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tDe
ision pro
edures for equality in a 
ombination oftheories are at the 
ore of a number of veri�
ation sys-tems. Shostak's de
ision pro
edure for equality in the
ombination of solvable and 
anonizable theories hasbeen around for nearly two de
ades. Variations of thisde
ision pro
edure have been implemented in a num-ber of systems in
luding STP, Ehdm, PVS, STeP, andSVC. The algorithm is quite subtle and a 
orre
tnessargument for it has remained elusive. Shostak's algo-rithm and all previously published variants of it yieldin
omplete de
ision pro
edures. We des
ribe a variantof Shostak's algorithm along with proofs of termina-tion, soundness, and 
ompleteness.1 Introdu
tionIn 1984, Shostak [Sho84℄ published a de
ision pro-
edure for the quanti�er-free theory of equality overuninterpreted fun
tions 
ombined with other theoriesthat are 
anonizable and solvable. Su
h algorithmsde
ide statements of the form T ` a = b, where Tis a 
olle
tion of equalities, and T , a, and b 
ontain amixture of interpreted and uninterpreted fun
tion sym-bols. This 
lass of statements in
ludes a large fra
tionof the proof obligations that arise in veri�
ation in
lud-ing those involving extended type
he
king, veri�
ation
onditions generated from Hoare triples, and indu
tivetheorem proving. Shostak's pro
edure is at the 
ore ofseveral veri�
ation systems in
luding STP [SSMS82℄,Ehdm [EHD93℄, PVS [ORS92℄, STeP [MT96, Bj�99℄,and SVC [BDL96℄. The soundness of Shostak's algo-rithm is reasonably straightforward, but its 
omplete-�This work was supported by SRI International, and by NSFGrant CCR-0082560, DARPA/AFRL Contra
t F33615-00-C-3043, and NASA Contra
t NAS1-0079.

ness has steadfastly resisted proof. The proof givenby Shostak [Sho84℄ is seriously 
awed. Despite its sig-ni�
an
e and popularity, Shostak's original algorithmand its subsequent variations [CLS96, BDL96, Bj�99℄are all in
omplete and potentially nonterminating. Weexplain the ideas underlying Shostak's de
ision pro
e-dure by presenting a 
orre
t version of the algorithmalong with rigorous proofs for its 
orre
tness.If the terms in a 
onje
ture of the form T `a = b are 
onstru
ted solely from variables and un-interpreted fun
tion symbols, then 
ongruen
e 
lo-sure [NO80, Sho78, DST80, CLS96, Kap97, BRRT99℄
an be used to partition the subterms into equivalen
e
lasses respe
ting T and 
ongruen
e. For example,when 
ongruen
e 
losure is applied tof3(x) = f(x) ` f5(x) = f(x);the equivalen
e 
lasses generated bythe ante
edent equality are fxg; ff(x); f3(x); f5(x)g;and ff2(x); f4(x)g. This partition 
learly validates the
on
lusion f5(x) = f(x).In pra
ti
e, a 
onje
ture T ` a = b usually 
on-tains a mixture of uninterpreted and interpreted fun
-tion symbols. Semanti
ally, uninterpreted fun
tionsare un
onstrained, whereas interpreted fun
tion are
onstrained by a theory, i.e., a 
losure 
ondition withrespe
t to 
onsequen
e on a set of equalities. An ex-ample of su
h an assertion isf(x�1)�1 = x+1; f(y)+1 = y�1; y+1 = x ` false ;where +, �, and the numerals are from the theory oflinear arithmeti
, false is an abbreviation for 0 = 1,and f is an uninterpreted fun
tion symbol. The 
on-tradi
tion here 
annot be derived solely by 
ongruen
e
losure or linear arithmeti
. Linear arithmeti
 is usedto show that x� 1 = y so that f(x� 1) = f(y) followsby 
ongruen
e. Linear arithmeti
 
an then be used toshow that x+ 2 = y � 2 whi
h 
ontradi
ts y + 1 = x.



Nelson and Oppen [NO79℄ showed how de
ision pro-
edures for disjoint equational theories 
ould be 
om-bined. Sin
e linear arithmeti
 and uninterpreted equal-ity are disjoint, this method 
an be applied to theabove example. First, variable abstra
tion is usedto obtain a theory-wise partition of the term uni-verse, i.e., the subterms of T , a, and b, in a 
on-je
ture T ` a = b. The uninterpreted equality the-ory Q then 
onsists of the terms ff(u); f(y); w; zg andthe equalities fw = f(u); z = f(y)g, and the lineararithmeti
 theory L 
onsists of the terms fu; x; y; x�1; w � 1; x + 1; z + 1; y � 1; y + 1g and the equalitiesfu = x � 1; w � 1 = x + 1; z + 1 = y � 1; y + 1 = xg.The key observation is that on
e the terms and equal-ities have been partitioned using variable abstra
tion,the two theories L and Q need ex
hange only equalitiesbetween variables. Thus, linear arithmeti
 
an be usedto derive the equality u = y, from whi
h 
ongruen
e
losure derives w = z, and the 
ontradi
tion then fol-lows from linear arithmeti
. Sin
e the term universeis �xed in advan
e, there are only a bounded numberof equalities between variables so that the propagationof information between the de
ision pro
edures mustultimately 
onverge.The Nelson-Oppen 
ombination pro
edure has somedisadvantages. The individual de
ision pro
eduresmust 
arry out their own equality propagation and the
ommuni
ation of equalities between de
ision pro
e-dures 
an be expensive. The number of equalities isquadrati
 in the size of the term universe, and ea
h
losure operation 
an itself be linear in the size of theterm universe.Shostak's algorithm tries to gain eÆ
ien
y by main-taining and propagating equalities within a single 
on-gruen
e 
losure data stru
ture. Equalities involvinginterpreted symbols 
ontain more information thanuninterpreted equalities. For example, the equalityy+1 = x 
annot be pro
essed by merely pla
ing y+1and x in the same equivalen
e 
lass. This equalityalso implies that y = x � 1, y � x = �1, x � y = 1,y + 3 = x+ 2, and so on. In order to avoid pro
essingall these variations on the given equality, Shostak re-stri
ts his attention to solvable theories where an equal-ity of the form y + 1 = x 
an be solved for x to yieldthe solution x = y + 1. If the theories 
onsidered arealso 
anonizable, then there is a 
anonizer � su
h thatwhenever an equality a = b is valid, then �(a) � �(b),where � represents synta
ti
 equality. A 
anonizer forlinear arithmeti
 
an be de�ned to pla
e terms into anordered sum-of-monomials form. On
e a solved formsu
h as x = y+1 has been obtained, all the other 
on-sequen
es a = b of this equality 
an be obtained by�(a0) = �(b0) where a0 and b0 are the results of sub-

stituting the solution for x into a and b, respe
tively.For example, substituting the solution into y = x � 1yields y = y + 1� 1, and the subsequent 
anonizationstep yields y = y.The notion of a solvable and 
anonizable theory isextended to equalities involving a mix of interpretedand uninterpreted symbols by treating uninterpretedterms as variables. For the 
onje
ture,f(x�1)�1 = x+1; f(y)+1 = y�1; y+1 = x ` false ;Shostak's algorithm would solve the equality f(x�1)�1 = x+ 1 as f(x� 1) = x+ 2, the equality f(y) + 1 =y � 1 as f(y) = y � 2, and y + 1 = x as x = y +1. Now, f(x � 1) and f(y) are 
ongruent be
ause the
anoni
al form for x � 1 obtained after substitutingthe solution x = y + 1 is y. By 
ongruen
e 
losure,the equivalen
e 
lasses of f(x � 1) and f(y) have tobe merged. In Shostak's original algorithm the 
urrentrepresentatives of these equivalen
e 
lasses, namely x+2 and y � 2 are merged. The resulting equality x +2 = y � 2 is �rst solved to yield x = y � 4. This isin
orre
t be
ause we already have a solution for x asx = y+1 and x should therefore have been eliminated.The new solution x = y�4 
ontradi
ts the earlier one,but this 
ontradi
tion goes undete
ted by Shostak'salgorithm. This example 
an be easily adapted to shownontermination. Considerf(v) = v; f(u) = u� 1; u = v ` false :The merging of u and v here leads to the dete
tion ofthe 
ongruen
e between f(u) and f(v). This leads tosolving of u� 1 = v as u = v + 1. Now, the algorithmmerges v and v+1. Sin
e v o

urs in v+1, this 
ausesv + 1 to be merged with v + 2, and so on.An earlier paper by Cyrluk, Lin
oln, andShankar [CLS96℄ gave an explanation (with minor 
or-re
tions) of Shostak's algorithm for 
ongruen
e 
lo-sure and its extension to interpreted theories. Thoughproofs of 
orre
tness for the 
ombination algorithm arebrie
y sket
hed, the algorithm presented there is bothin
omplete and nonterminating. Other published vari-ants of Shostak's algorithm used in SVC [BDL96℄ andSTeP [Bj�99℄ inherit these problems.In this paper, we present an algorithm that �xes thein
ompleteness and nontermination in earlier versionsof Shostak's algorithms. In the above example, the in-
ompleteness is �xed by substituting the solution forx into the terms representing the di�erent equivalen
e
lasses. Thus, when f(x� 1) and f(y) are dete
ted tobe 
ongruent, their equivalen
e 
lasses are representedby y+3 and y�2, respe
tively. The resulting equalityy+3 = y�2 easily yields a 
ontradi
tion. The nonter-mination is �xed by ensuring that no new mergeable



terms, su
h as v+2, are 
reated during the pro
essingof an axiom in T . Our algorithm is presented as a sys-tem of transformations on a set of equalities in order to
apture the key insights underlying its 
orre
tness. Weoutline rigorous proofs for the termination, soundness,and 
ompleteness of this pro
edure. The algorithmas presented here emphasizes logi
al 
larity over eÆ-
ien
y, but with suitable optimizations and data stru
-tures, it 
an serve as the basis for an eÆ
ient imple-mentation. SRI's ICS (Integrated Canonizer/Solver)de
ision pro
edure pa
kage [FORS01℄ is dire
tly basedon the algorithm studied here.Se
tion 2 introdu
es the theory of equality, whi
his augmented in Se
tion 3 with fun
tion symbols froma 
anonizable and solvable theory. Se
tion 3 also in-trodu
es the basi
 building blo
ks for the de
isionpro
edure. The algorithm itself is des
ribed in Se
-tion 4 along with some example hand-simulations. Theproofs of termination, soundness, and 
ompleteness areoutlined in Se
tion 5.2 Ba
kgroundWith respe
t to a signature 
onsisting of a setof fun
tion symbols F and a set of variables V , aterm is either a variable x from V or an appli
ationf(a1; : : : ; an) of an n-ary fun
tion symbol f from Fto n terms a1; : : : ; an, where 0 � n. The metavari-able 
onventions are that u, v, x, y, and z range overvariables, and a, b, 
, d, and e range over terms. Themetavariables R, S, and T , range over sets of equali-ties. The metatheoreti
 assertion a � b indi
ates thata and b are synta
ti
ally identi
al terms. Let vars(a),vars(a = b), and vars(T ) return the variables o

ur-ring in a term a, an equality a = b, and a set of equal-ities T , respe
tively. The operation ddaee is de�ned toreturn the set of all subterms of a.Some of the fun
tion symbols are interpreted , i.e.,they have a spe
i�
 interpretation in some given theory� , while the remaining fun
tion symbols are uninter-preted, i.e., 
an be assigned arbitrary interpretations.A term f(a1; : : : ; an) is interpreted (uninterpreted) iff is interpreted (uninterpreted). A term e is non-interpreted if it is either a variable or an uninterpretedterm. We say that a term a o

urs interpreted in a terme if there is an o

urren
e of a in e that is not prop-erly within an uninterpreted subterm of e. Likewise, ao

urs uninterpreted in e if a is a proper subterm of anuninterpreted subterm of e. solvables(a) denotes theset of outermost non-interpreted subterms of a, i.e.,

those that do not o

ur uninterpreted in a.solvables(f (a1 ; : : : ; an )) = [i solvables(ai );if f is interpretedsolvables(a) = fag; otherwiseThe theory of equality deals with sequents of theform T ` a = b. We will insist that these sequents besu
h that vars(a = b) � vars(T ). The proof theoryfor equality is given by the following inferen
e rules.1. Axiom: T ` a = b , for a = b 2 T .2. Re
exivity: T ` a = a .3. Symmetry: T ` a = bT ` b = a .4. Transitivity: T ` a = b T ` b = 
T ` a = 
 .5. Congruen
e:T ` a1 = b1 : : : T ` an = bnT ` f(a1; : : : ; an) = f(b1; : : : ; bn) .The semanti
s for terms is given by a model Mover a domain D and an assignment � for the vari-ables so that M [[x℄℄� = �(x) and M [[f(a1; : : : ; an)℄℄� =M(f)(M [[a1℄℄�; : : : ;M [[an℄℄�), and M [[a℄℄� 2 D for alla. We say that M;� j= a = b i� M [[a℄℄� = M [[b℄℄�,and M j= a = b i� M;� j= a = b for all assign-ments � over vars(a = b). We write M;� j= Swhen 8a; b : a = b 2 S � M;� j= a = b, andM;� j= T ` a = b when (M;� j= T ) � (M;� j= a = b).3 Canonizable and Solvable TheoriesShostak's algorithm goes beyond 
ongruen
e 
losureby de
iding equality in the presen
e of fun
tion sym-bols that are interpreted in a theory � [Sho84, CLS96℄.The algorithm is targeted at 
anonizable and solvabletheories, i.e., theories that are equipped with solversand 
anonizers as outlined below. We write j=� a = bto indi
ate that a = b is valid in theory � . The 
anon-izer and solver are �rst des
ribed for pure � -terms, i.e.,without any uninterpreted fun
tion symbols, and thenextended to uninterpreted terms by regarding these asvariables.De�nition 3.1 A theory � is 
anonizable if there is a
anonizer � su
h that



1. j=� a = b i� �(a) � �(b).2. �(x) � x.3. vars(�(a)) � vars(a).4. �(�(a)) � �(a).5. If �(a) � f(b1; : : : ; bn), then �(bi) � bi for 1 �i � n.For example, a 
anonizer � for the theory of lineararithmeti
 
an be de�ned to transform expressions intoan ordered-sum-of-monomials normal form. A term ais said to be 
anoni
al if �(a) � a.De�nition 3.2 A model M is a �-model if M j= a =�(a) for any term a, and M 6j= a = b for distin
t
anoni
al, variable-free terms a and b.De�nition 3.3 A set of equalities S and a = b are�-equivalent i� for all �-models M and assignments �over the variables in a and b, M;� j= a = b i� thereis an assignment �0 extending �, over the variables inS; a; and b, su
h that M;�0 j= S.De�nition 3.4 A 
anonizable theory is solvable ifthere is an operation solve su
h that solve(a = b) = ?if a = b is unsatis�able in any �-model, or S =solve(a = b) for a set of equalities S su
h that1. S is a set of n equalities of the form xi = ei for0 � n where for ea
h i, 0 < i � n,(a) xi 2 vars(a = b).(b) xi 62 vars(ej ), for j, 0 < j � n.(
) xi 6� xj , for i 6= j and 0 < j � n.(d) �(ei) � ei.2. S and a = b are �-equivalent.A solver for linear arithmeti
, for example, takes anequation of the form
+ a1x1 + : : :+ anxn = d+ b1x1 + : : :+ bnxn;where a1 6= b1, and returnsx1 = �( (d� 
)=(a1 � b1)+ ((b2 � a2)=(a1 � b1)) � x2+ : : :+ ((bn � an)=(a1 � b1)) � xn):In general, solve(a = b) may 
ontain variables that donot o

ur in a = b, and vi
e-versa.There are a number of interesting 
anonizable andsolvable theories in
luding linear arithmeti
, the the-ory of tuples and proje
tions, algebrai
 datatypes like

lists, set algebra, and the theory of �xed-sized bitve
-tors. In many 
ases, the 
anonizability and solvabil-ity of the union of theories (with disjoint signatures)follows from the 
anonizability and solvability of its
onstituent theories.1 We do not address modularityissues here but instead assume that we already have a
anonizer and solver for a single 
ombined theory.The solvers and 
anonizers 
hara
terized above areintended to work in the absen
e of uninterpreted fun
-tion symbols. They are adapted to terms 
ontaininguninterpreted subterms by treating these subterms asvariables. Canonizers are applied to terms 
ontaininguninterpreted subterms by renaming distin
t uninter-preted subterms with distin
t new variables. For agiven term a, let 
 be a bije
tive mapping between aset of variables X that do not appear in a and theuninterpreted subterms of a. The appli
ation of a sub-stitution 
 to a term a, written 
[a℄, is de�ned so that
[a℄ = f(
[a1℄; : : : ; 
[an℄) if a � f(a1; : : : ; an), wheref is interpreted. If a is in the domain of 
, then
[a℄ = 
(a), and otherwise, 
[a℄ = a. Then �(a) is
[�(
�1[a℄)℄.For solving equalities 
ontaining uninterpretedterms, we introdu
e, as with �, a bije
tive map 
 be-tween a set of variables X not o

urring in a or b, andthe uninterpreted subterms of a and b, su
h thatsolve(a = b) = 
[solve(
�1 [a℄ = 
�1 [b℄)℄ .When uninterpreted terms are handled as above, the
onditions in De�nitions 3.1 and 3.4 must be suitablyadapted by using solvables(a) instead of vars(a).The proof theory for equality is augmented for 
an-onizable, solvable theories by the proof rules:1. Canonization: T ` a = �(a) , for any term a.2. Solve: T ` a = b T [ S ` 
 = dT ` 
 = d if S =solve(a = b) 6= ? and vars(
 = d) � vars(T ).3. Solve-?: T ` a = bT ` false , if solve(a = b) = ?.A sequent T ` 
 = d is derivable if there is a proofof T ` 
 = d using one of the inferen
e rules: axiom,re
exivity, symmetry, transitivity, 
ongruen
e, 
anon-ization, solve, or solve-?. We say that T ` S is deriv-able if T ` 
 = d is derivable for every 
 = d in S.The sequent T; S ` 
 = d is just T [ S ` 
 = d. Theweakening and 
ut lemmas below are easily veri�ed.1The general result on 
ombining solvers 
laimed byShostak [Sho84℄ is in
orre
t, but there are some restri
ted re-sults on 
ombining equational uni�ers [BS96℄ that 
an be appliedhere.



Lemma 3.5 (weakening) If T � T 0 and T ` a = bis derivable, then T 0 ` a = b is derivable.Lemma 3.6 (
ut) If T 0 ` T and T ` a = b is deriv-able, then T 0 ` a = b is derivable.Theorem 3.7 (proof soundness) If T ` a = b isderivable, then for any �-model M and assignment �over vars(T ), M;� j= T ` a = b.Proof. By indu
tion on the derivation of T ` a =b. The soundness of the solve rules follows from the
onditions in De�nition 3.4.A set of equalities S is said to be fun
tional (ina left-to-right reading of the equality) if whenever a =b 2 S and a = b0 2 S, b � b0. For example, the solutionset returned by solve is fun
tional. A fun
tional setof equalities 
an be treated as a substitution and theasso
iated operations are de�ned below. S(a) returnsthe solution for a if it exists in S, and a itself, otherwise.If a = b is in S for some b, then a is in the domain ofS, i.e., dom(S ).S(a) = � b if a = b 2 Sa otherwisedom(S ) = fa j 9b: a = b 2 Sg:The operation a S� b 
he
ks if a is 
ongruent to bin S, i.e., a � f(a1; : : : ; an), b � f(b1; : : : ; bn), andS(ai) � S(bi) for 1 � i � n. A set of equalities S issaid to be 
ongruen
e-
losed when for any terms a andb in dom(S ) su
h that a S� b, we have S(a) � S(b).S[a℄ repla
es a subterm b in a by S(b), where b 2solvables(a).S[f(a1; : : : ; an)℄ = f(S[a1℄; : : : ; S[an℄);if f is interpretedS[a℄ = S(a); otherwise.norm(S )(a) is a normal form for a with respe
t to Sand is de�ned as �(S[a℄). The operation norm does notappear in Shostak's algorithm and is the key elementof our algorithm and its proof. With S �xed, we use âas a synta
ti
 abbreviation for norm(S )(a).norm(S )(a) = �(S[a℄):Lemma 3.8 If solve(a = b) = S 6= ?, thennorm(S )(a) � norm(S )(b).Proof. By de�nitions 3.3 and 3.4(2), for any �-model M and assignment �0, we have M;�0 j= S ()M;�0 j= a = b. Let a0 � S[a℄ and b0 � S[b℄. By indu
-tion on a,M;�0 j= a = a0, and similarlyM;�0 j= b = b0.

Hen
e,M;�0 j= a0 = b0. Then, sin
eM is a �-model, byDe�nition 3.2, it must be the 
ase that �(a0) � �(b0),and therefore norm(S )(a) � norm(S )(b).The de�nition of the lookup operation uses Hilbert'sepsilon operator, indi
ated by the keyword when , toreturn S(f(b1; : : : ; bn)) when b1; : : : ; bn satisfying thelisted 
onditions 
an be found. If no su
h b1; : : : ; bn
an be found, then lookup(S )(a) returns a itself. Weshow later that the lookup operation is used only whenthe results of this 
hoi
e are deterministi
.lookup(S )(f (a1 ; : : : ; an )) = S(f(b1; : : : ; bn));when b1 ; : : : ; bn :f(b1; : : : ; bn) 2 dom(S );and ai � S(bi);for 1 � i � nlookup(S )(a) = a; otherwise.
an(S )(a) is a 
anoni
al form in whi
h any uninter-preted subterm e that is 
ongruent to a known left-hand side e0 in S is repla
ed by S(e0). It is analogousto the 
anon operation in Shostak's algorithm. We usea as a synta
ti
 abbreviation for 
an(S )(a).
an(S )(f (a1 ; : : : ; an )) = lookup(S )(f (a1 ; : : : ; an ));if f is uninterpreted
an(S )(f (a1 ; : : : ; an )) = �(f(a1; : : : ; an));if f is interpreted
an(S )(a) = S(a); otherwise:Lemma 3.9 (�-norm) If S is fun
tional, thennorm(S )(�(a)) � â and 
an(S )(�(a)) � a.Proof. We know that ` �(a) = a. Then for b0 =S[�(a)℄ and b = S[a℄, the equality b0 = b is valid inevery �-model. Then by De�nition 3.2, �(S[�(a)℄) ��(S[a℄), and hen
e the �rst part of the theorem.The reasoning in the se
ond part is similar. If we letR = fb = b j b 2 ddaeeg, then 
an(S )(a) � norm(R)(a).We 
an therefore use the �rst part of the theorem toestablish the se
ond part.We next introdu
e a 
omposition operation formerging the results of a solve operation into an existingsolution set. When RÆS is used, S must be fun
tional,and the result 
ontains a = b̂ for ea
h equality a = bin R in addition to the equalities in S.R Æ S = fa = b̂ j a = b 2 Rg [ S:The following lemmas about 
omposition are givenwithout proof.Lemma 3.10 (norm de
omposition) If R [ S isfun
tional, thennorm(R Æ S )(a) � norm(S )(norm(R)(a)):



pro
ess(fa = b;Tg) = assert(a = b; pro
ess(T ))pro
ess(;) = ;:assert(a = b;?) = ?assert(a = b;S ) = 

(merge(a ; b;S+)); where;S+ = expand(S ; a ; b):expand(S ; a; b) = S [ fe = e j e 2 new(S ; a; b)g:new(S ; a; b) = dda = bee � dom(S ):merge(a; b;S ) = ?; if solve(a = b) = ?merge(a; b;S ) = S Æ solve(a = b); otherwise:

(?) = ?

(S ) = 

(merge(S (a);S (b);S ));when a; b :a; b 2 dom(S )a S� b; and S(a) 6� S(b)

(S ) = S; otherwise.Figure 1: Main Pro
edure: pro
essLemma 3.11 (asso
iativity of 
omposition) IfQ [ R [ S is fun
tional, then(Q ÆR) Æ S = Q Æ (R Æ S):Lemma 3.12 (monotoni
ity) If R[S is fun
tional,then if R(a) � R(b), then (R Æ S)(a) � (R Æ S)(b), forany a and b.4 An Algorithm for De
iding Equalityin the Presen
e of TheoriesWe next present an algorithm for de
iding T ` 
 =d for terms 
ontaining uninterpreted fun
tion sym-bols and fun
tion symbols interpreted in a 
anoniz-able and solvable theory. The algorithm for verify-ing T ` 
 = d 
he
ks that 
an(S )(
) � 
an(S )(d),where S = pro
ess(T ). The pro
ess pro
edure shownin Figure 1, is written as a fun
tional program. It isa mathemati
al des
ription of the algorithm and notan optimized implementation. The state of the algo-rithm 
onsists of a set of equalities S whi
h holds thesolution set. We demonstrate as an invariant that S isfun
tional. Two terms a and b in dom(S ) are in thesame equivalen
e 
lass a

ording to S if S(a) � S(b).The operation pro
ess(T ) returns a �nal solutionset by starting with an empty solution set and su
-


essively pro
essing ea
h equality a = b in T by in-voking assert(a = b;S ), where S is the state as re-turned by the re
ursive 
all of pro
ess . The invo
ationof assert(a = b;S ) is exe
uted by �rst redu
ing a andb to their respe
tive 
anoni
al forms a and b. Next,S is expanded to in
lude e = e for ea
h subterm eof a = b where 
 62 dom(S ). This prepro
essing stepensures that S 
ontains entries 
orresponding to anyterms that might be needed in the 
ongruen
e 
losurephase in the operation 

.2 The merge operation thensolves the equality a = b to get a solution3 S0, andreturns S Æ S0 as the new value for the state S. Aswe will show, this new value aÆrms a = b, but it isnot 
ongruen
e-
losed and hen
e does not 
ontain allthe 
onsequen
es of the assertion a = b. The step

(S ) 
omputes the 
ongruen
e 
losure of S by repeat-edly pi
king a pair of 
ongruent terms a and b fromdom(S ) su
h that S(a) 6� S(b) and merging them us-ing merge(S (a);S (b);S ). Eventually either a 
ontra-di
tion is found or all 
ongruent left-hand sides in Sare merged and the 

 operation terminates returninga 
ongruen
e-
losed solution set.The above algorithm �xes the nontermination andin
ompleteness problems in Shostak's algorithm by in-trodu
ing the norm operation and the 
omposition op-erator R Æ S to fold in a solution. The norm opera-tion ensures that no new uninterpreted terms are in-trodu
ed during 
ongruen
e 
losure in the fun
tion 

,as is needed to guarantee termination. The 
omposi-tion operator R Æ S ensures that any newly generatedsolution S is immediately substituted into R and thealgorithm never attempts to �nd a solution for an al-ready solved non-interpreted term.We �rst illustrate the algorithm on some examples.The �rst example 
ontains no interpreted symbols.Example 4.1 Consider the goal f5(x) = x; f3(x) =x ` f(x) = x. The value of S after the base 
ase is;. After the prepro
essing of f3(x) = x in assert , Sis fx = x; f(x) = f(x); f2(x) = f2(x); f3(x) = f3(x)g:After merging f3(x) and x, S is fx = x; f(x) =f(x); f2(x) = f2(x); f3(x) = xg: When f5(x) = xis prepro
essed in assert , 
an(S )(f 5 (x )) yields f2(x)sin
e S(f3(x)) � x, and S is left un
hanged. Whenf2(x) and x have been merged, S is fx = x; f(x) =f(x); f2(x) = x; f3(x) = xg: Now f(x) S� f3(x)and hen
e f(x) and x are merged so that S is nowfx = x; f(x) = x; f2(x) = x; f3(x) = xg:2A
tually, the interpreted subterms of a = b need not all bein
luded in dom(S). Only those that are immediate subterms ofuninterpreted subterms in a = b are needed.3Any variables o

urring in solve(a = b) and not in vars(a =b) must be fresh, i.e., they must not o

ur in the original 
on-je
ture or be generated by any other invo
ation of solve.



The 
on
lusion f(x) = x easily follows sin
e
an(S )(f (x )) � x � 
an(S )(x ).Example 4.2 Consider y + 1 = x; f(y) + 1 = y �1; f(x� 1)� 1 = x+1 ` false whi
h is a permutationof our earlier example. Starting with S � ; in thebase 
ase, the prepro
essing of f(x � 1) � 1 = x + 1
auses the equation to be pla
ed into 
anoni
al formas �1 + f(�1 + x) = 1 + x and S is set tof 1 = 1;�1 = �1; x = x;�1 + x = �1 + x;f(�1 + x) = f(�1 + x); 1 + x = 1 + xg:Solving �1+f(�1+x) = 1+x yields f(�1+x) = 2+x,and S is set tof 1 = 1;�1 = �1; x = x;�1 + x = �1 + x;f(�1 + x) = 2 + x; 1 + x = 1 + xg:No unmerged 
ongruen
es are dete
ted. Next, f(y) +1 = y � 1 is asserted. Its 
anoni
al form is 1 + f(y) =�1+ y, and on
e this equality is asserted, the value ofS is f 1 = 1;�1 = �1; x = x;�1 + x = �1 + x;f(�1 + x) = 2 + x; 1 + x = 1 + x; y = y;f(y) = �2 + y;�1 + y = �1 + y;1 + f(y) = �1 + yg:Next y + 1 = x is pro
essed. Its 
anoni
al form is1+ y = x and the equality 1+ y = 1+ y is added to S.Solving y + 1 = x yields x = 1 + y, and S is reset tof 1 = 1;�1 = �1; x = 1 + y;�1 + x = y;f(�1 + x) = 3 + y; 1 + x = 2 + y; y = y;f(y) = �2 + y;�1 + y = �1 + y;1 + f(y) = �1 + y; 1 + y = 1 + yg:The 
ongruen
e 
lose operation 

 dete
ts the 
ongru-en
e f(1� y) S� f(x) and invokes merge on 3 + y and�2 + y. Solving this equality 3 + y = �2 + y yields ?returning the desired 
ontradi
tion.5 AnalysisWe des
ribe the proofs of termination, soundness,and 
ompleteness, and also present a 
omplexity anal-ysis.Key Invariants. The merge operation is 
learly theworkhorse of the pro
edure sin
e it is invoked fromwithin both assert and 

. Let U(X) represent the setfa 2 X j a uninterpretedg of uninterpreted terms inthe set X . Let A be solvables(a), B be solvables(b),

and S0 = merge(a; b;S ), then assuming U(A [ B) �dom(S ) and for all 
 2 A [ B, S(
) � 
, the followingproperties hold of S0 if they hold of S:1. Fun
tionality.2. Subterm 
losure: S is subterm-
losed if for anya 2 dom(S ), ddaee � dom(S ).3. Range 
losure: S is range-
losed if for any a 2dom(S ), U(solvables(S (a))) � dom(S ), and forany 
 2 solvables(S (a)), S(
) � 
.4. Norm 
losure: S is norm-
losed if S(a) �norm(S )(a) for a in dom(S ). This of 
ourse holdstrivially for uninterpreted terms a.5. Idempoten
e: S is idempotentif S[S(a)℄ � S(a), norm(S )(S (a)) � S (a), andnorm(S )(norm(S )(a)) � norm(S )(a).These properties 
an be easily established by in-spe
tion. Sin
e whenever merge(a; b;S ) is invoked inthe algorithm, the arguments do satisfy the 
onditionsU(A [ B) � dom(S ) and for all 
 2 A [ B, S(
) � 
,it then follows that these properties are also preservedby assert and 

, and therefore hold of pro
ess(T ). Weassume below that these invariants hold of S wheneverthe metavariable S is used with or without subs
riptsor supers
ripts.Lemma 5.1 (merge equivalen
e) LetA = solvables(a) and B � solvables(b). Given thatU(A [ B) � dom(S ) and for all 
 2 A [ B, S(
) � 
,if S0 = merge(a; b;S ) 6= ?, then1. norm(S 0)(a) � norm(S 0)(b).2. U(dom(S 0)) = U (dom(S )).Proof. Let R � solve(a = b). By de�nition,merge(a; b;S ) � S ÆR. By Lemma 3.8, norm(R)(a) �norm(R)(b). Sin
e S(
) � 
 for 
 2 A [ B,norm(S )(a) � a and norm(S )(b) � b. Hen
e, by normde
omposition, we have norm(S 0)(a) � norm(S 0)(b).By De�nition 3.4, dom(R) � A [ B , hen
eU(dom(S 0)) = U (dom(S )).Termination. We de�ne #(S) to represent thenumber of distin
t equivalen
e 
lasses partitioningU(dom(S )) as given by P (S).E(S)(a) = fb 2 U(dom(S )) j S (b) � S (a)gP (S) = fE(S)(a) j a 2 U(dom(S ))g#(S) = jP (S)j



The de�nition of 

(S ) terminates be
ause the mea-sure #(S) de
reases with ea
h re
ursive 
all. Ifin the de�nition of 

, merge(S (a);S (b);S ) = ?,then 
learly 

 terminates. Otherwise, let S0 =merge(S (a);S (b);S ) 6= ?, for a and b in dom(S ) su
hthat S(a) 6� S(b) and a S� b. In this 
ase a and b mustbe uninterpreted terms sin
e for interpreted terms aand b, if a S� b, then S(a) � S(b) by norm 
losure. Bymerge equivalen
e, norm(S 0)(S (a)) � norm(S 0)(S (b))and U(dom(S 0)) = U (dom(S )). By monotoni
ity,for any 
 and d su
h that S(
) � S(d), we haveS0(
) � S(d), and therefore #(S0) � #(S). However,by norm 
losure, S0(a) � S0(b) so that #(S0) < #(S).Soundness. The following lemmas establish thesoundness of the operations norm and 
an with re-spe
t to S. Substitution soundness and 
an soundnessare proved by a straightforward indu
tion on a, andnorm soundness is a simple 
onsequen
e of substitu-tion soundness .Lemma 5.2 (substitution soundness)If vars(a) � vars(T [ S ), then T; S ` a = a0 is deriv-able, for a0 � S[a℄.Lemma 5.3 (norm soundness)If vars(a) � vars(T [ S ), then T; S ` a = â is deriv-able.Lemma 5.4 (
an soundness)If vars(a) � vars(T [ S ), then T; S ` a = �a is deriv-able.Lemma 5.5 (merge soundness)If S0 = merge(a; b;S ) 6= ?, then if T; S ` a = b, andT; S0 ` 
 = d with vars(
 = d) � vars(T [ S ), thenT; S ` 
 = d. Otherwise, merge(a; b;S ) = ?, andT; S ` ?.Proof. If S0 = merge(a; b;S ) 6= ?, then let R =solve(a = b). By norm soundness, S;R ` S0, andhen
e by 
ut, T; S;R ` 
 = d is derivable. By the solverule, T; S ` 
 = d is derivable.If merge(a; b;S ) = ?, then by similar reasoning us-ing the solve-? rule, T; S ` false is derivable.Lemma 5.6 (

 soundness) If S0 = 

(S ) 6= ?,T; S0 ` a = b for vars(a = b) � vars(T ;S ), thenT; S ` a = b is derivable. Otherwise, 

(S ) = ?, andS ` false is derivable.Proof. By 
omputation indu
tion on the de�nitionof 

 using merge soundness .

Lemma 5.7 (pro
ess soundness)If S = pro
ess(T1 ) 6= ?, T1 � T2, and T2; S ` 
 =d for vars(
 = d) � vars(T2 ), then T2 ` 
 = d isderivable. Otherwise, pro
ess(T1 ) = ?, and T1 ` falseis derivable.Proof. By indu
tion on the length of T1. In thebase 
ase, S is empty and the theorem follows triv-ially. In the indu
tion step, with T1 = fa = b; T 01g andS0 = pro
ess(T 01 ), we have the indu
tion hypothesisthat T2 ` 
 = d is derivable if T2; S0 ` 
 = d is deriv-able, for any 
, d su
h that vars(
 = d) � vars(T2 ).We know by 
an soundness that T2; S0 ` a = a andT2; S0 ` b = b are derivable. When S' is augmentedwith identities over subterms of a and b to get S0+, wehave the derivability of T2; S0 ` S0+. By 

 soundness,we then have the derivability of T2; S0+ ` 
 = d fromthat of T2; S ` 
 = d. The derivability of T2; S0 ` 
 = dthen follows by 
ut from that of T2; S0+ ` 
 = d, andwe get the 
on
lusion T2 ` 
 = d by the indu
tionhypothesis.A similar indu
tion argument shows that whenpro
ess(T1 ) = ?, then T2 ` false .Theorem 5.8 (soundness) If S = pro
ess(T ) 6= ?,vars(a = b) � vars(T ), and a � b, then T ` a = b isderivable. Otherwise, pro
ess(T ) = ?, and T ` falseis derivable.Proof. If S = pro
ess(T ) 6= ?, then by 
an sound-ness, T; S ` a = a and T; S ` b = b are derivable.Hen
e, by transitivity and symmetry, T; S ` a = b isderivable. Therefore, by pro
ess soundness, T ` a = bis derivable.If pro
ess(T ) = ?, then already by pro
ess sound-ness, T ` false .Completeness. We show that when S = pro
ess(T )then 
an(S ) is a �-model satisfying T . When this isthe 
ase, 
ompleteness follows from proof soundness .In proving 
ompleteness, we exploit the property thatthe output of pro
ess is 
ongruen
e-
losed.Lemma 5.9 (
on
uen
e)If S is 
ongruen
e-
losed and U(ddaee) � dom(S ), then
an(S )(a) � norm(S )(a).Proof. The proof is by indu
tion on a. In thebase 
ase, when a is a variable, 
an(S )(a) � S (a) �norm(S )(a).If a is uninterpreted and of the form f(a1; : : : ; an),then 
an(S )(a) � lookup(S )(f (a1 ; : : : ; an )). Sin
e S issubterm-
losed, by the indu
tion hypothesis and norm
losure, we have ai � âi � S(ai) for 0 < i � n. Then



there must be some b of the form f(b1; : : : ; bn) su
hthat S(bi) � S(ai), for 0 < i � n, sin
e a itself is su
ha b. Then by 
ongruen
e 
losure and norm 
losure,a � S(b) � S(a) � â, sin
e a S� b.If a is interpreted, by the indu
tion hypothe-sis and subterm 
losure, a � �(f(a1; : : : ; an)) ��(f(â1; : : : ; ân)) � â.Lemma 5.10 (
an 
omposition) If S0 = S ÆR andS0 is 
ongruen
e-
losed, then 
an(S 0)(
an(S )(a)) �
an(S 0)(a).Proof. By indu
tion on a. When ais a variable. 
an(S )(a) � S (a). If a 62dom(S ), then S(a) = a, and hen
e the 
on
lu-sion. Otherwise, by range-
losure, U(ddS(a)ee) �dom(S ) � dom(S 0). Then, by 
on
uen
e, normde
omposition, and idempoten
e, 
an(S 0)(S (a)) �norm(S 0)(S (a)) � norm(R)(norm(S )(S (a))) �norm(R)(norm(S )(a)) � norm(S 0)(a) � 
an(S 0)(a).In the indu
tion step, let a � f(a1; : : : ; an). If a isuninterpreted, then iff(a1; : : : ; an) S� f(b1; : : : ; bn)for some f(b1; : : : ; bn) 2 dom(S ), then a �S(f(b1; : : : ; bn)). The reasoning used in the base
ase 
an then be repeated to derive the 
on
lusion.Otherwise, a � f(a1; : : : ; an) and by the indu
tionhypothesis and the de�nition of 
an, 
an(S 0)(a) �lookup(S 0)(f (
an(S 0)(a1 ); : : : ; 
an(S 0)(an ))) �
an(S 0)(a).When a is interpreted, by the indu
tion hypothesisand the �-norm lemma,
an(S 0)(a)� 
an(S 0)(�(f (a1 ; : : : ; an )))� �(f(
an(S 0)(a1 ); : : : ; 
an(S 0)(an )))� 
an(S 0)(a):Lemma 
an 
omposition with ; for R yields theidempoten
e of 
an(S ) for 
ongruen
e-
losed S so thatwe 
an de�ne a �-model MS in terms of 
an(S ). Thedomain D of MS 
onsists of faj
an(S )(a) = ag. Themapping of fun
tions is su
h thatMS(f)(a1; : : : ; an) =lookup(S )(f (a1; : : : ; an)), if f is uninterpreted. If f isinterpreted MS(f)(a1; : : : ; an) = �(f(a1; : : : ; an)). If�[x℄ = �(x) and �[f(a1; : : : ; an)℄ = f(�[a1℄; : : : ; �[an℄),then by the idempoten
e of 
an(S ), MS[[a℄℄� is just
an(S )(�[a℄). Lemma �-norm 
an then be used to showMS j= �(a) = a. MS is therefore a �-model. Corre-spondingly, for a given set of variables X , �XS is de�nedso that �XS (x) = 
an(S )(x ) for x 2 X .

Lemma 5.11 (
an �-model) If S = pro
ess(T ) 6=? and X = vars(T ), then MS; �XS j= a = b for anya = b 2 T .Proof. Showing that MS ; �XS j= a = b is thesame as showing that 
an(S )(a) � 
an(S )(b). Theproof is by indu
tion on T . In the base 
ase, Tis empty. In the indu
tion step, T = fa = b; T 0gwith X 0 = vars(T 0). Let S0 = pro
ess(T 0). Bythe indu
tion hypothesis, MS0 ; �X0S0 j= T 0. WithS0+ = expand(S ; a 0; b0) for a0 � 
an(S 0)(a) and b0 �
an(S 0)(b), let S0 = merge(a; b;S 0+), hen
e by mergeequivalen
e, norm(S0 )(a 0) � norm(S0 )(b0). By asso-
iativity of 
omposition, it 
an be shown that thereis an R su
h that S = S0 Æ R and an R0 su
h thatS = S0+ Æ R0. Hen
e by monotoni
ity, norm(S )(a 0) �norm(S )(b0). Sin
e S is 
ongruen
e-
losed, by 
on-
uen
e, 
an(S )(a 0) � norm(S )(a 0) and 
an(S )(b0) �norm(S )(b0). Hen
e, 
an(S )(a 0) � 
an(S )(b0).It 
an also be shown that 
an(S 0+)(a) � 
an(S 0)(a),and similarly for b. Therefore, by 
an 
omposition, wehave 
an(S )(a) � 
an(S )(b), and hen
eMS ; �XS j= a =b. A similar argument shows that for 
 = d 2 T 0, sin
e
an(S 0)(
) � 
an(S 0)(d), we also have 
an(S )(
) �
an(S )(d).When T ` false is derivable, we know by proofsoundness that there is no �-model satisfying T andhen
e by the 
an �-model lemma, pro
ess(T ) must be?.Theorem 5.12 (
ompleteness)If S = pro
ess(T ) 6= ? and T ` a = b, then
an(S )(a) � 
an(S )(b).Proof. Sin
e MS; �XS j= T by 
an �-model for X =vars(T ), we have by proof soundness that 
an(S )(a) �
an(S )(b).Complexity. We have already seen in the termina-tion argument that the number of iterations of 

 inpro
ess is bounded by the number of distin
t equiv-alen
e 
lasses of terms in dom(S ) whi
h is no morethan the number of distin
t uninterpreted terms. Wewill assume that the solve operation is performed byan ora
le and that there is some �xed bound on thesize of the solution set returned by it. In the 
ase oflinear arithmeti
, the solution set has at most one el-ement. Let n represent the number of distin
t termsappearing in T whi
h is also a bound on jSj and onthe size of the largest term appearing in S. The 
om-position operation 
an be implemented in linear time.Thus the entire algorithm has O(n2) steps assumingthat the � and solve operations are length-preservingand ignoring the time spent inside solve .



6 Con
lusionsShostak's de
ision pro
edure for equality in thepresen
e of interpreted and uninterpreted fun
tionsis seriously 
awed. It is both in
omplete and non-terminating, and hen
e not a de
ision pro
edure. Allsubsequent variants of Shostak's algorithm have beensimilarly 
awed. This is unfortunate be
ause de
isionpro
edures based on Shostak's algorithm are at the
ore of a number of widely used veri�
ation systems.We have presented a 
orre
t algorithm that 
apturesShostak's key insights, and des
ribed proofs of termi-nation, soundness, and 
ompleteness.A
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