Phone Book

Phone Book Example

John Rushby

Computer Science Laboratory
SRI International
Menlo Park CA USA

Phone Book Example

Requirements for an electronic phone book

e Phone book shall store the phone numbers of a city

e It shall be possible to retrieve a phone number given a name

e It shall be possible to add and delete entries from the phone
book

Phone Book 2

Formal Requirements Specification

How do we represent the phone book mathematically?

1. A set of (name, number) pairs.
Adding and deleting entries via set addition and deletion

2. A total function (i.e., array) whose domain is the space of
possible names and whose range is the space of all phone
numbers.

Adding and deleting entries via modification of function values

3. A partial function whose domain is just the names currently in
phone book and whose range is the space of all phone numbers.
Adding and deleting entries via modification of the function
domain and values

Let’s start with approach 2
Phone Book 3

Specifying the Book

e In traditional mathematical notation, we would write:

Let N : type (of names)
P : type (of phone numbers)

book : type (of functions) [N — P]

e How do we indicate that we do not have a phone number for
all possible names, only for names of real people?

Decide to use a special humber, that could never really
occur in real life, e.g. 000-0000; don’t have to specify the
value of this number we can just give it a name (e.g., ng)

e Now can define an empty phone book:
emptybook : [N — P]
no - P
nm . var N
axiom : V nm : emptybook(nm) = ng

Phone Book

Accessing an Entry

N : type (of names)

P : type (of phone numbers)

B : type (of functions) [N — P]
FindPhone : [B x N — P]

nm . var N

bk . var B

axiom : FindPhone(bk, nm) = bk(nm)

Note that FindPhone is a higher-order function since its first
argument is a function

Phone Book

Specifying Adding/Deleting an Entry

N : type (of names)

P : type (of phone numbers)

B : type (of functions) [N — P]

ng . N

nm,x . var N

pn . var P

bk : var B

AddPhone : [B x N x P — B]

bk(x) if x &= nm
on if £ = nm

axiom : AddPhone(bk,nm,pn)(x) = {

DelPhone : [B x N — B]
bk(x) if x &= nm

no if £ = nm

axiom : DelPhone(bk,nm)(x) = {

Phone Book

PVS Notation

phone_1: THEORY

BEGIN
N: TYPE % names
P: TYPE % phone numbers

B: TYPE = [N -> P] % phone books

no0: P
emptybook: B
emptyax: AXIOM FORALL (nm: N): emptybook(nm) = nO

FindPhone: [B, N -> P]
Findax: AXIOM FORALL (bk: B), (am: N): FindPhone(bk, nm) = bk(nm)

nm: VAR N
pn: VAR P
bk: VAR B

AddPhone: [B, N, P -> B]
Addax: AXIOM AddPhone(bk, nm, pn) = bk WITH [(nm) := pn]

DelPhone: [B, N -> BI]
Delax: AXIOM DelPhone(bk, nm) = bk WITH [(nam) := nO]

END phone_1

Phone Book

Challenging the Requirement Specification

e If you add a name and number and then look it up, do you get
the right answer?

lemma : FindPhone(AddPhone(bk,nm,pn), nm) = pn

e If you add an entry and then delete it, is the phone book
unchanged?

lemma : DelPhone(AddPhone(bk, nm,pn), nm) = bk

o Not true unless bk(name) = ng beforehand

o Is this what was intended?

o Should we modify the specification of AddPhone~?
o Do we need a function ChangePhone?

o Should we allow multiple numbers per name?

Phone Book 8

An Aside on Axioms

e Suppose we want to separate the functions of adding and
changing a number

e [0 define these, useful to have a predicate

Known? : [B x N — bool]

axiom : Known?(bk,nm) iff bk(nm) # ng
e Suppose we also had axiom

axiom : Known?(AddPhone(bk,nm,pn),nm)

e \We get an inconsistency—can prove anything

e Use axioms only where necessary; best to use definitional forms
of specification (guaranteed not to introduce inconsistencies)

e PVS may generate proof obligations (TCCs) to ensure this
guarantee

Phone Book 9

Some Deficiencies of First Specification

1. Our specification does not rule out the possibility of someone

having a “ng” phone number

2. We have not allowed multiple phone numbers per hame

3. Our specification does not say anything about whether or not
we should warn the user if AddPhone results in the same
number being assigned to two people

How do we remedy these deficiencies?

Phone Book 10

Deficiency 1

Our specification does not rule out the possibility of someone

having a “ng” phone number

There are several ways to overcome this problem

e Use a ‘disjoint union” for the range type of the phone book, so
that ng is not an ordinary number

e Use a “predicate subtype” to identify the phone numbers
different to ng and allow only the subtype in AddPhone

e Use one of the other representations for the phone book (e.g.,
partial functions—requires a different specification language)

e Reconsider requirements

Phone Book 11

Predicate Subtypes

e Can define the type GP of Good Phone Numbers:
GP : type = {pn : Plpn # ng}
e [hen define AddPhone definitionally as:

gp . var GP
AddPhone(bk,nm,gp) . B =
if Known?(bk,nm) then bk else bk with [(nm):=gp] endif

e Notice the flawed axiom we had before is no longer admissible

axiom : Known?(AddPhone(bk, nm,pn),nm)

(PVS generates the impossible proof obligation Vpn : pn # ng)

e But the following is a provably true

Known?(AddPhone(bk, nm, gp), nm)

Phone Book 12

Deficiency 2
e \We have not allowed multiple phone numbers per name

e [he original requirements did not specify whether this is
needed or not

e Suppose, after conferring with the customer, we decide to
allow multiple numbers

e Change the range type of the phone book to a set of numbers

e [his solves Deficiency 1 as well
(empty set of numbers indicates name not in the book)

Phone Book 13

New Specification (sets)

N : type (of names)

P : type (of phone numbers)

B : type (of functions) [N — setof[P]]
nm,x . var N

emptybook(nm) : setof[P] = ¢p

pn . var P

bk . var B

FindPhone(bk,nm) : setof[P] = bk(nm)

AddPhone(bk,nm,pn) : B = bk with [(nm):=bk(nm) U {pn}]

DelPhone(bk,nm) : B = bk with [(nm):=d¢p]

Phone Book

14

Some Observations

e Our specification is abstract; the functions are defined over
uninterpreted domains.

e [he axioms and definitions used here are constructive—we
could execute them
(could also use pseudocode for these kinds of specifications,
but would lack an assertion language for challenges, and the
deductive apparatus to formally check their proofs)

e Other specifications and representations may involve
nonconstructive axioms
e.g., set of pairs: FindPhone(bk,nm) = {pn|(nm,pn) € bk}

e And more sophisticated (not directly implementable) types

Phone Book 15

More ODbservations

e AsS requirements are formalized, many things that are usually
left out of English specifications are encountered and explicitly
documented

e [he formal process exposes ambiguities and deficiencies in the
requirements—must chose between

book : [N — P]
book : [N — setof[P]]

e Challenges and scrutiny reveal deficiencies in the formal
specification

e [he process of formalizing the requirements can reveal
problems and deficiencies and lead to a better English
requirements document as well

Phone Book 16

Deficiency 3

Suppose we wish to avoid ever assigning the same number to
two people

Could "program’ this into the specification of each function
that changes the phone book

But really want to establish the property as an invariant of the
specification

Could systematically generate the proof obligations to ensure
this is so, but the activity would be error-prone

Could build a tool to do it, but that would be special-purpose

Solution: do it with predicate subtypes

Phone Book 17

PVS Notation: subtype invariant

phone_4 : THEORY

BEGIN

N: TYPE % names

P: TYPE % phone numbers
B: TYPE = [N -> setof[P]] % phone books

VB: TYPE = {b:B | (FORALL (x,y:N): x /=y => disjoint?(b(x), b(y)))}

nm, x: VAR N
pn: VAR P
bk: VAR VB

FindPhone(bk,nm): setof[P] = bk(nm)

UnusedPhoneNum(bk,pn): bool =
(FORALL nm: NOT member (pn,FindPhone (bk,nm)))

AddPhone (bk,nm,pn): VB =
IF UnusedPhoneNum(bk,pn) THEN bk WITH [(nm) := add(pn, bk(nm))]
ELSE bk
ENDIF

Phone Book

18

PVS Notation: Proof Obligation

AddPhone_TCC1: OBLIGATION
(FORALL (bk: VB, nm: N, pn: P):
UnusedPhoneNum(bk, pn) IMPLIES
(FORALL (x, y: N):
x /=y =>

disjoint?[P] (bk WITH [(nm) :
bk WITH [(am) :

Phone Book

add [P] (pn, bk(nm))](x),
add[P] (pn, bk(nm))]1(y))));

19

Yet More Observations
e [here are many different ways to write formal specifications

e Some ways of writing them bias the feasible implementation
more than others

e One goal is to minimize this bias, and yet be complete
o Abstract specifications are more likely to highlight substance
than those cluttered with implementation concerns
o But requires real judgment and experience to pick right level

o Constructive specifications may be executable as
prototypes—useful in some domains, distraction in others

e Mechanized support allows powerful checks on consistency, and
active validation through “challenges” to the specification

Phone Book 20

