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Abstract

The Invariant Checker is a tool for the computer aided verification, dedicated to the proof of
invariance properties of reactive systems. The aim of the tool is to provide a framework combining
theorem-proving techniques (Pvs theorem prover) and deductive verification methods. Systems
are described as a parallel composition of sequential programs described in a language close to
the Dijkstra guarded command language. Program variables can be of any type definable in Pvs.
The tool provides automatic generation of invariants, automatic strengthening of invariants and
automatic abstraction. The tool is interfaced with ALDEBARAN, a tool for the analysis of state
graphs.
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1 Design Philosophy

The Invariant Checker (ZC) [GS96, Sai96] is a tool for the computer-aided verification dedicated to
the verification of invariance properties of reactive systems using theorem-proving techniques and tools.
The system is designed as a front-end for the Pvs [CLNT95] theorem prover. The ZC can be seen as
an extension of the Pvs verification system to handle the notion of transition systems and invariants
as well as the usual mathematical objects. These extensions appears at two different levels: the Pvs
specification language is extended with the notion of a system, or a parallel composition of transition
systems instead of a theory. The Pvs prover is also extended with a deductive proof rule (cf. [MP95])
dedicated to invariance properties. To check whether a predicate P is an inductive invariant of a system
S, it is sufficient to check the validity of a set of first order formulas called verification conditions (VCs)
(cf. [GS96]). This proof rule also provides a strengthening method for P if for some of the generated
Vs the proof fails. This method can be completely automatized under the condition that the generated
VCs are decidable predicates.

This type of invariant verification makes a different use of theorem proving from the “classical” one
where program’s semantics are encoded in the prover’s specification language (usually higher order logic
or set theory). In this “classical” approach the proof process is complicated due to the heavy encoding of
semantics and the unnecessary rewriting of semantics definitions, while usually the most important and
difficult part of the verification process is the reasoning about the program variables and their values.
Also, it requires too much user intervention. The objective of our tool is to provide more automatization
and less user intervention using a set of features. The architecture of the tool is presented in Figure 1.

Syntax: Systems can be described in a Simple Programming Language (SPL), close to the one used
in [MP95], but with the rich data types and expressions definition mechanism available in Pvs. Systems
described in SPL are translated automatically to guarded commands with explicit control. Program
variables can be of any type definable in Pvs, and can be assigned by any definable Pvs expression of
compatible type. Also, it is possible to import any defined Pvs theory.
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Figure 1: The Invariant Checker Architecture



Typechecking: Typechecking a system consists in checking that every guarded command is well
typed according to a typing context. This typing context consists of all variable declarations and may
be some imported Pvs theory. Typechecking a specification is undecidable as it is the case in Pvs. The
generated type correctness conditions (TCCs) have to be proved as invariants and not as valid formulas.
The generated TCCs guarantee “absence of run-time errors” (division by zero, application of the tail
function on the empty list...). In the case where they cannot be proved, absence of run-time errors is
not guaranteed but this does not affect the proved invariants.

Proof session: A proof session starts with typechecking the system and the property we want to verify.
The system is then translated into an internal representation which will be used by all components of the
tool. One can then apply static analysis to the system in order to extract auxiliary invariants using the
techniques described in [BLS96]. The user can then start the proof by indicating to the proof manager,
which strategy he wants to invoke. That is for example the maximal number of strengthening steps,
the automatic use or not of some of the invariants in the data base. At each call of the proof rule, a
set of VCs is submitted to the prover. If the applied proof strategy fails to prove some of them, the
user can either prove them interactively or automatically strengthen the invariant and apply the proof
rule again. For every generated VC, a set of relevant generated invariants is automatically selected to
achieve the proof.

Automatic theorem proving: The generated VCs are submitted to the Pvs prover, where automatic
proof strategies combining automatic induction, automatic rewriting, boolean simplification using Bdds
and decision procedures can be applied. The user can defined such strategies, by combining pre-defined
Pvs strategy and user defined ones. Non provable assertions are considered non valid.

Invariants data base The invariant data base contains the invariants generated using the techniques
described in [BLS96]. The user can always enrich the invariant data base with some invariants. with
each invariant is associated a status which may change during the proof. The status has three possible
values:

e “agsumed”: assumed invariants are user defined and no proof is required for them. They play the
role of axioms, and can therefore lead to inconsistent proofs.

e “unproved”.

e “proved”: with each proved invariant its proof is associated. It consists of the applied proof
strategy and the invariants used during the proof. If some invariant is removed from the data
base, all the already proved invariants whose associated proof depends on the removed invariant,
become “unproved”.

Automatic abstraction Recently we added a new feature, which consists of the use of abstraction
techniques [GS97]. Given a set of predicates ¢y, ..., p,on the variables of a system, an abstract state
graph (where states are valuations of ¢, ..., ;) is constructed in an automatic way using user defined
proof strategy. An abstract state graph can be used in many ways:

e It can be used as a global control graph from which stronger invariants can be generated and
added to the invariants data base then from the initial system.

e It can be minimized modulo strong equivalence using the ALDEBARAN tool [FGKT96]. The reduced
graph defines a new system with a single component, on which we can prove the property we want
to verify using the implemented proof rule.

o It is possible to prove a temporal formulainvolving ¢, ..., ¢, using the model checker of ALDEBARAN.

Features The main features of available in the ZC tool can be resumed as follows:

e Convenient and simple syntax for the description of parallel system.
e Automatic generation of invariants.

e Automatic generation of proof obligations.

e Automatic generation of abstract state graph.

e Automatic proof procedures du to Pvs.

e Generation of LaTeX.



User Interface: Pvs has emacs as user interface. We found convenient to use the same user interface
for our prototype. All the functions of the tool can be invoked by some emacs command.

2 Experiments

Using the ZC we verified various classical mutual exclusion algorithms [MP95], a read and write buffer
using complex data types [GS96]. The use of abstraction techniques allow us to prove in a fully automatic
way an alternating bit and a bounded retransmission protocol [GS97].

Additional information can be found on the Invariant Checker home page:
http://wuw.imag.fr/VERIMAG/PEOPLE/Hassen.Saidi/Invariant-Checker.html
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