃ computing the total function ϕF̃ so that

ϕF̃ 〈x, y〉 =
�

1 if F terminates in y or less steps on input x

0 otherwise.

Let us take X = Y = � and Z = {0, 1} and the program
F̃ , and define t{1} as before. t{1}(x) = 1 if and only if F
terminates on input x. It is a classical fact of computability
theory that the t{1} function is not computable for all F [13].

3 A CONCRETE SEMANTICS SUIT-
ABLE FOR ANALYSIS

From the previous section, it would seem that it is easy to
use any abstract interpreter in a Monte-Carlo method. Alas,
we shall now see that special precautions must be taken in
the presence of calls to random generators inside loops.

3.1 Concrete Semantics

We have for now spoken of deterministic programs taking
one input x chosen according to some random distribution
and one input y in some domain. Calls to random generators
(such as the POSIX drand48() function) are usually mod-
elized by a sequence of independent random variables. If a
bounded number of calls (≤ N) to such generators is used
in the program, we can consider them as input values: x is
then a tuple 〈x1, . . . , xN , v〉 where x1, . . . , xn are the values
for the generator and v is the input of the program. If an
unbounded number of calls can be made, it is tempting to
consider as an input a countable sequence of values (xn)n∈ �
where x1 is the result of the first call to the generator, x2

the result of the second call . . . ; a formal description of such
a semantics has been made by Kozen [6, 7].

Such a semantics is not very suitable for program analysis.
Intuitively, analyzing such a semantics implies tracking the
number of calls made to number generators. The problem is
that such simple constructs as:

if (...) { random(); } else {}

are difficult to handle: the countings are not synchronized
in both branches.

We shall now propose another semantics, identifying oc-
currences of random generators by their program location
and loop indices. The Backus-Naur form of the program-
ming language we shall consider is:

instruction ::= elementary
| instruction ; instruction
| if boolean expr

then instruction
else instruction
endif

| while boolean expr
do instruction
done

We leave the subcomponents largely unspecified, as they
are not relevant to our method. elementary instructions
are deterministic, terminating basic program blocks like as-
signments and simple expression evaluations. boolean expr
boolean expressions, such as comparisons, have semantics as
sets of acceptable environments. For instance, a boolean expr
expression can be x < y + 4; its semantics is the set of exe-
cution environments where variables x and y verify the above
comparison. If we restrict ourselves to a finite number n of
integer variables, an environment is just a n-tuple of integers.

The denotational semantics of a code fragment c is a map-
ping from the set X of possible execution environments be-
fore the instruction into the set Y of possible environments
after the instruction. Let us take an example. If we take

3

environments as elements of � 3, representing the values of
three integer variables x, y and z, then [[x:=y+z]] is the
strict function 〈x, y, z〉 7→ 〈y + z, y, z〉. Semantics of basic
constructs (assignments, arithmetic operators) can be easily
dealt with this forward semantics; we shall now see how to
deal with flow control.

The semantics of a sequence is expressed by simple com-
position

[[e1; e2]] = [[e2]] ◦ [[e1]] (3)

Tests get expressed easily, using as the semantics [[c]] of a
boolean expression c the set of environments it matches:

[[if c then e1 else e2]](x) =

if x ∈ [[c]] then [[e1]](x) else [[e2]](x) (4)

and loops get the usual least-fixpoint semantics (considering
the point-wise extension of the Scott flat ordering on partial
functions)

[[while c do f]] = lfp(λφ.λx.

if x ∈ [[c]] then φ ◦ [[f]](x) else x). (5)

Non-termination shall be noted by ⊥.
As for expressions, the only constructs whose semantics

we shall precise are the random generators. We shall con-
sider a finite set G of different generators. Each generator g
outputs a random variable rg with distribution µg; each call
is independent from the precedent calls. Let us also con-
sider the set P of program points and the set � ∗ of finite
sequences of positive integers. The set C = P × � ∗ shall
denote the possible times in an execution where a call to a
random generator is made: 〈p, n1n2...nl〉 notes the execution
of program point p at the n1-th execution of the outermost
program loop, . . . , nl-th execution of the innermost loop at
that point. C is countable. We shall suppose that inside the
inputs of the program there is for each generator g in G a
family (ĝ〈p,w〉)〈p,w〉∈C of random choices.

The semantics of the language then become:

[[e1; e2]] = [[e2]] ◦ [[e1]] (6)

Tests get expressed easily, using as the semantics [[c]] of a
boolean expression c the set of environments it matches:

[[if c then e1 else e2]].〈w, x〉 =
if x ∈ [[c]] then [[e1]].〈w, x〉 else [[e2]].〈w, x〉 (7)

Loops get the usual least-fixpoint semantics (considering
the point-wise extension of the Scott flat ordering on partial
functions):

[[while c do f]].〈w0, x0〉 =
lfp (λφ.λ〈w, x〉.if x ∈ [[c]] then φ ◦ S ◦ [[f]]〈w, x〉) else x).〈1.w0, x0〉

(8)

where S.〈c.w, x〉 = 〈(c + 1).w, x〉. The only change is that
we keep track of the iterations of the loop.

As for random expressions,

[[p : randomg]].〈w, x〉 = ĝ〈p,w〉 (9)

where p is the program point.

This semantics is equivalent to the denotational semantics
proposed by Kozen [6, 7, 2nd semantics] and Monniaux [9],
the semantic of a program being a continuous linear opera-
tor mapping an input measure to the corresponding output.
The key point of this equivalence is that two invocations
of random generators in the same execution have different
indices, which implies that a fresh output of a random gen-
erator is randomly independent of the environment coming
to that program point.

3.2 Analysis

Our analysis algorithm is a randomized version of an ordi-
nary abstract interpreter. Informally, we treat calls to ran-
dom generators are treated as follows:

• calls occurring outside fixpoint convergence iterations
are interpreted as constants chosen randomly by the
interpreter;

• calls occurring inside fixpoint convergence iterations are
interpreted as upper approximations of the whole do-
main of values the random generator yield.

For instance, in the following C program:

int x;

x = coin_flip(); /* coin_flip() returns 0 or 1 */

/* each with probability 0.5 */

for(i=0; i<5; i++)

{

x = x + coin_flip();

}

the first occurrence of coin_flip() will be treated as a ran-
dom value, while the second occurrence will be treated as
the least upper bound of {0} and {1}.

This holds for “naive” abstract interpreters; more ad-
vanced ones might perform “dynamic loop unrolling” or
other semantic transformations corresponding to a refine-
ment of the abstract domain to handle execution traces:

[[while c do e]](x) =��� �
k<N1+N2

ψk(x) � ∪ ψN2 � lfp � λl.ψN1 (x) ∪ ψ(l) ����� ∩ [[c]]C

(10)

where ψ(x) = [[e]](x∩[[c]]) andN1 andN2 are possibly decided
at run-time, depending on the computed values. In this case,
the interpreter uses a random generator for the occurrences
of randomg operations outside lfp computations and abstract
values for the operations inside lfp’s. Its execution defines
the finite set K of 〈p, n1 . . . nl〉 tags uniquely identifying the
random values chosen for ĝ〈p,n1...nl〉, as well as the values
(ǧc)c∈K that have been chosen. This yields

∀(ĝc)g∈G,c∈C ∀y ∈ Y (∀c ∈ K ĝc = ǧc)⇒
[[c]]〈(ĝc)g∈G,c∈C , y〉 ∈ γZ(z]) (11)

which means that

∀(ĝc)g∈G,c∈C (∀c ∈ K ĝc = ǧc)⇒
tW ((ĝc)g∈G,c∈C) ≤ τW (z]) (12)

4

If we virtually choose randomly some ǧc for c /∈ K, we know
that tW ((ǧc)g∈G,c∈C) ≤ τW (z]). Furthermore, (ǧc) follows
the product random distribution µ⊗Cg (each ǧc has been cho-
sen independently of the others according to measure µg).

Let us summarize: we wish to generate upper bounds
of experimental averages of a Bernoulli random variable
tW : X → {0, 1} whose domain has the product probability
measure µI ⊗

�
g∈G µ

⊗C
g where µI is the input measure and

the µg’s are the measures for the random number genera-
tors. The problem is that the domain of this random vari-
able is made of countable sequences; thus we cannot generate
its input strictly speaking. We instead effectively choose at
random a finite number of coordinates for the countable se-
quences, and compute a common upper bound for tW for all
inputs identical to our chosen values on this finite number
of coordinates. This is identical to virtually choosing a ran-
dom countable sequence x and getting an upper bound of its
image by tW .

Implementing such an analysis inside an ordinary abstract
interpreter is easy. The calls to random generators are inter-
preted as either a random generation, or as the least upper
bound over the range of the generator, depending on a “ran-
domize” flag. This flag is adjusted depending on whether
the interpreter is computing a fixpoint. The interpreter does
not track the indices of the random variables: these are only
needed for the proof of correctness. The analyzer does a
certain number n of trials and outputs the experimental av-

erage t̄
(n)
W . As a convenience, our implementation also out-

puts the t̄
(n)
W + t upper bound so that there is at least a

probability 1 − ε that this upper bound is safe according
to inequation (2). This is the value that is reported in the
experiments of section 5.

While our explanations referred to a forward semantics,
the abstract interpreter can of course combine forward and
backward analysis [1, section 6], provided the chosen random
values are recorded so that subsequent passes of analysis can
reuse them. Another related improvement, explained in the
next section, uses a preliminary backward analysis prior to
random generation.

4 COMPLEXITY

The complexity of our method is the product of two inde-
pendent factors:

• the complexity of one ordinary static analysis of the
program; strictly speaking, this complexity depends not
only on the program but on the random choices made,
but we can take a rough “average” estimate that de-
pends only on the program being analyzed;

• the number of iterations, that depends only on the re-
quested safety margins; the minimal number of itera-
tions to reach a certain safety criterion can be derived
from inequalities [14, appendix A] such as inequation
(1) and does not depend on the actual program being
analyzed.

We shall now focus on the latter factor, as the former de-
pends on the particular case of analysis being implemented.

Let us recall inequation (2): Pr � EtW ≥ t̄(n)
W + t � ≤

e−2nt2 . It means that to get with 1 − ε probability an ap-

1− 2nt2
e−2nt2

n

100009000800070006000500040003000200010000

1

0.8

0.6

0.4

0.2

0

Figure 1: Upper bound on the probability that the computed
probability exceeds the real value by more than t, for t =
0.01.

− log t

t2

t

lo
g
1
0

sc
a
le

0.10.080.060.040.020

7

6.5

6

5.5

5

4.5

4

3.5

3

2.5

2

Figure 2: Numbers of iterations necessary to achieve a prob-
ability of false report on the same order of magnitude as the
error margin.

5

proximation of the requested probability µ, it is sufficient to
compute an experimental average over

�
− log ε

2t2 � trials.

This exponential improvement in quality (Fig. 1) is nev-
ertheless not that interesting. Indeed, in practice, we might
want ε and t of the same order of magnitude as µ. Let us
take ε = αt where α is fixed. We then have n ∼ − log t

t2
,

which indicates prohibitive computation times for low prob-
ability events (Fig. 2). This high cost of computation for
low-probability events is not specific to our method; it is true
of any Monte-Carlo method, since it is inherent in the speed
of convergence of averages of identically distributed random
variables; this relates to the speed of convergence in the cen-
tral limit theorem [14, ch 1]. It can nevertheless be circum-
vented by tricks aimed at estimating the desired low prob-
ability by computing some other, bigger, probability from
which the desired result can be computed.

Fortunately, such an improvement is possible in our
method. If we know that π1([[c]]

−1(W)) ⊆ R, with a mea-
surable R, then we can replace the random variable tW by
its restriction to R: tW |R; then EtW = Pr (R) .EtW |R. If
Pr (R) and EtW are on the same order of magnitude, this
means that EtW |R will be large and thus that the number
of required iterations will be low. Such a restricting R can
be obtained by static analysis, using ordinary backwards ab-
stract interpretation.

A salient point of our method is that our Monte-Carlo
computations are highly parallelizable, with linear speed-
ups: n iterations on 1 machine can be replaced by n/m iter-
ations on m machines, with very little communication. Our
method thus seems especially adapted for clusters of low-
cost PC with off-the-shelf communication hardware, or even
more distributed forms of computing. Another improvement
can be to compute bounds for several W sets simultaneously,
doing common computations only once.

5 PRACTICAL IMPLEMENTATION
AND EXPERIMENTS

We have a prototype implementation of our method, imple-
mented on top of an ordinary abstract interpreter doing for-
ward analysis using integer and real intervals. Figures 3 to 5
show various examples for which the probability could be
computed exactly by symbolic integration. Figure 6 shows a
simple program whose probability of outcome is difficult to
figure out by hand. Of course, more complex programs can
be handled, but the current lack of support of user-defined
functions and mixed use of reals and integers prevents us
from supplying real-life examples. We hope to overcome
these limitations soon as implementation progresses.

6 CONCLUSIONS

We have proposed a generic method that combines the
well-known techniques of abstract interpretation and Monte-
Carlo program testing into an analysis scheme for probabilis-
tic and nondeterministic programs, including reactive pro-
grams whose inputs are modelized by both random and non-
deterministic inputs. This method is mathematically proven
correct, and uses no assumption apart from the distributions
and nondeterminism domains supplied by the user. It yields

int x, i;

know (x>=0 && x<=2);

i=0;

while (i < 5)

{

x += coin_flip();

i++;

}

know (x<3);

Figure 3: Discrete probabilities. The analyzer es-
tablishes that, with 99% safety, the probability p of
the outcome (x < 3) is less than 0.509 given worst-case
nondeterministic choices of the precondition (x ≥ 0∧x ≤ 2).
The analyzer used n = 10000 random trials. Formally, p is
Pr � coin flip ∈ {0, 1}5 | ∃x ∈ [0, 2] ∩ � [[P]](coin flip, x) < 3 � .
Each coin flip is chosen randomly in {0, 1} with an
uniform distribution. The exact value is 0.5.

double x;

know (x>=0. && x<=1.);

x+=uniform()+uniform()+uniform();

know (x<2.);

Figure 4: Continuous probabilities. The analyzer es-
tablishes that, with 99% safety, the probability p of the
outcome (x < 2) is less than 0.848 given worst-case nonde-
terministic choices of the precondition (x ≥ 0 ∧ x ≤ 1).
The analyzer used n = 10000 random trials. Formally,
p is Pr � uniform ∈ [0, 1]3 | ∃x ∈ [0, 1] [[P]](uniform, x) < 2 � .
Each uniform is chosen randomly in [0, 1] with the Lebesgue
uniform distribution.
The exact value is 5/6 ≈ 0.833.

double x, i;

know(x<0.0 && x>0.0-1.0);

i=0.;

while (i < 3.0)

{

x += uniform();

i += 1.0;

}

know (x<1.0);

Figure 5: Loops. The analyzer establishes that, with
99% safety, the probability p of the outcome (x <
1) is less than 0.859 given worst-case nondeterministic
choices of the precondition (x < 0 ∧ x > −1). The
analyzer used n = 10000 random trials. Formally,
p is Pr � uniform ∈ [0, 1]3 | ∃x ∈ [0, 1] [[P]](uniform, x) < 1 � .
Each uniform is chosen randomly in [0, 1] with the Lebesgue
uniform distribution. The exact value is 5/6 ≈ 0.833.

6

{

double x, y, z;

know (x>=0. && x<=0.1);

z=uniform(); z+=z;

if (x+z<2.)

{

x += uniform();

} else

{

x -= uniform();

}

know (x>0.9 && x<1.1);

}

Figure 6: The analyzer establishes that, with 99% safety,
the probability p of the outcome (x > 0.9 ∧ x < 1.1)
is less than 0.225 given worst-case nondeterministic
choices of the precondition (x ≥ 0 ∧ x ≤ 0.1). Formally, p is
Pr � uniform ∈ [0, 1]2 | ∃x ∈ [0, 0.1] [[P]](uniform, x) ∈ [0.9, 1.1] � .
Each uniform is chosen randomly in [0, 1] with the Lebesgue
uniform distribution.

upper bounds on the probability of outcomes of the program,
according to the supplied random distributions, with worse-
case behavior according to the nondeterminism; whether or
not this bounds are sound is probabilistic, and a lower-bound
of the soundness of those bounds is supplied. While our ex-
planations are given using a simple imperative language as
an example, the method is by no means restricted to imper-
ative programming.

The number of trials, and thus the complexity of the com-
putation, depends on the desired precision. The method is
parallelizable with linear speed-ups. The complexity of the
analysis, or at least its part dealing with probabilities, in-
creases if the probability to be evaluated is low. However,
static analysis can come to help to reduce this complexity.

We have implemented the method on top of a simple static
analyzer and conducted experiments showing interesting re-
sults on small programs written in an imperative language.
As implementation progresses, we expect to have results on
complex programs akin to those used in embedded systems.

REFERENCES

[1] Patrick Cousot and Radhia Cousot. Abstract interpre-
tation and application to logic programs. J. Logic Prog.,
2-3(13):103–179, 1992.

[2] Patrick Cousot and Nicolas Halbwachs. Automatic dis-
covery of linear restraints among variables of a program.
In Proceedings of the Fifth Conference on Principles of
Programming Languages. ACM Press, 1978.

[3] Jifeng He, K. Seidel, and A. McIver. Probabilistic mod-
els for the guarded command language. Science of Com-
puter Programming, 28(2–3):171–192, April 1997. For-
mal specifications: foundations, methods, tools and ap-
plications (Konstancin, 1995).

[4] Wassily Hoeffding. Probability inequalities for sums of
bounded random variables. J. Amer. Statist. Assoc.,
58(301):13–30, 1963.

[5] Alexander S. Kechris. Classical descriptive set theory.
Graduate Texts in Mathematics. Springer-Verlag, New
York, 1995.

[6] D. Kozen. Semantics of probabilistic programs. In 20th
Annual Symposium on Foundations of Computer Sci-
ence, pages 101–114, Long Beach, Ca., USA, October
1979. IEEE Computer Society Press.

[7] D. Kozen. Semantics of probabilistic programs. Journal
of Computer and System Sciences, 22(3):328–350, 1981.

[8] N. G. Leveson. Software safety: Why, what, and how.
Computing Surveys, 18(2):125–163, June 1986.

[9] David Monniaux. Abstract interpretation of probabilis-
tic semantics. In Seventh International Static Analysis
Symposium (SAS’00), number 1824 in Lecture Notes in
Computer Science. Springer-Verlag, 2000.

[10] Carroll Morgan, Annabelle McIver, Karen Seidel, and
J. W. Sanders. Refinement-oriented probability for
CSP. Formal Aspects of Computing, 8(6):617–647,
1996.

[11] Simeon Ntafos. On random and partition testing. In
Michal Young, editor, ISSTA 98: Proceedings of the
ACM SIGSOFT International Symposium on Software
Testing and Analysis, pages 42–48, 1998.

[12] Panel on Statistical Methods in Software Engineering.
Statistical Software Engineering. National Academy of
Sciences, 1996.

[13] H. Rogers. Theory of recursive and effective computabil-
ity. MGH, 1967.

[14] Galen R. Shorack and Jon A. Wellner. Empirical Pro-
cesses with Applications to Statistics. Wiley series in
probability and mathematical statistics. John Wiley &
Sons, 1986.

[15] P. Thévenod-Fosse and H. Waeselynck. Statemate ap-
plied to statistical software testing pages 99-109. In Pro-
ceedings of the 1993 international symposium on Soft-
ware testing and analysis, pages 99–109. Association for
Computer Machinery, June 1993.

7

