
Localized Group Membership Service for Ad Hoc Networks

Linda Briesemeister
SRI International

333 Ravenswood Avenue
Menlo Park, CA 94025, U.S.A.
linda.briesemeister@sri.com

Günter Hommel
Technical University of Berlin

Einsteinufer 17
10587 Berlin, Germany
hommel@cs.tu-berlin.de

Abstract

We present a specification for a new, localized group
membership service that maintains the membership status
of adjacent nodes – called neighbors – in a mobile dis-
tributed system. The service builds on top of a neighbor-
hood service which employs a simple heartbeat mechanism
to discover and track neighbors in the mobile network. Both
services assume unreliable communication as found in the
wireless environment. No knowledge of the network topol-
ogy is presumed.

We impose a deadline for installing views of the member-
ship to force timely deciding protocols. We give a simple
implementation of the neighborhood and the group mem-
bership service. If the deadline of view installations is at
least the heartbeat rate, we can prove the correctness of
our suggested implementation. An application in mobile ad
hoc networking exemplifies potential areas of deployment
for a localized group membership service.

1. Introduction

The group communication paradigm [4] embodies a promi-
nent technique in fault-tolerant and reliable distributed
computing. Groups of member processes therein interact
and communicate in order to achieve a common goal. A
group communication system integrates a group member-
ship service with a reliable multicast service. The task of
the group membership service is to keep members consis-
tently informed about the current membership of a group by
installing views. Processes can join and leave the group or
even crash – all resulting in dynamic changes of the mem-
bership. Installed views consist of a set of members and
reflect the perception of the group’s membership. This re-
quires the members to agree on the composition of a view.

In this article, we develop a group membership service
for applications in distributed systems with mobile hosts.
The distributed system model matches a mobile ad hoc net-

work, in which hosts are moving freely and communicate
through wireless links while in transmission range.

Two prominent characteristics distinguish our model
from common distributed systems. First, we allow an un-
bounded number of processes to exist concurrently. None
of the hosts are aware of an upper threshold on population
size. Second, distributed applications in the context of mo-
bile hosts are prone to temporary disconnections. Thus, re-
cent work in group membership specification relaxes the
demand for agreement on a single view and allows multi-
ple disjoint views to exist concurrently in different network
components.

We extend this idea and propose reducing the member-
ship problem to the local environment of a host to cope with
the severe conditions inherent to mobile ad hoc networks.
A localized group membership service (LGMS) tracks the
membership only of the adjacent neighbors. Changes in
the localized group membership – existent neighbors join
or leave the group voluntarily or crash, new members move
into vicinity – are installed as local views at each host.
These views differ according to the neighborhood relation
among hosts.

2. Related Work

In recent years, several approaches to group communication
and to building fault-tolerant toolkits have been reported,
including Transis [14], Ensemble [7], Newtop [8], and
Jgroup [10]. For group membership, Chandra et al. [6] have
proven the impossibility of providing a group membership
service in asynchronous systems with crash failures. How-
ever, this result strictly applies to primary-partition mem-
bership services, which allow only one network component
– called the primary component or partition – to continue
running the service, whereas processes in other networks
are considered faulty. In contrast, a partitionable member-
ship service relaxes the rigorous demand of delivering the
same sequence of views to all members and allows mul-
tiple disjoint views to exist concurrently in different net-



work components. In the context of mobile ad hoc net-
works, temporary disconnections occur frequently. Hence,
the service should be partitionable and therefore escapes
the impossibility proof. However, no final agreement yet
exists about a general specification of a partitionable group
membership service.

Keidar et al. [11] study the task of group membership in
the context of wide area networks. Here, the membership
service resides on dedicated servers which are not involved
in the communication among the group. This approach
makes the service scalable both in terms of the number of
groups and in the number of members in each group.

An interesting core idea of the wide area membership
service is to avoid delivering obsolete views. The member-
ship service waits for agreement among all the view mem-
bers about what the view should be. It neither delivers a
view without such agreement nor does it deliver an obso-
lete view when it has new information that the membership
has changed. This implies that the algorithm may not ter-
minate if the network cannot stabilize fast enough. On the
other hand, this policy avoids network congestion caused
by control messages dealing with an outdated view.

The idea of waiting at the expense of not deciding in
an unstable environment is appealing in the context of ad
hoc networks where message overhead in an inherent un-
reliable communication scenario needs to be carefully ob-
served. However, due to constant changes in highly mo-
bile ad hoc networks, the stabilization period is short and a
time limit must prevent the membership service from wait-
ing forever. Also, the inherent hierarchy in client/server
approaches and predefined, dedicated servers do not exist
in mobile ad hoc networks. Therefore, we cannot apply this
membership service in our environment.

At the University of Bologna, the group communica-
tion paradigm has been studied and implemented for ex-
ample in the Jgroup [10] project. Advances in “partition-
aware” group communication systems are reported in [3,
2, 13]. “Partition-aware” applications continue operating
without blocking when the network fragments and reconfig-
ure themselves when partitions merge. Babaoğlu et al. [2]
specify a partitionable group membership service that guar-
antees liveness and excludes trivial solutions. They give an
implementation that satisfies the specification in distributed
systems with a certain stability.

3. System Model

To specify our system model and properties, we use the no-
tation of Manna and Pnueli’s temporal logic [12]. The time
is linear and discrete, starting from an initial point. Thus,
the past time operators can at most reach back until this
starting point. We derive the bounded operators from Hen-
zinger et al. [9]. Table 1 gives an overview of the temporal

Table 1. Overview on temporal logic operators.
�

≤k bounded “eventually”, “sometimes”
(within next k time steps)

P � Q1 “until”
(Q happens eventually and until then P holds)

P � Q “since”
(Q happened before and since then P holds)

APP (application)

LGMS (localized group membership service)

view_chg()

list_chg()

join()

leave()

NHS (neighborhood service)

MAC (medium access control)

receive()send()

Figure 1. Architecture of a process.

operators.
The asynchronous distributed system consists of pro-

cesses p which communicate solely via messages sent
through a radio channel. Exactly one process exists in ev-
ery node of the ad hoc network – therefore, we do not dis-
tinguish processes from nodes or hosts. Processes have a
unique identifier p, (p ∈ N) of which they are aware. There
is no common clock or common memory, and the relative
speed of processes is undetermined.

Each process executes by performing events from a finite
set S of valid events sequentially. The communication be-
tween processes is modeled by send() and receive() events.
A process interacts with its application by join(), leave(),
list chg(), and view chg() events. While a process is idle
it performs the null event ε. The function σ captures the
sequence of events performed by every process. Figure 1
provides an overview of the architecture of a process.

Processes can fail by crashing permanently at any time
of execution. After a process has crashed, it performs the
dead event δ. Also, processes may start later than the be-
ginning of the global time. From t = 0 until a process is
started for the first time ever, it also performs dead events δ.
We call these processes and the crashed processes inactive,
whereas processes are active if they are idle or if they per-
form events from the set of valid events S. Processes are
not aware of the point in time that they fail i.e. an active
process cannot determine when it will crash. Other than
crash failures, the nodes in the distributed system behave

1Note, that if Q never happens, then P � Q is false even if P holds
infinitely.



benignly. In particular, we do not consider arbitrary, mali-
cious, or Byzantine faults like sending spurious messages
or exhibiting any unpredictable behavior.

There is no assumption on the underlying network topol-
ogy. It is unlikely that all nodes of the mobile ad hoc net-
work are in transmission range of each other, hence the
network structure is not fully connected. Furthermore, we
cannot even assume that the imposed network graph is con-
nected all the time i.e. a path between every pair of nodes
exists. In case part of the network becomes disconnected
from another part, the network is called fragmented or par-
titioned. Processes are neither aware of the other processes
nor of the momentary network topology unless they draw
conclusions from the messages they have received lately.

Each process is associated with a location in time and
space and may travel during operation. Depending on the
location of nodes in space, wireless communication is pos-
sible when nodes are in transmission range of each other.
The transmission delay while broadcasting a radio message
is negligible i.e. in our model, the message will be received
immediately. The radio channel is unreliable and thus mes-
sages can be lost; however, if the message is received then
we assume it to be correct. Every reception of messages
must be caused by someone sending the message.

A variety of reasons can inhibit communication over
wireless links. In our model, communication failures are
grouped into send and receive omission. A send omission
happens for example if the underlying medium access con-
trol (MAC) fails in claiming the channel for transmission.
Packet loss can occur in presence of strong multipath fad-
ing or because of shadowing effects if the chosen frequency
demands line of sight. Additionally, atmospheric dilution
and hidden stations may cause packet errors. We say that
a receiving host suffers from a receive omission fault, if a
packet is lost.

Refer to Briesemeister [5] for more details about the pro-
posed system model.

4. Neighborhood Service

We propose to employ a service that yields a list of adjacent
processes which are expected to be alive at the moment.
This neighborhood service is based on a simple heartbeat
mechanism that repeatedly beacons the own process iden-
tity to its neighbors with a fixed rate τhb. The neighborhood
service of a process collects the heartbeats from other adja-
cent processes and maintains a list of current neighbors.

Based on the heartbeats, we introduce the concept of a
process being connected to another process. Note, that this
concept is inherently asymmetric; a process that receives
consecutive heartbeats suspects another process to be its
neighbor – no assumption is made on how the other pro-
cess perceives that process. The beginning of a connection

is the first reception at a process p of a heartbeat from a
process q after the duration of at least the heartbeat rate τhb

in which the process p has not received a heartbeat from q.
We call q then “newly connected” to p; in short q . p. The
end of a connection equals the time out of waiting for the
next heartbeat. We say that if such a time out occurs, q is
“disconnected” from p; in short q / p. During the interval
between q is newly connected and disconnected from p we
say that q is “transiently connected” to p; in short q ./ p.

The relation “disconnected” is not complementary to the
relation “transiently connected.” Two processes can be nei-
ther transiently connected nor disconnected. Also, if a pro-
cess gets disconnected from another process then they can
still be in vicinity. For example, one of the processes can
suffer from a send or receive omission failure during the
heartbeat.

In our model, the function list(p) applied to a process
p yields the list of neighbors that p has installed through
the last list chg() event. If p has not performed a list chg()
event yet or is crashed then list(p) returns an empty set.

Now, we use the notation introduced above to specify
the neighborhood service (NHS). The service should react
with list chg() events if the process gets newly connected or
disconnected from another process. Also, the list reported
to the upper layer must be accurate and complete such that
it only includes those processes assumed to be neighbors
from which it has recently received heartbeats.

NHS 1 (New Neighbors) If process q is newly connected
to process p at time t then p performs at least once a
list chg() event within the next τhb − 1 time steps or p
crashes. Formally,

q . p⇒ � ≤τhb−1 (σ(p) = list chg()∨ σ(p) = δ)

NHS 2 (Leaving Neighbors) If process q is disconnected
from process p at time t then p performs at least once a
list chg() event within the next τhb − 1 time steps or p
crashes. Formally,

q / p⇒ � ≤τhb−1 (σ(p) = list chg()∨ σ(p) = δ)

NHS 3 (Accuracy) If process p installs a list and q is tran-
siently connected to process p then the installed list includes
q. Formally,

σ(p) = list chg() ∧ q ./ p⇒ q ∈ list(p)

NHS 4 (Completeness) If process p installs a list and q is
not transiently connected to process p then the installed list
excludes q. Formally,

σ(p) = list chg() ∧ ¬q ./ p⇒ q 6∈ list(p)



target membership
from p’s perspective

a

c

p
b

PSfrag replacements

list(p) view(p)

member(a)

¬member(b)

a ∈ list(p) \ view(p)
b ∈ list(p) ∩ view(p)
c ∈ view(p) \ (list(p) ∪ {p})

�

Figure 2. Three situations that require view
changes at member p.

5. Localized Group Membership Service

For the sake of brevity, we assume that only one group ex-
ists in each run to omit group identifiers. This implies that
in the case of multiple groups the characteristics of a group
can be communicated as a small description of parameters
such that processes can distinguish them. Processes decide
upon local parameters for their own membership. The ap-
plication layers issues join() and leave() events to its own
group membership layer. For a meaningful group member-
ship service, we assume that the application layer of an ac-
tive process always alternates the join() and leave() events
starting with the join() event. Then, the boolean function
member(p) applied to a process p is true, if and only if
p has performed the join() event before and since then, p
neither performed the leave() event nor crashed.

At each member process, the localized group member-
ship service (LGMS) tracks the group membership of the
adjacent neighbors. A process installs changes in the lo-
calized group membership as views through the view chg()
event. A view reflects the current situation of the member-
ship from the perspective of a certain process. The func-
tion view(p) applied to a process p yields the set of process
identifiers that p has installed through the last view chg().
If p has not installed a view, the set is empty.

We introduce a timing value τvc for the view to change.
After a process performs a join() and leave() event in the
LGMS layer, the process must react within the next τvc time
steps by installing a new view through the view chg() event.
Other situations in which a member process has to install
a new view are drawn as a set diagram in Figure 2. There,
three constellations require a member process p to adjust its
view: If neighbor a becomes a member, p must include a
into its view. If neighbor b leaves the group, p must remove
b from its view. Finally, c must be excluded from p’s view
because c 6∈ list(p) and thus c is not a neighbor of p.

Now, we define the properties LGMS 1–6 of the
sketched localized group membership service. We make
use of the concepts introduced above and the neighborhood
service that reports changes in the neighborhood through

the list chg() event.

LGMS 1 (View Integrity) (i) Every view installed at
member p includes the process itself. Formally,

member(p) ∧ σ(p) = view chg()⇒ p ∈ view(p)

(ii) Every view installed at non-member p is empty. For-
mally,

¬member(p) ∧ σ(p) = view chg()⇒ view(p) = ∅

LGMS 2 (Limit on Neighborhood) Only neighbors are
part of a view installed at member p. Formally,

member(p)∧σ(p) = view chg()⇒ view(p) ⊆ list(p)∪{p}

LGMS 3 (View Accuracy) If member p has another mem-
ber q in its view, then q remains in p’s view until q is not a
neighbor or p or q leaves the group or p or q crashes. For-
mally,

member(p) ∧ ∃q ∈ view(p) \ {p} : member(q)⇒

q ∈ view(p) U (q 6∈ list(p)∨

¬member(p) ∨ ¬member(q)∨

σ(p) = δ ∨ σ(q) = δ)

LGMS 4 (View Completeness) If member p has a neigh-
bor q which is not in p’s view nor a member, then q is ex-
cluded form p’s view until q is not a neighbor anymore or
q becomes a member or p leaves the group or q crashes.
Formally,

member(p)∧∃q ∈ list(p)\view(p) : ¬member(q)⇒

q 6∈ view(p) U(q 6∈ list(p)∨

member(q) ∨ ¬member(p)∨

σ(p) = δ ∨ σ(q) = δ)

LGMS 5 (View Installation) (i) If process p joins or
leaves the group, it installs a new view within the next τvc

time steps or p crashes. Formally,

σ(p) ∈ {join(), leave()} ⇒

� ≤τvc
(σ(p) = view chg() ∨ σ(p) = δ)

(ii) If neighbor q of a member p is a member but not in-
cluded in p’s view, then p includes q in its view within the
next τvc time steps or q is not a neighbor anymore or p or q
leaves the group or p or q crashes. Formally,

member(p) ∧ ∃q ∈ list(p) \ view(p) : member(q)⇒

� ≤τvc
(q ∈ view(p) ∨ q 6∈ list(p)∨

¬member(q) ∨ ¬member(p)∨

σ(p) = δ ∨ σ(q) = δ)



(iii) If neighbor q included in member p’s view is not a mem-
ber, then q is excluded from p’s view within the next τvc time
steps or q becomes a member and a neighbor. Formally,

member(p)∧∃q ∈ list(p)∩view(p) : ¬member(q)⇒

� ≤τvc
(q 6∈ view(p) ∨ (q ∈ list(p) ∧member(q)))

(iv) If process q included in member p’s view is not a neigh-
bor, then q is excluded from p’s view within the next τvc time
steps or q becomes a neighbor and a member. Formally,

member(p) ∧ ∃q ∈ view(p) \ (list(p) ∪ {p})⇒

� ≤τvc
(q 6∈ view(p) ∨ (q ∈ list(p) ∧member(q)))

A group membership service usually requires that if cer-
tain events occur, then a new view of the group must be
eventually installed to reflect the changes. In our model, we
capture this in LGMS 5 where a view change is required af-
ter a certain time limit τvc. As pointed out in [1], another
requirement should then prevent capricious view changes,
namely that a new view is installed only if certain events
previously occurred. In our specification, we add LGMS 6
to overcome this problem.

LGMS 6 (View Justification) If process p installs a new
view, one of the triggering events from the view installation
property LGMS 5, (i)–(iv) happened before and since then
no new view has been installed at p. Formally,

σ(p) = view chg()⇒ (σ(p) 6= view chg()S P )

where P is replaced by

P ←σ(p) ∈ {join(), leave()}∨

(member(p) ∧ ∃q ∈ list(p) \ view(p) : member(q))∨

(member(p) ∧ ∃q ∈ list(p) ∩ view(p) : ¬member(q))∨

(member(p) ∧ ∃q ∈ view(p) \ (list(p) ∪ {p}))

6. Implementation

In this section, we present an implementation to solve NHS
and LGMS. Then, we prove the correctness of our algo-
rithm, if the deadline τvc to install views is at least as long
as the heartbeat rate τhb.

The proposed implementation simply adds the current
membership status as a boolean value to the heartbeat mes-
sage that processes send periodically. Upon receiving heart-
beat messages from other processes, a process maintains the
list of neighbors and the view. The pseudo-code is printed
below. We highlighted those lines in the code that cause a
view installation for easier reference in the proofs. We as-
sume that every sequence under “init” or “upon” is executed
within one time step.

init
1: list()← ∅, view()← ∅
2: member()← FALSE
3: set(ownTimer,τhb)
4: set(otherTimers(·),0) // unset all other timers

upon join()
5: member()← TRUE
6: view() ← view chg({ownID}) // include myself into

view
upon leave()

7: member()← FALSE
8: view()← view chg(∅) // clear view

upon ownTimer expires
9: send(ownID,member())

10: set(ownTimer,τhb)
upon otherTimers(ID) expires
11: // remove from list of neighbors
12: list()← list chg(list()\ {ID})
13: // remove from view
14: if member() then // only modify view if member
15: if ID ∈ view() then
16: view()← view chg(view()\ {ID})
17: end if
18: end if
upon receive(ID,status)
19: // neighborhood update
20: if ID /∈ list() then
21: list()← list chg(list()∪ {ID})
22: end if
23: // membership update
24: if member() then // only modify view if member
25: if status then // heartbeat came from member
26: if ID /∈ view() then
27: view()← view chg(view()∪ {ID})
28: end if
29: else // heartbeat came from non-member
30: if ID ∈ view() then
31: view()← view chg(view()\ {ID})
32: end if
33: end if
34: end if
35: // reset timer
36: set(otherTimers(ID),τhb)

First, we show that for any τvc < τhb the implementation
does not guarantee the specification. Construct a case with
only two processes p and q in vicinity of each other. At t1,
p is a member and receives a heartbeat from non-member
q. Then, q ∈ list(p) \ view(p) and p sets otherTimers(q)
to t4 := t1 + τhb. Assume q joins at t2 := t1 + 0.5 ·
(τhb − τvc) so that at t2 all requirements of LGMS 5 (ii)
hold. Set t3 := t2 +τvc, which is smaller than t4. However,
p learns about q’s membership not earlier than t4, when



the next heartbeat is scheduled, but at t3 the conjunction
of q 6∈ view(p), q ∈ list(p), member(q), member(p),
σ(p) 6= δ, and σ(q) 6= δ holds. This violates LGMS 5 (ii),
which requires p to include q into its view until t3. �

Therefore, the deadline τvc must be equal or greater
than τhb. With this assumption, we prove the properties
LGMS 1–6 in the remaining part of this section.

View Integrity: (i) If a process is a member, than it
has performed join() and since then not performed leave().
After joining, our algorithm installs a view that contains
only the own identity (line 6.) Views that are installed later
while being a member (lines 16, 27, 31) never remove the
own identity from the view assuming that the identity of
the neighbor (ID) is different from the own. � (ii) Upon
initialization, every process is a non-member and its view
is by definition empty until it performs join(). After this,
a process is a non-member, if it has performed leave() and
since then not performed join(). When a process performs
leave(), it installs an empty view (line 8.) Other, non-empty
views are only installed (lines 6, 16, 27, 31) if the process
is a member. �

Limit on Neighborhood: If a process is a member,
than it has performed join() and since then not performed
leave(). Assume an arbitrary q ∈ view(p). Then, two cases
hold. Either, q = p and it is easy to see q ∈ list(p) ∪ {p}.
Or, q 6= p. In this case, q was inserted into view(p) once be-
fore through a receive(q,TRUE) event at line 27. Now dis-
tinguish two cases depending on the time before: If q ∈ L
then q ∈ list(p). If q 6∈ L before the process performs
receive(q,TRUE), then it includes q at line 21 such that
q ∈ list(p). �

View Accuracy: Let process p be a member with an-
other member q ∈ view(p). There are three cases in
which q gets deleted from p’s view. First, if p leaves the
group, an empty view is installed (line 8.) It follows that
q 6∈ view(p) anymore and¬member(p). Second, the timer
for q expires. Then, q is deleted from view(p) (line 16.) In
the same procedure, q is extracted from list(p) (line 12.)
Third, q is removed from view(p) (line 31) when p per-
forms receive(q,FALSE) and q ∈ view(p) before. This
means, that q has left the group and ¬member(q). �

View Completeness: Let process p be a member with
a non-member q ∈ list(p) \ view(p). There is one case
in which p includes q into its view (line 27): If member
p performs receive(q,TRUE) then q is a member and it is
included in p’s list. �

View Installation: (i) When a process performs join(),
it immediately installs a view (line 6.) � (ii) Let process p
be a member with a member q ∈ list(p) \ view(p). Then,
the last heartbeat from q received by p happened before at
a time t1 > now−τhb. Otherwise, q would not be in p’s
list of neighbors. Also, q was not a member at t1, because
it was not included in p’s view then. If neither of p and q

crashes or leaves the group, and if p receives the next heart-
beat of now-member q at t1 + τhb, the p installs a view
including q (line 27) at t1 + τhb < now +τhb ≤ now +τvc

because t1 < now and τhb ≤ τvc. � (iii) Let process p be
a member with neighbor q in its view, that is not a mem-
ber. Then, the last heartbeat from q received by p happened
before at a time t1 > now−τhb. Otherwise, q would not
be in p’s list of neighbors. Also, q was a member at t1, be-
cause it was included in p’s view then. At t2 := t1 + τhb,
the next heartbeat of q is scheduled. If member p receives
the heartbeat at t2, then p removes q from its view (line
31.) If member p does not receive the heartbeat at t2, then
otherTimers(q) expires and p removes q from its view (line
16) as well. If p leaves the group before t2, then it installs
an empty view (line 8.) In all three cases q 6∈ view(p) at
t2. However, if q becomes a member at t2 again, then q re-
mains in p’s list of neighbors and view, if member p receives
the heartbeat. Finally, t2 happens within the next τvc time
steps, because t2 = t1 + τhb < now +τhb ≤ now +τvc. �

(iv) Let process p be a member and there exists another pro-
cess q ∈ view(p) and q 6∈ list(p). This case can only hap-
pen between lines 13 and 15. Then, p immediately removes
q from its view in line 16. �

View Justification: The view changes in lines 6 and 8
are happening upon join() and leave() events. The view
change in line 19 happens when otherTimers(q) at a mem-
ber process p expires. There, in line 15, q ∈ view(p)
right before and q 6∈ list(p) (line 12.) Hence, there ex-
ists a q ∈ view(p) \ (list(p) ∪ {p}). The view change
in line 27 happens after a member process p performs
receive(q,TRUE). Then, q is a member but q 6∈ view(p)
(line 26) and q ∈ list(p) (line 22) before. Hence, there
exists a q ∈ list(p) \ view(p) that is a member. The
view change in line 31 happens after a member process p
performs receive(q,FALSE). Then, q is not a member but
q ∈ view(p) (line 30) and q ∈ list(p) (line 22) before.
Hence, there exists a q ∈ list(p) ∩ view(p) that is not a
member. �

7. Applying LGMS

We incorporated LGMS into an application of mobile ad
hoc networking to inter-vehicle communication for traffic
jam detection on highways [5]. In inter-vehicle communi-
cation, vehicles are equipped with computer controlled ra-
dio modems allowing them to contact other equipped vehi-
cles in their vicinity. To detect the current size and position
of traffic jams, vehicles at the border of the traffic jam send
a message to the other end of the congestion. Using LGMS,
all vehicles decide on their own if they are at the border of
the jam in the following manner.

Slow vehicles traveling in one direction form a dynamic
group suspecting to be inside a traffic jam. A vehicle get-



ting caught in a traffic jam and driving at a speed below
a threshold vjam issues a join request to its LGMS; when
escaping a traffic jam and moving faster than vfree again,
the vehicle leaves the group. The group identity equals the
highway number and the driving direction on this highway.

Member vehicles that are aware of the local membership
i.e. other slow vehicles nearby, exchange their position data
to determine distributedly which vehicle is the foremost or
the last one in the traffic congestion. If a member vehicle
has no neighbor who is also a member behind it, then it
decides to be at the end of the traffic jam. Analogically, a
member vehicle having no neighbor and member in front of
it, considers itself being at the beginning of the traffic jam.
Vehicles classified as being at the border of the traffic jam
then send a message with their current position through the
mobile ad hoc network to the other end to detect the length
and position of the traffic jam.

We simulated the ad hoc network applied to traffic jam
detection in a realistic highway scenario. Therein, 200 ve-
hicles on average drive with at most 36 m/s on a 10 km
long road. The density of vehicles is high enough to cause
a traffic jam by stopping five consecutive vehicles at the be-
ginning of a simulation run. We set vjam = 40 km/h and
vfree = 70 km/h. The transmission range of the radio is
600 m. The timing values concerning LGMS are τhb = 1 s
and τvc = 3 s. We varied the percentage of equipped vehi-
cles on the road which denote those vehicles participating
in the ad hoc network. For all deployment rates in the sim-
ulation of LGMS, the installed views reached an accuracy
well above 90% despite transient communication failures
through occasional packet loss.

8. Conclusion and Outlook

We specified a localized group membership service that
suits distributed systems with mobile hosts as found in ad
hoc networks. The discussion on related work has shown
that defining a partitionable group membership service in
asynchronous distributed systems is still an open question
and an area of active research. Our specification was mainly
inspired by [2] although the application to mobile ad hoc
networks made changes inevitable. We extended the idea
of allowing different views to exists concurrently in distinct
network partitions by reducing the membership problem to
the local environment of each node. Thus, we address the
problems of frequent topology changes and unreliable com-
munication in mobile ad hoc networks.

We implemented a simple algorithm to solve the stated
problem and proved its correctness. An example applica-
tion for such a localized group membership service demon-
strates possible areas of deployment in wireless networks.
With this work, we hope to bring together the two research
fields of distributed and real-time systems and mobile ad

hoc networking. Future goals include investigating the the-
oretical boundaries of agreement protocols in the context of
mobile ad hoc networking.

References

[1] E. Anceaume, B. Charron-Bost, P. Minet, and S. Toueg.
On the formal specification of group membership services.
Technical Report TR95-1534, Cornell University, Computer
Science Department, Aug. 25, 1995.

[2] Ö. Babaoğlu, R. Davoli, and A. Montresor. Group com-
munication in partitionable systems: Specification and al-
gorithms. Technical Report UBLCS-98-1, University of
Bologna (Italy). Department of Computer Science., Apr.
1998.

[3] Ö. Babaoğlu, R. Davoli, A. Montresor, and R. Segala. Sys-
tem support for partition-aware network applications. In
18th International Conference on Distributed Computing
Systems, pages 184–191, May 1998.

[4] K. P. Birman. The process group approach to reliable
distributed computing. Communications of the ACM,
36(12):37–53, Dec. 1993.

[5] L. Briesemeister. Group Membership and Communication
in Highly Mobile Ad Hoc Networks. PhD thesis, School
of Electrical Engineering and Computer Science, Technical
University of Berlin, Germany, Nov. 2001.

[6] T. D. Chandra, V. Hadzilacos, S. Toueg, and B. Charron-
Bost. On the impossibility of group membership. In 15th
annual ACM Symposium on Principles of Distributed Com-
puting, pages 322–330. ACM Press, May 1996.

[7] The Ensemble Distributed Communication System. Web
page. Department of Computer Science, Cornell University,
http://www.cs.cornell.edu/Info/Projects/Ensemble/.

[8] P. D. Ezhilchelvan, R. A. Macêdo, and S. K. Shrivastava.
Newtop: A fault-tolerant group communication protocol.
In 15th International Conference on Distributed Computing
Systems (ICDCS’95), pages 296–306, May 1995.

[9] T. Henzinger, Z. Manna, and A. Pnueli. Temporal proof
methodologies for real-time systems. In Proceedings of the
eighteenth annual ACM symposium on Principles of pro-
gramming languages, pages 353–366. ACM Press, 1991.

[10] The Jgroup Project. Web page. Department
of Computer Science, University of Bologna,
http://www.cs.unibo.it/projects/jgroup/.

[11] I. Keidar, J. Sussman, K. Marzullo, and D. Dolev. A client-
server oriented algorithm for virtually synchronous group
membership in WANs. Technical Report CS1999-0623,
University of California, San Diego, Computer Science and
Engineering, July 1999.

[12] Z. Manna and A. Pnueli. The Temporal Logic of Reactive
and Concurrent Systems. Springer, 1992.

[13] A. Montresor. System Support for Programming Object-
Oriented Dependable Applications in Partitionable Sys-
tems. PhD thesis, University of Bologna, Italy, Mar. 2000.
Technical Report UBLCS-2000-10.

[14] The Transis Project Home Page. Web page. Computer
Science Department, The Hebrew University of Jerusalem,
http://www.cs.huji.ac.il/˜transis/.

http://www.cs.cornell.edu/Info/Projects/Ensemble/
http://www.cs.unibo.it/projects/jgroup/
http://www.cs.huji.ac.il/~transis/

