
Applying Formal Evaluation to Worm Defense Design

Raman Sharykin Phillip A. Porras
Department of Computer Science Computer Science Laboratory

University of Illinois Urbana-Champaign SRI International
201 N Goodwin Avenue 333 Ravenswood Avenue

Urbana, IL 61801 Menlo Park, CA 94025

Abstract

We discuss the early insertion of formal analyses in dis-
tributed malware defense evaluation, and provide an exam-
ple method for applying an executable rewriting logic spec-
ification to drive both simulation and property validation
of a collaborative group-based worm defense. An impor-
tant aspect of the algorithm under consideration is its dis-
tributed and probabilistic nature, which makes the defense
system harder to attack but unfortunately also complicates
the ability of designers to fully understand its behavioral
properties. We demonstrate one approach to formally an-
alyze our case study worm defense algorithm, employing
tools that facilitate both statistical simulation and property
validation. Our approach is posed as complementary to the
current practice of informal design specification and evalu-
ation through network simulation.

1 Introduction

With the increasing importance and complexity of dis-
tributed malware defense systems, the application of formal
methods for understanding the dynamics of such systems
early in their design could prove highly valuable. However,
to date formal analyses of malware defense algorithms have
been extremely limited, with the vast majority of designers
relying on informal or pseudocode specifications, network
simulation, and functional testing to assess their designs.
One obstacle to the application of formal methods in this
area is the difficulty in determining a proper formalism to
apply when evaluating a given malware defense algorithm.
If an underlying formalism such as Petri nets or discrete-
time Markov chains is selected, it may be costly to switch
to a different formalism in cases where another formalism is
later determined to be more appropriate in assessing certain
algorithm properties.

We present an approach to applying formal methods to
the design of malware defenses usingrewriting logic [12].
Rewriting logic allows an early insertion of formal methods,

while not restricting the designer to a narrow formalism. It
has been shown that different mathematical models can be
naturally expressed in rewriting logic [11, 12]. Formalisms
based on rewriting logic can be concise, relatively intuitive,
and well suited for specifying distributed concurrent sys-
tems with asynchronous communication in play. Rewriting
logic specifications are executable in a rewriting-logic lan-
guage, such as Maude [8], which allows one to simulate and
adjust a malware defense specification over various attack
scenarios very early in the design life cycle. When the de-
signer is satisfied with the specification, an appropriate nar-
rower formalism with a known representation in rewriting
logic can be used to assist in proving various critical prop-
erties or to identify logical inconsistencies not discernible
through simulation. Maude itself supports assistance for
formal proofs in rewriting logic [7].

Once a formalism is selected, another important question
is how to analyze the system during early development. A
desirable method should be “lightweight,” in that it should
allow the designer to focus on the defense algorithm and its
parameters. We prefer methods that allow us to rapidly as-
sess key behavioral properties and iterate the defense model
under various operating assumptions, and to invest efforts
in more complex formal validation procedures only later,
when the design space is narrowed. For our application
of a malware defense system, we propose a simulation-
based approach with a temporal quantitative language Qua-
TEx [1], which we explain is well suited to quantitatively
assessing the behavior of stochastic systems, such as mal-
ware defense protocols under a distributed attack.

To illustrate our methodology we consider a case study
involving a probabilistic worm defense algorithm. The pri-
mary contribution of this paper is to demonstrate a formal
approach to analyzing the behavioral properties of this peer-
based distributed stochastic system in a malware defense
context, and to illustrate the types of security properties that
we believe are applicable, here and with other malware de-
fense algorithms, to investigation through formal analyses
rather than simulation.

The paper is organized as follows: Section 2 introduces
the illustrative worm defense system; Section 3 explains
how this system can be specified using Maude rewriting
logic; Section 4 explains how a property can be specified
in QuaTEx and how it can be statistically analyzed using
VeStA; Section 5 discusses example properties and intro-
duces a property which cannot be inferred from analysis of
a propagation curve; finally, Section 6 presents our findings
while shaping our algorithm and provides technical results.

2 An Example Worm Defense System

To motivate our presentation, we briefly present an ex-
ample, previously published, group-based worm defense al-
gorithm [4]. Our intent here is to describe the basics of the
algorithm to drive our formal modeling discussion, and re-
fer the reader to the publication for more information re-
garding the algorithm details and efficacy arguments.

Under this group defense algorithm, local area networks
(LANs) collaborate in groups, where each LAN’s egress
router informs its group partners when it produces local
alerts associated with potential worm infection activity.
When a LAN receives corroborating worm reports fromN
or more sources, it enters a defensive filtering posture. The
algorithm is similar to the peer alert sharing protocols pre-
sented in [2] and [13], but here alert production is driven
by a connection rate-limiting system, such as that presented
in [16]. Our connection rate-limiting component produces
an alarm when it observes an internal host that attempts to
connect to more than a threshold number of unique IP ad-
dresses per unit time. Connections to new hosts that exceed
the threshold are dropped at the egress router until the next
time interval. One benefit of this combined defense strategy
observed in closed-network simulations is that while peer-
sharing algorithms are fundamentally subject to defeat by
rapid worm propagation, the connection rate-limiting sys-
tem that produces the alerts also effectively slows overall
worm propagation speed well enough to ensure that peer
corroboration takes effect.

Upon receiving a sufficient number of corroborating
worm infection alarms from itself or peers, an egress router
has the capacity to switch into adefensive posture(a fil-
tering mode that drops all packets that are assumed cor-
related with the majority of peer alerts). To arrive at a
sufficiently abstract model, we do not specify how to ac-
complish filtering, but we attribute a cost to filtering and
preclude the defense algorithm from simply staying in the
defensive posture. Other researchers are developing auto-
matic signature generation systems such as EarlyBird [15]
and Autograph [9], which could be used for filtering in an
implementation of this scheme.

We model a LAN as a graph of local host nodes with
one egress node, and multiple LAN are interconnected to
each other via their egress nodes. The overall group defense

scheme is modeled as the parallel, asynchronous, deploy-
ment of a LAN defense algorithm that is embedded in each
egress node. Each LAN defense algorithm instantiation in-
dependently progresses through several potential phases at
each time interval: local worm detection, peer-group for-
mulation, alert publication, and security posture updating.
During the detection phase, the egress node may observe
local rate-limit violations at some end nodes, generating a
local alert for each violation. During group formulation, the
egress node produces a group set of sizeG from the set of
participating peer LANs. The group-forming algorithm is
designed to ensure a fair distribution of alerts among the
collaborating population. At each time interval, an egress
node forwards an alert to its peer group if it has produced at
least one local worm alert during the current time interval.
The egress node also receives alerts from other peer LANs
and increments a current local alert level metrica, based on
the number of local and remote alerts received. Each alert
incrementsa by a parameterizedseverity value. The
severity metric can be adjusted depending on how much
or how little corroboration the LAN is required to establish
before it will enter a defensive posture.a is decayed by a
parameterized value per subsequent time intervals. When
a exceeds the threshold valueα,the egress node imposes
filtering on all incoming packets that match the filtering cri-
teria.α is calculated asseverity × r, wherer indicates
the amount of corroboration required before enabling filters.
This filtering posture is maintained for the number of time
intervals required to enable the decay function to bringa
back to zero.

3 Worm Defense Specification in Rewriting
Logic

We now outline some key Maude features relevant for
specifying the above collaborative defense system. A dis-
tributed system configuration is modeled in Maude as a col-
lection of concurrent objects and messages that behave ac-
cording to a set of rewrite rules describing the behavior of
individual objects. Maude allows the declaration of node
objects with the following syntax:

[identifier | attr_1 : Type_1, ...,
attr_N : Type_N]

where identifier is a natural number,attr_1 , . . ., attr_N
are attribute names of typesType_1 , . . ., Type_N . An ex-
ample node in the node object set looks like

[7 | infected : true, alerts : 5,
alertLevel : 2]

This represents an example node with identifier 7, having
three attributes:infected , alerts , andalertLevel
with the corresponding values. In the actual implementation
we have several other necessary attributes.

Synchronous and asynchronous communication has a
natural representation in rewriting logic. For simplicity we
use synchronous communication to model the worm prop-
agation process. A rewrite rule for such a propagation in-
volves two nodes and has the following syntax:

rl[O |infecting: true, infected: true,
filtering: false, attrSet]

[O’ |infecting: true, infected: false,
filtering: false, attrSet]

=>
[O |infecting: true, infected: true,

filtering : false, attrSet]
[O’ |infecting: true, infected: true,

filtering: false, attrSet]

This rule specifies the infection event of the node with the
identifierO’ by the infected node with the identifierO, nei-
ther of which filtering. More precise infection models can
be specified by using asynchronous communication and in-
troducing time and messages with arrival times in the sys-
tem.

Another important aspect of the rewriting logic formal-
ism is its probabilistic variant. Aprobabilistic rewrite rule
[1, 10] and a non-probabilistic rewrite rule together can be
used to specify the propagation action of a random search
worm:

prl[O |infecting: true, infected: true,
infect: O’’, attrSet]

=>
[O |infecting: true, infected: true,

infect: O’, attrSet] with
probability O’:=uniformDist(IDSet)

rl[O |infecting: true, infected: true,
infect: O’, attrSet]

[O’ |infected: false, attrSet’]
=>
[O |infecting: true, infected: true,

infect: O’, attrSet]
[O’ |infected: true, attrSet’]

In the first rule, the identifier of the node to be infected is
chosen randomly and uniformly from the setIDSet of all
possible node identifiers. The constructionprl is a part of
the PMaude specification language which is a probabilistic
extension of Maude. The formal semantics of PMaude has
been described in [1].

The defense system goes through four main phases at
each clock cycle: alert production, peer-group formula-
tion, alert publication, and security posture management
(i.e., deciding whether incoming alert notifications war-
rant the enabling of egress filters). We now explain how
each phase of our algorithm is specified in rewriting logic.
During the detection phase, the egress node’s connec-
tion rate limiter detects violations of its threshold with a
certain probability. An example rewrite rule, in which

detectionProbability is assumed to be known, is
expressed as follows:

prl[O |infected : true, detected: X,
attrSet]

=>
[O |infected : true, detected: Y,

attrSet] with probability
Y:=bernulli(detectionProbability)

The next phase is the group forming phase. During this
phase each node forms its group randomly. The rewrite rule
to form a group may look like

cprl[O |group: L, attrSet]
=>
[O |group: O’;L, attrSet]

with probability O’:=uniform(IDSet)
if size(L) < F

whereL is the list of group member identifiers separated by
semicolons, andcprl is aconditional probabilistic rewrite
rule. The rule is applied repeatedly until the group size has
reachedF.

The third phase is alert publication, in which each egress
node that detected a local rate-limit violation distributes an
alert to the members of its selected peer group. An example
rewrite rule specifying this process is

rl[O |infected: true, detected: true,
group: O’;L]

[O’ |alerts: alertNum, attrSet]
=>
[O |infected: true, detected: true,

group: L]
[O’ |alerts: alertNum + 1, attrSet]

whereO’;L is the list of identifiers of the alert group of the
nodeO. The rule is applied repeatedly until all identifiers
are consumed by the rule application, increasing the alert
levels of those peer nodes in the group.

The last phase for the egress node is that of security pos-
ture management. Here, each egress node must indepen-
dently decide whether to enter or exit the defensive posture
based on its current alert level. An example rewrite rule to
capture this logic is

rl[O |alert: alertLevel,
filtering: currentStatus, attrSet]

=>
[O |filtering:

if alertLevel == alpha
then true
else if alertLevel == 0

then false
else currentStatus

fi
fi, attrSet]

wherealpha is the alert threshold for nodes to enter the
defensive posture.

QuaTEx : percentInfected(percentage, count) =
if count = 0 then percentInfectedInState()

else if percentInfectedInState() > percentage

then © (percentInfected(percentInfectedInState(), timeSpan))
else © (percentInfected(n, count− 1))

Querry : E[percentInfected(0, timeSpan)]

Figure 1. Example Quatex Expression

4 Statistical Analysis

Among its advantages, a Maude rewriting specification
is also an executable logical specification, allowing us to
reason about our egress node logic in distributed, concur-
rent, and asynchronously communicating network deploy-
ment scenarios [11]. To aid our evaluation of the group-
collaborative defense logic, Maude provides facilities to
support this evaluation by allowing us to specify desirable
program properties, and a mechanism to assist in their veri-
fication. Here, we present the QuaTEx [1] language as our
method for specifying several desired algorithm properties,
and statistical model checking supported by the VeStA tool
[14] to help us validate these properties.
4.1 QuaTEx

The most commonly known way to state properties over
paths in stochastic systems is with probabilistic temporal
logics (PTLs). However, PTLs are somewhat restrictive:
they are limited to true or false evaluations for a given path
of the system, whereas one might want to quantify and com-
pare various path traversal results. For this reason we use
the QuaTEx language [1]; the name stands forQuantita-
tive Temporal Expressions. The language is supported by
the VeStA tool [14], which has an interface to PMaude and
enables one to model check PMaude specifications against
QuaTEx properties.

The primary objective of QuaTEx is to generalize prob-
abilistic temporal logic formulas from Boolean-valued ex-
pressions to real-valued expressions. The Boolean interpre-
tation is preserved as a special case using the real num-
bers 0 and 1. As usual, QuaTEx hasstate expressions
that are evaluated on states, and (real-valued)path expres-
sions that are evaluated on computation paths. The no-
tion of state predicates is now generalized to that ofstate
functions, which can evaluate quantitative properties of a
state. QuaTEx is particularly expressive, and includes an
ability to define recursive expressions. In this way, only
the next operator© and conditional branchingif Bexp then
Pexp else Pexp′ fi, with BexpBoolean andPexp,Pexp′ path
expressions are needed to define more complex operators,
such as the untilU of probabilistic computational tree logic
(PCTL) and of continuous stochastic logic (CSL) [3], and
the CSL-bounded untilU≤T . More details regarding Qua-

TEx and its semantics can be found in [1]. Figure 1 illus-
trates one of the QuaTEx expressions evaluated for our case
study. This expression is evaluated on computation paths,
and captures the number of infected nodes at the time when
the number of infected nodes has stabilized. If this formula,
percentInfectedInState() is the state function that maps the
current Maude state to the percentage of infected nodes at
the current time tick.

When translated to the VeStA syntax, the QuaTEx
query above instructs VeStA to compute the mathemat-
ical expectation of the number of infected nodes af-
ter the worm reaches its full saturation. The typical
shape of the worm growth dynamics suggests that at this
point in time, the system reaches anequilibrium. We
define the equilibrium as the point in time at which
the number of infected nodes has not changed for a
timeSpan number of ticks. The recursive-over-time func-
tion percentInfected(percentage, count) provides the per-
centage of infected nodes at the end of the simulation. The
simulation ends when there have been no new nodes in-
fected for the predefined timetimeSpan.
4.2 VeStA

VeStA is a tool that performsstatistical analysison a
probabilistic system by evaluating QuaTEx expressions on
computation paths obtained by Monte Carlo simulations.
When two parametersα and δ are provided to the tool,
VeStA responds with a real numberv, which is the esti-
mated value of the expression with a(1 − α)100% confi-
dence interval bounded byδ. Depending on the tightness of
the parameters, VeStA may need a greater or smaller num-
ber of sample runs to compute such a value. An example
output of the command above has the following form:

Sample count = 1885
Result: 0.2885941
Run time: 6291.132 seconds

It shows the number of paths VeStA needed to obtain the
result with the confidence interval, the result itself, and the
running time in seconds.

5 Design Goals of a Worm Defense

The evaluation and comparison of the emerging number
of worm defense approaches remains a research challenge.
In a discussion of the need for formalizing evaluation and

Quatex : maxSpeed(speed , percentage, count) =
if count = 0 then speed

else ifpercentInfectedInState()− percentage > speed

then ©maxSpeed(percentInfectedInState()− percentage,
percentInfectedInState(), timeSpan)

else ©maxSpeed(speed , percentage, count − 1)
Querry : E[maxSpeed(0, 0, timeSpan)]

Figure 2. Maximal Worm Propagation Speed

comparison criteria, [6] observes that today the evaluation
of worm defense strategies centers nearly exclusively on the
impact that the defense has on the infection growth rate.
However, in many cases this is a less than distinguishing
metric as many schemes show similar dynamics. Here, we
evaluate classical worm defense properties such as the in-
fection growth rate, but also augment our evaluation with
properties inspired by [6]. All properties discussed next are
stated in QuaTEx, along with text statement of the property.
We do not present the infection growth rate graph itself, but
rather estimate the three key parameters of its curve. We
present two types of properties: (i) values that are possible
to infer from infection growth curves, and (ii) values that
cannotbe inferred from infection growth curves.

5.1 Properties Based on Infection Growth
Curves

We consider a particular type of worm propagation
curve, which occurs in the simulations of our defense al-
gorithm and our worm model. The shape of the curve is
sigmoidal (S-curve), with rapid growth followed by the epi-
demic reaching its equilibrium. Three values characterize
curves of this type visually: the total infection percentage at
saturation, the maximal propagation speed, and the time at
which saturation is reached.

Property 1 Estimated number of infected hosts after the
worm has reached its full saturation.

The QuaTEx query for Property 1 was presented in the pre-
vious section, Figure 1.

Property 2 The maximal worm propagation speed mea-
sured as a percentage of nodes per tick infected during the
greatest infection spike is expressed in Figure 2.

Property 3 The expectation of the time point when the
worm has reached its full saturation is expressed in Figure
3.

5.2 A Property Independent from Infec-
tion Growth Curves

Most contemporary worm defense design assessments
concentrate on infection growth impact, which provides a

direct insight into the overall protection effectiveness of the
defense, but does not capture issues such as the cost associ-
ated with defensive filtering, overhead of communications,
or local impact to infection resistance for a participating or
nonparticipating LAN. We propose a property inspired by
[6] and generalized in QuaTEx spirit:

Property 4 Estimated percentage of uninfected nodes in
the nondefensive posture after the worm has reached sat-
uration is expressed in Figure 4.

6 Analysis of Properties and Discussion

When analyzing Property 1, we observed that gaining
high confidence in the analysis requires a large number of
runs. This means that the distribution of the random vari-
able under consideration has a large deviation. From this
we can infer that the number of infected hosts may vary
significantly from run to run. For each run, our system
prints out the initial random seed used and the results ob-
tained. This permits us to reconstruct problematic runs by
using the same initial random seed for the forensic analysis.
In doing so we discovered that since each node chooses its
peers at random from the whole population, in some cases
the population is not covered uniformly. Thus, some nodes
do not get enough alerts to reliably enter the defensive pos-
ture in time. That is, uneven coverage of the network leads
to the concern that if all nodes happen to cover only a par-
ticular part of the network, then the excluded nodes do not
get enough alerts to enter the defensive posture in time. The
probability of this situation is not high, but it is also not very
difficult to avoid the problem.

In light of this finding, we adjusted our group selec-
tion mechanism to ensure uniform fair coverage of LANs
in groups. In our solution, at every tick one node with
low probability becomes a leader. The leader assigns alert
groups to the rest of the population such that the coverage
is highly uniform. The proposed approach has two benefits:
the leader cannot be located ahead of time, and the burden
of assigning groups is uniformly distributed throughout the
network. The importance of refreshing one’s alert groups
is demonstrated in [5], which discovered multiple counter-
quarantine worm propagation strategies that exploit static
group structures.

Quatex : satTime(percentage, count) =
if count = 0 then time()

else if percentInfectedInState() > percentage

then © satTime(percentInfectedInState(), timeSpan)
else © satTime(percentage, count − 1)

Querry : E[satTime(0, timeSpan)]

Figure 3. Time to Full Saturation

After fixing the unevenness in the population coverage
we tried to vary the false negative rate. We found that the
number of infected nodes is very sensitive to this parameter
when the whole saturation occurs. The number of infected
nodes rapidly grew when we stated the false negative rate
higher than 5 percent. This can be explained by the fact that
this particular algorithm is very sensitive to the time when
infected nodes enter the defensive posture, where early en-
try can significantly hinder an emerging worm. However,
this may be unrealistic in general, illustrating that simula-
tions may point to potentially important parameters of the
system, and suggesting a need for more study of this phe-
nomenon.

6.1 Experimental Setting

We used VeStA to query properties described in the pre-
vious sections. The parameterα was set to0.01 and the pa-
rameterδ was set to0.05. The choice ofα means that if the
computation of values is repeated, they will be in the same
confidence interval with probability99%. Given an output
v of the algorithm, the confidence interval is computed as
[v(1−δ), v/(1−δ)]. The worm model was a random search
worm, which tries to infect a machine at each tick. These
parameters are summarized in the following table:

Name Meaning Value
tS Infection plateau time to declare saturation 10
α Confidence level 99%
δ Confidence interval 0.05

The parameters of the defense system include the num-
ber of egress nodes, group size, the severity and corrobo-
ration metrics, andalpha, and were explained in Section 2.
These parameters, along with the modeled false positive and
negative alert rates per tick (we employed a Bernoulli dis-
tribution), are summarized in the following table:

Name Meaning Value

N number of nodes 10
G group size 4
s severity 3
r corroboration 2

αt = s ∗ r alert threshold 6
pfp false positive alert rate 0.1
pfn false negative alert rate 0.05

The worm saturation was defined as the infection percent-
age stability during 10 ticks. Our model simulations and
property validations were conducted on a Linux worksta-
tion, with two Pentium 4 Xeon processors and 16Gbs of
memory.

6.2 Technical Results

We obtained the following results when computing the
proposed properties using the experimental setting de-
scribed in the previous section. The results were obtained
using a version of the algorithm with heuristics for uniform
peer selection described earlier.

• Property 1. The percentage of infected hosts after
saturation lies in the confidence interval[0.27, 0.30].
The computation took about 100 minutes, requiring the
generation of about 1800 paths.

• Property 2. The propagation speed of the worm dur-
ing its maximum infection spike was measured as a
percentage of newly infected nodes per tick, with the
confidence interval[0.14, 0.15]. The computation of
the property took about 20 minutes, requiring the gen-
eration of about 300 paths.

• Property 3. The expected time to saturation lies in
the confidence interval[14.0, 15.5]. The computation
of the confidence interval took about 16 minutes and
required the generation of about 200 paths.

• Property 4. The percentage of uninfected nonfiltering
hosts lies in the confidence interval[0.53, 0.58]. The
computation took about 50 minutes and required the
generation of about 800 paths.

6.3 Scalability

To address the scalability issue we looked at the depen-
dence of Property 3 to the number of nodes in the system
when keeping the ratio (group size / number of nodes) con-
stant. The results show very low dependence of the satura-
tion time on the number of nodes, and are summarized as
follows:

Quatex : notInfectedNonFiltering(percentage, count) =
if count = 0 then NotInfectedNonFilteringInState()

else if percentInfectedInState() > percentage

then © notInfectedNonFiltering(percentInfectedInState(), timeSpan)
else © notInfectedNonFiltering(percentage, count − 1)

Querry : E[satTime(0, timeSpan)]

Figure 4. Estimated Saved Population

Number of Nodes,N 10 50 70 100
Group size,G 4 20 28 40
Saturation time 14.73 15.08 15.34 16.65

Computation time (hours) 0.31 4.41 6.83 18
Paths generated 240 2125 2625 4230

7 Conclusion

We present a formalism and evaluation procedure
for examining the behavioral properties of distributed
malware defense algorithms. While we have demon-
strated our approach using an example collaborative
peer-based worm defense, we believe that our method and
proposed properties are highly applicable to a number
of published malware defense schemes. We suggest an
iterative evaluation procedure consisting of three key steps:
design specification, property statement, and property
analysis. As the formal basis for the first one we have
demonstrated the use of rewriting logic; for the second
process we employed QuaTEx; and for the third process
we employed VeStA together with Maude. We have
presented an example specification, four example evalua-
tion properties, the numerical results obtained through our
process, and our general experiences in using this approach.

Acknowledgement. This material is based upon work
partially supported through the U.S. Army Research Office
under the Cyber-TA Research Grant No.W911NF-06-1-
0316, by the National Science Foundation under Grants
No.ANI-0335299, CNS 05-24516, ONR N00014-02-1-
0715, and through a subcontract with the University of
California at Davis, Contract No. 01RA005. We cordially
thank Linda Briesemeister for working with us on this
project.

References

[1] Gul Agha, Jośe Meseguer, and Koushik Sen. PMaude:
Rewrite-based specification language for probabilistic
object systems. In3rd Workshop on Quantitative As-
pects of Programming Languages (QALP’05) ENTCS,
http://osl.cs.uiuc.edu/∼ksen/publications.html, 2005.

[2] K. G. Anagnostakis, M. B. Greenwald, S. Ioannidis,
A. D. Keromytis, and D. Li. A cooperative immu-

nization system for an untrusting Internet. InPro-
ceedings of the 11th IEEE International Conference
on Networks (ICON’03), October 2003.

[3] Adnan Aziz, Kumud Sanwal, Vigyan Singhal, and
Robert Brayton. Model-checking continuous-time
markov chains. ACM Trans. Comput. Logic, 1(1),
2000.

[4] Linda Briesemeister and Phillip Porras. Microscopic
simulation of a group defense strategy. InProceed-
ings of Workshop on Principles of Advanced and Dis-
tributed Simulation (PADS), June 2005.

[5] Linda Briesemeister and Phillip Porras. Automat-
ically deducing propagation sequences that circum-
vent a collaborative worm defense. InProceed-
ings of the 25th International Performance Computing
and Communications Conference (Workshop on Mal-
ware), April 2006.

[6] Linda Briesemeister and Phillip Porras. Formally
specifying design goals of worm defense strategies.
In Proceedings of DETER Community Workshop on
Cyber Security Experimentation and Test, June 2006.
Extended Abstract.

[7] M. Clavel, F. Duŕan, S. Eker, and J. Meseguer. Build-
ing equational proving tools by reflection in rewriting
logic. In In Proceedings of the CafeOBJ Symposium
’98. Japan Advanced Institute for Science and Tech-
nology, 1998.

[8] Manuel Clavel, Francisco Durán, Steven Eker, Patrick
Lincoln, Narciso Mart́ı-Oliet, Jośe Meseguer, and José
Quesada. Maude: specification and programming in
rewriting logic. Theoretical Computer Science, 285,
2002.

[9] Hyang-Ah Kim and Brad Karp. Autograph: Toward
automated, distributed worm signature detection. In
USENIX Security Symposium, 2004.

[10] Nirman Kumar, Koushik Sen, José Meseguer, and Gul
Agha. A rewriting based model of probabilistic dis-
tributed object systems, 2003.

[11] Narciso Mart́ı-Oliet and Jośe Meseguer. Rewriting
logic: roadmap and bibliography.Theoretical Com-
puter Science, 285, 2002.

[12] Jośe Meseguer. Conditional rewriting logic as a uni-
fied model of concurrency.Theoretical Computer Sci-
ence, 96(1), 1992.

[13] D. Nojiri, J. Rowe, and K. Levitt. Cooperative re-
sponse strategies for large scale attack mitigation. In
DARPA Information Survivability Conference and Ex-
position, 2003.

[14] Koushik Sen, Mahesh Viswanathan, and Gul Agha.
On statistical model checking of stochastic systems.
In CAV, 2005.

[15] Sumeet Singh, Cristian Estan, George Varghese, and
Stefan Savage. Automated worm fingerprinting. In
OSDI, 2004.

[16] Stuart Staniford. Containment of scanning worms in
enterprise networks.Journal of Computer Security,
2003.

