Deconstructing Shostak*

Appears in Proc. of IEEE LICS 2001 ©QIEEE Press

Harald Ruefl and Natarajan Shankar
Computer Science Laboratory
SRI International
Menlo Park CA 94025 USA
{ruess,shankar}@csl.sri.com
Phone: (650)859-5272; Fax: (650)859-2844

Abstract

Decision procedures for equality in a combination of
theories are at the core of a number of verification sys-
tems. Shostak’s decision procedure for equality in the
combination of solvable and canonizable theories has
been around for nearly two decades. Variations of this
decision procedure have been implemented in a num-
ber of systems including STP, EHDM, PVS, STeP, and
SVC. The algorithm is quite subtle and a correctness
argument for it has remained elusive. Shostak’s algo-
rithm and all previously published variants of it yield
incomplete decision procedures. We describe a variant
of Shostak’s algorithm along with proofs of termina-
tion, soundness, and completeness.

1 Introduction

In 1984, Shostak [Sho84] published a decision pro-
cedure for the quantifier-free theory of equality over
uninterpreted functions combined with other theories
that are canonizable and solvable. Such algorithms
decide statements of the form T + a = b, where T
is a collection of equalities, and T', a, and b contain a
mixture of interpreted and uninterpreted function sym-
bols. This class of statements includes a large fraction
of the proof obligations that arise in verification includ-
ing those involving extended typechecking, verification
conditions generated from Hoare triples, and inductive
theorem proving. Shostak’s procedure is at the core of
several verification systems including STP [SSMS82]
Enpm [EHD93], PVS [ORS92], STeP [MT96, Bjg99],
and SVC [BDL96]. The soundness of Shostak’s algo-
rithm is reasonably straightforward, but its complete-

3

*This work was supported by SRI International, and by NSF
Grant CCR-0082560, DARPA/AFRL Contract F33615-00-C-
3043, and NASA Contract NAS1-0079.

ness has steadfastly resisted proof. The proof given
by Shostak [Sho84] is seriously flawed. Despite its sig-
nificance and popularity, Shostak’s original algorithm
and its subsequent variations [CLS96, BDL96, Bjg99]
are all incomplete and potentially nonterminating. We
explain the ideas underlying Shostak’s decision proce-
dure by presenting a correct version of the algorithm
along with rigorous proofs for its correctness.

If the terms in a conjecture of the form T F
a = b are constructed solely from variables and un-
interpreted function symbols, then congruence clo-
sure [NO80, Sho78, DST80, CLS96, Kap97, BRRT99]
can be used to partition the subterms into equivalence
classes respecting 7' and congruence. For example,
when congruence closure is applied to

fz) = fla) F f(x) = f(a),

the equivalence classes generated by
the antecedent equality are {z},{f(z), f3(z), f>(2)},
and {f%(z), f*(x)}. This partition clearly validates the
conclusion f5(z) = f(z).

In practice, a conjecture T+ a = b usually con-
tains a mixture of uninterpreted and interpreted func-
tion symbols. Semantically, uninterpreted functions
are unconstrained, whereas interpreted function are
constrained by a theory, i.e., a closure condition with
respect to consequence on a set of equalities. An ex-
ample of such an assertion is

where +, —, and the numerals are from the theory of
linear arithmetic, false is an abbreviation for 0 = 1,
and f is an uninterpreted function symbol. The con-
tradiction here cannot be derived solely by congruence
closure or linear arithmetic. Linear arithmetic is used
to show that x — 1 =y so that f(z — 1) = f(y) follows
by congruence. Linear arithmetic can then be used to
show that = + 2 = y — 2 which contradicts y + 1 = z.

Nelson and Oppen [NO79] showed how decision pro-
cedures for disjoint equational theories could be com-
bined. Since linear arithmetic and uninterpreted equal-
ity are disjoint, this method can be applied to the
above example. First, wariable abstraction is used
to obtain a theory-wise partition of the term wuni-
verse, i.e., the subterms of T, a, and b, in a con-
jecture T' = a = b. The uninterpreted equality the-
ory () then consists of the terms {f(u), f(y),w, 2} and
the equalities {w = f(u),z = f(y)}, and the linear
arithmetic theory L consists of the terms {u,z,y,z —
l,bw—1,z+ 1,2+ 1,y — 1,y + 1} and the equalities
{fu=z-lw—1l=z+1l,z4+41=y—-1,y+1=2zx}
The key observation is that once the terms and equal-
ities have been partitioned using variable abstraction,
the two theories L and () need exchange only equalities
between variables. Thus, linear arithmetic can be used
to derive the equality u = y, from which congruence
closure derives w = z, and the contradiction then fol-
lows from linear arithmetic. Since the term universe
is fixed in advance, there are only a bounded number
of equalities between variables so that the propagation
of information between the decision procedures must
ultimately converge.

The Nelson-Oppen combination procedure has some
disadvantages. The individual decision procedures
must carry out their own equality propagation and the
communication of equalities between decision proce-
dures can be expensive. The number of equalities is
quadratic in the size of the term universe, and each
closure operation can itself be linear in the size of the
term universe.

Shostak’s algorithm tries to gain efficiency by main-
taining and propagating equalities within a single con-
gruence closure data structure. Equalities involving
interpreted symbols contain more information than
uninterpreted equalities. For example, the equality
y + 1 = x cannot be processed by merely placing y + 1
and z in the same equivalence class. This equality
also impliesthat y =z -1,y —z = -1, x —y = 1,
y+ 3 =x+2, and so on. In order to avoid processing
all these variations on the given equality, Shostak re-
stricts his attention to solvable theories where an equal-
ity of the form y + 1 = & can be solved for z to yield
the solution z = y + 1. If the theories considered are
also canomnizable, then there is a canonizer o such that
whenever an equality a = b is valid, then o(a) = o(b),
where = represents syntactic equality. A canonizer for
linear arithmetic can be defined to place terms into an
ordered sum-of-monomials form. Once a solved form
such as x = y + 1 has been obtained, all the other con-
sequences a = b of this equality can be obtained by
o(a'") = o(b') where a' and b’ are the results of sub-

stituting the solution for z into a and b, respectively.
For example, substituting the solution intoy = x — 1
yields y = y + 1 — 1, and the subsequent canonization
step yields y = y.

The notion of a solvable and canonizable theory is
extended to equalities involving a mix of interpreted
and uninterpreted symbols by treating uninterpreted
terms as variables. For the conjecture,

Shostak’s algorithm would solve the equality f(z—1)—
l=xz+1as f(z —1) =z + 2, the equality f(y) +1=
y—1las flyy =y—2,andy+1 =z asz=y+
1. Now, f(x — 1) and f(y) are congruent because the
canonical form for x — 1 obtained after substituting
the solution z = y + 1 is y. By congruence closure,
the equivalence classes of f(xz — 1) and f(y) have to
be merged. In Shostak’s original algorithm the current
representatives of these equivalence classes, namely z+
2 and y — 2 are merged. The resulting equality = +
2 = y — 2 is first solved to yield x = y — 4. This is
incorrect because we already have a solution for = as
2 = y+ 1 and x should therefore have been eliminated.
The new solution x = y — 4 contradicts the earlier one,
but this contradiction goes undetected by Shostak’s
algorithm. This example can be easily adapted to show
nontermination. Consider

fw)=wv,f(u)=u—1,u=0vt false.

The merging of u and v here leads to the detection of
the congruence between f(u) and f(v). This leads to
solving of u — 1 =wv as u = v + 1. Now, the algorithm
merges v and v+ 1. Since v occurs in v+ 1, this causes
v + 1 to be merged with v + 2, and so on.

An earlier paper by Cyrluk, Lincoln, and
Shankar [CLS96] gave an explanation (with minor cor-
rections) of Shostak’s algorithm for congruence clo-
sure and its extension to interpreted theories. Though
proofs of correctness for the combination algorithm are
briefly sketched, the algorithm presented there is both
incomplete and nonterminating. Other published vari-
ants of Shostak’s algorithm used in SVC [BDL96] and
STeP [Bjg99] inherit these problems.

In this paper, we present an algorithm that fixes the
incompleteness and nontermination in earlier versions
of Shostak’s algorithms. In the above example, the in-
completeness is fixed by substituting the solution for
z into the terms representing the different equivalence
classes. Thus, when f(z — 1) and f(y) are detected to
be congruent, their equivalence classes are represented
by y + 3 and y — 2, respectively. The resulting equality
y+ 3 = y— 2 easily yields a contradiction. The nonter-
mination is fixed by ensuring that no new mergeable

terms, such as v + 2, are created during the processing
of an axiom in T'. Our algorithm is presented as a sys-
tem of transformations on a set of equalities in order to
capture the key insights underlying its correctness. We
outline rigorous proofs for the termination, soundness,
and completeness of this procedure. The algorithm
as presented here emphasizes logical clarity over effi-
ciency, but with suitable optimizations and data struc-
tures, it can serve as the basis for an efficient imple-
mentation. SRI's ICS (Integrated Canonizer/Solver)
decision procedure package [FORS01] is directly based
on the algorithm studied here.

Section 2 introduces the theory of equality, which
is augmented in Section 3 with function symbols from
a canonizable and solvable theory. Section 3 also in-
troduces the basic building blocks for the decision
procedure. The algorithm itself is described in Sec-
tion 4 along with some example hand-simulations. The
proofs of termination, soundness, and completeness are
outlined in Section 5.

2 Background

With respect to a signature consisting of a set
of function symbols F' and a set of variables V, a
term is either a variable z from V or an application
flay,...,a,) of an n-ary function symbol f from F
to n terms aq,...,a,, where 0 < n. The metavari-
able conventions are that u, v, z, y, and z range over
variables, and a, b, ¢, d, and e range over terms. The
metavariables R, S, and 7', range over sets of equali-
ties. The metatheoretic assertion a = b indicates that
a and b are syntactically identical terms. Let vars(a),
vars(a = b), and vars(T) return the variables occur-
ring in a term a, an equality a = b, and a set of equal-
ities T', respectively. The operation [a] is defined to
return the set of all subterms of a.

Some of the function symbols are interpreted, i.e.,
they have a specific interpretation in some given theory
7, while the remaining function symbols are uninter-
preted, i.e., can be assigned arbitrary interpretations.
A term f(aq,...,a,) is interpreted (uninterpreted) if
f is interpreted (uninterpreted). A term e is non-
interpreted if it is either a variable or an uninterpreted
term. We say that a term a occurs interpreted in a term
e if there is an occurrence of a in e that is not prop-
erly within an uninterpreted subterm of e. Likewise, a
occurs uninterpreted in e if a is a proper subterm of an
uninterpreted subterm of e. solvables(a) denotes the
set of outermost non-interpreted subterms of a, i.e.,

those that do not occur uninterpreted in a.

solvables(f (az,...,a,)) = U solvables(a;),
if f is interpreted
solvables(a) = {a}, otherwise

The theory of equality deals with sequents of the
form T + a = b. We will insist that these sequents be
such that vars(a = b) C wvars(T). The proof theory
for equality is given by the following inference rules.

1. Axiom: ,fora=beT.

THa=05b

2. Reﬂexivity: m

3 Svmmetry: L @=b
- Symmetry: —m -
TFa=b THFb=c
4. Transitivity: TEa=c .
5. Congruence:
T"(ll:bl Tl-an:bn

Tl—f(al,...,an):f(bl,...,bn) ’

The semantics for terms is given by a model M
over a domain D and an assignment p for the vari-
ables so that M[z], = p(z) and M[f(a1,...,an)], =
M(f)(M[a1]p, ..., M[ay],), and M[a], € D for all
a. We say that M,p = a = b iff M[a], = M[b],,
and M E a = biff M,p = a = b for all assign-
ments p over vars(a = b). We write M,p = S
when Va,b : a = b € S D M,p E a = b, and
M,p=TFa=bwhen (M,p=T)D (M,pl=a=0).

3 Canonizable and Solvable Theories

Shostak’s algorithm goes beyond congruence closure
by deciding equality in the presence of function sym-
bols that are interpreted in a theory 7 [Sho84, CLS96].
The algorithm is targeted at canonizable and solvable
theories, i.e., theories that are equipped with solvers
and canonizers as outlined below. We write =, a = b
to indicate that ¢ = b is valid in theory 7. The canon-
izer and solver are first described for pure 7-terms, i.e.,
without any uninterpreted function symbols, and then
extended to uninterpreted terms by regarding these as
variables.

Definition 3.1 A theory T is canonizable if there is a
canonizer o such that

o(o(a)) = o(a).
If o(a) = f(bi,...

1< n.

SR SO S

,bn), then o(b;) = b; for 1 <

For example, a canonizer o for the theory of linear
arithmetic can be defined to transform expressions into
an ordered-sum-of-monomials normal form. A term a
is said to be canonical if o(a) = a.

Definition 3.2 A model M is a o-model if M =a =
o(a) for any term a, and M [~ a = b for distinct
canonical, variable-free terms a and b.

Definition 3.3 A set of equalities S and a = b are
o-equivalent iff for all o-models M and assignments p
over the variables in a and b, M,p = a = b iff there

is an assignment p' extending p, over the variables in
S,a, and b, such that M,p' = S.

Definition 3.4 A canonizable theory is solvable if
there is an operation solve such that solve(a = b) = L
if a = b is unsatisfiable in any o-model, or S =
solve(a = b) for a set of equalities S such that

1. S is a set of n equalities of the form x; = e; for
0 < n where for each i, 0 <i<n,

(a) x; € vars(a =b).

(b) z; & vars(e;), for j, 0 < j <mn.
(c) zi Zxj, fori#j and 0 < j < mn.
(d) o(e;) = e;.

2. S and a = b are o-equivalent.

A solver for linear arithmetic, for example, takes an
equation of the form

ct+ayry+...+apr, =d+ bz + ...+ by,
where a; # by, and returns

(d—c)/(ar — by)
+ ((b2 *ag)/((ll 7()1))*.172
+

x1 = o

+ (b — an)/ (@1 = b)) % 22).

In general, solve(a = b) may contain variables that do
not occur in a = b, and vice-versa.

There are a number of interesting canonizable and
solvable theories including linear arithmetic, the the-
ory of tuples and projections, algebraic datatypes like

lists, set algebra, and the theory of fixed-sized bitvec-
tors. In many cases, the canonizability and solvabil-
ity of the union of theories (with disjoint signatures)
follows from the canonizability and solvability of its
constituent theories.! We do not address modularity
issues here but instead assume that we already have a
canonizer and solver for a single combined theory.

The solvers and canonizers characterized above are
intended to work in the absence of uninterpreted func-
tion symbols. They are adapted to terms containing
uninterpreted subterms by treating these subterms as
variables. Canonizers are applied to terms containing
uninterpreted subterms by renaming distinct uninter-
preted subterms with distinct new variables. For a
given term a, let 7 be a bijective mapping between a
set of variables X that do not appear in a and the
uninterpreted subterms of a. The application of a sub-
stitution +y to a term a, written v[a], is defined so that
vla] = f(v[a],-..,v[an]) if @ = f(a1,...,a,), where
f is interpreted. If a is in the domain of v, then
vla] = v(a), and otherwise, y[a] = a. Then o(a) is
Ao (y~a])]

For solving equalities containing uninterpreted
terms, we introduce, as with o, a bijective map v be-
tween a set of variables X not occurring in a or b, and
the uninterpreted subterms of a and b, such that

solve(a = b) = y[solve(y *[a] = v [b])] .

When uninterpreted terms are handled as above, the
conditions in Definitions 3.1 and 3.4 must be suitably
adapted by using solvables(a) instead of vars(a).

The proof theory for equality is augmented for can-
onizable, solvable theories by the proof rules:

1. Canonization: , for any term a.

Tra=o(a)

TFa=b TUSkFe=d . _
2. Solve: TEo=d if § =

solve(a = b) # L and vars(c = d) C vars(T).

TFHa=0b

3. Solve-L: W

, if solve(a = b) = L.

A sequent T F ¢ = d is derivable if there is a proof
of T F ¢ = d using one of the inference rules: axiom,
reflexivity, symmetry, transitivity, congruence, canon-
ization, solve, or solve- L. We say that T+ S is deriv-
able if T F ¢ = d is derivable for every ¢ = d in S.
The sequent T, S Fc=dis just TUS F ¢ =d. The
weakening and cut lemmas below are easily verified.

!The general result on combining solvers claimed by
Shostak [Sho84] is incorrect, but there are some restricted re-
sults on combining equational unifiers [BS96] that can be applied
here.

Lemma 3.5 (weakening) If T CT' and THa=b
is derivable, then T' F a = b is derivable.

Lemma 3.6 (cut) If T'F T and T + a = b is deriv-
able, then T' + a = b is derivable.

Theorem 3.7 (proof soundness) If T - a = b is
derivable, then for any o-model M and assignment p
over vars(T), M,pETF a=h.

Proof. By induction on the derivation of T F a =
b. The soundness of the solve rules follows from the
conditions in Definition 3.4.]

A set of equalities S is said to be functional (in
a left-to-right reading of the equality) if whenever a =
beSanda ="V €S, b="b" For example, the solution
set returned by solve is functional. A functional set
of equalities can be treated as a substitution and the
associated operations are defined below. S(a) returns
the solution for a if it exists in S, and a itself, otherwise.
If a = bis in S for some b, then a is in the domain of
S, i.e., dom(S).

b ifa=besS
S(a) = { a otherwise
dom(S) = {a|3b.a=0beS}.

The operation a 2 b checks if a is congruent to b
in S, ie., a = f(a,...,an), b = f(b1,...,b,), and
S(a;) = S(b;) for 1 < i < m. A set of equalities S is
said to be congruence-closed when for any terms a and
b in dom(S) such that a £ b, we have S(a) = S(b).

Sla] replaces a subterm b in a by S(b), where b €
solvables(a).

Sif(ar,...,an)] = f(Slai],..., S[axn]),
if f is interpreted
Sla] = S(a), otherwise.

norm(S)(a) is a normal form for a with respect to S
and is defined as 0(S]a]). The operation norm does not
appear in Shostak’s algorithm and is the key element
of our algorithm and its proof. With S fixed, we use a
as a syntactic abbreviation for norm(S)(a).

norm(S)(a) = o(S]a]).
Lemma 3.8 If solve(a = b) = S # L1, then
norm(S)(a) = norm(S)(b).

Proof. By definitions 3.3 and 3.4(2), for any o-
model M and assignment p’, we have M, p' = § <~
M,p' |=a=>5. Let o' = S[a] and b’ = S[b]. By induc-
tionona, M, p' = a = a’, and similarly M, p' =b=1V".

Hence, M, p' |=a' = b'. Then, since M is a o-model, by
Definition 3.2, it must be the case that o(a’) = o(b'),
and therefore norm(S)(a) = norm(S)(b). m

The definition of the lookup operation uses Hilbert’s
epsilon operator, indicated by the keyword when, to
return S(f(b1,...,b,)) when by,..., b, satisfying the
listed conditions can be found. If no such bq,...,b,
can be found, then lookup(S)(a) returns a itself. We
show later that the lookup operation is used only when
the results of this choice are deterministic.

lookup(S)(f(as,...,a,)) = S(f(b1,...,bn)),
when by, ..., by, :
fby,...,by) € dom(S),
and a; = S(b;),
for1<i<n
lookup(S)(a) = a, otherwise.
can(S)(a) is a canonical form in which any uninter-
preted subterm e that is congruent to a known left-
hand side €' in S is replaced by S(e'). It is analogous

to the canon operation in Shostak’s algorithm. We use
@ as a syntactic abbreviation for can(S)(a).

can(S)(f(a17"'7an)) = lOOk’U,p(S)(f(W77m))‘
if f is uninterpreted
Can(s)(f(ala"'aan)) = U(f(a_lalm))/
if f is interpreted
can(S)(a) = S(a), otherwise.

Lemma 3.9 (o-norm) If S is functional, then

norm(S)(o(a)) = @ and can(S)(o(a)) = a.

Proof. We know that F o(a) = a. Then for b’ =
Slo(a)] and b = Sla], the equality b = b is valid in
every o-model. Then by Definition 3.2, o(S[o(a)]) =
o(S[a]), and hence the first part of the theorem.

The reasoning in the second part is similar. If we let
R={b="0b]|be [a]}, then can(S)(a) = norm(R)(a).
We can therefore use the first part of the theorem to
establish the second part. [

We next introduce a composition operation for
merging the results of a solve operation into an existing
solution set. When Ro S is used, S must be functional,
and the result contains a = b for each equality a = b
in R in addition to the equalities in S.

RoS = {a=bla=beR}US.

The following lemmas about composition are given
without proof.

Lemma 3.10 (norm decomposition) If R U S is
functional, then

norm(R o S)(a) = norm(S)(norm(R)(a)).

= assert(a = b, process(T))

= 0.

= 1

= cc(merge(a,b,ST)), where,
ST = expand(S,a, b).

process({a = b, T}

)

process(()
assert(a = b, L)
)

assert(a = b, S

= SU{e=¢el|e€new(S,a,b)}.
= [Ja=0b] — dom(S).

L1,if solve(a =b) = L

merge(a, b, = Sosolve(a =b), otherwise.
ce(l) = L
cc(S) = cc(merge(S(a),S(b),S)),
when a,b :
a,b € dom(S)

al b, and S(a) Z S(b)

S, otherwise.

ce(S)

Figure 1: Main Procedure: process

Lemma 3.11 (associativity of composition) If
QU RUS is functional, then

(QoR)oS=Qo(RobS).

Lemma 3.12 (monotonicity) If RUS is functional,
then if R(a) = R(b), then (Ro S)(a) = (Ro S)(b), for

any a and b.

4 An Algorithm for Deciding Equality
in the Presence of Theories

We next present an algorithm for deciding T F ¢ =
d for terms containing uninterpreted function sym-
bols and function symbols interpreted in a canoniz-
able and solvable theory. The algorithm for verify-
ing T + ¢ = d checks that can(S)(¢) = can(S)(d),
where S = process(T). The process procedure shown
in Figure 1, is written as a functional program. It is
a mathematical description of the algorithm and not
an optimized implementation. The state of the algo-
rithm consists of a set of equalities S which holds the
solution set. We demonstrate as an invariant that S is
functional. Two terms a and b in dom(S) are in the
same equivalence class according to S if S(a) = S(b).

The operation process(T) returns a final solution
set by starting with an empty solution set and suc-

cessively processing each equality a = b in T by in-
voking assert(a = b,S), where S is the state as re-
turned by the recursive call of process. The invocation
of assert(a = b, S) is executed by first reducing a and
b to their respective canonical forms @ and b. Next,
S is expanded to include e = e for each subterm e
of @ = b where ¢ ¢ dom(S). This preprocessing step
ensures that S contains entries corresponding to any
terms that might be needed in the congruence closure
phase in the operation cc.? The merge operation then
solves the equality @ = b to get a solution® S’, and
returns S o S’ as the new value for the state S. As
we will show, this new value affirms a = b, but it is
not congruence-closed and hence does not contain all
the consequences of the assertion a = b. The step
cc(S) computes the congruence closure of S by repeat-
edly picking a pair of congruent terms a and b from
dom(S) such that S(a) Z S(b) and merging them us-
ing merge(S(a),S(b),S). Eventually either a contra-
diction is found or all congruent left-hand sides in S
are merged and the cc operation terminates returning
a congruence-closed solution set.

The above algorithm fixes the nontermination and
incompleteness problems in Shostak’s algorithm by in-
troducing the norm operation and the composition op-
erator R o S to fold in a solution. The norm opera-
tion ensures that no new uninterpreted terms are in-
troduced during congruence closure in the function cc,
as is needed to guarantee termination. The composi-
tion operator R o S ensures that any newly generated
solution S is immediately substituted into R and the
algorithm never attempts to find a solution for an al-
ready solved non-interpreted term.

We first illustrate the algorithm on some examples.
The first example contains no interpreted symbols.

Example 4.1 Consider the goal f3(z) = z, f3(z) =
z F f(z) = x. The value of S after the base case is
(. After the preprocessing of f3(z) = z in assert, S
is {2 = 2, /(x) = f(x), P2(2) = (), () = ()},
After merging f?(z) and z, S is {# = z,f(z) =
f(@), f*(z) = f*(x),f*(x) = x}. When f(x) = z
is preprocessed in assert, can(S)(f°(x)) yields f2(z)
since S(f3(x)) = z, and S is left unchanged. When
f?(z) and z have been merged, S is {z = =, f(z) =
f@), (@) = @, f' @) = 2} Now f(z) 2 f3(x)
and hence f(z) and z are merged so that S is now

{z =, f(z) = 2, f*(2) = 2, f*() = a},

2 Actually, the interpreted subterms of @ = b need not all be
included in dom/(S). Only those that are immediate subterms of

uninterpreted subterms in @ = b are needed.

3 Any variables occurring in solve(a = b) and not in vars(a =
b) must be fresh, i.e., they must not occur in the original con-
jecture or be generated by any other invocation of solve.

The conclusion f(z) = =z easily follows since

can(S)(f(z)) = x = can(5)(x).

Example 4.2 Consider y + 1 =z, f(y)+1 =y —
1, f(x — 1) — 1 =2+ 1F false which is a permutation
of our earlier example. Starting with S = @ in the
base case, the preprocessing of f(zr — 1) -1 =z +1
causes the equation to be placed into canonical form
as —1+ f(—1+2) =1+ 2 and S is set to

{1=1,-1=-l,z=z,-1+2=-1+z,
f(=14+z)=f(-1+2z),1+z=1+=z}.

Solving —1+ f(—1+x) = 14z yields f(-1+z) = 2+=,
and S is set to

{1=1,-1=-l,z=2,-14+x=-1+uz,
f(=14+z)=24z,1+z=1+z}.

No unmerged congruences are detected. Next, f(y) +
1=y —1is asserted. Its canonical form is 1 + f(y) =
—1+ y, and once this equality is asserted, the value of
S is

{1=1,-1=-l,z=z,-14+2=-1+z,
f(=1+x)=24+z,1+x=14+2z,y =y,
fly) =24y, ~1+y=-1+y,
1+ f(y) = —1+y}.

Next y + 1 = x is processed. Its canonical form is
1+y = x and the equality 1+y = 1+ y is added to S.
Solving y + 1 = x yields x = 1 + gy, and S is reset to

{1=1,-1=-lz=1+y,-1+xz =y,
f(=1+2)=3+yl+z=2+yy=y,
fy)=-2+y -1+y=-1+y,
1+ fly)=—-14y,14+y=1+y}.

The congruence close operation cc detects the congru-

ence f(1—y) 2 f(x) and invokes merge on 3 +y and
—2 +y. Solving this equality 3 + y = —2 4+ y yields L
returning the desired contradiction.

5 Analysis

We describe the proofs of termination, soundness,
and completeness, and also present a complexity anal-
ysis.

Key Invariants. The merge operation is clearly the
workhorse of the procedure since it is invoked from
within both assert and cc. Let U(X) represent the set
{a € X | a uninterpreted} of uninterpreted terms in
the set X. Let A be solvables(a), B be solvables(b),

and S’ = merge(a,b,S), then assuming U(A U B) C
dom(S) and for all ¢ € AU B, S(c) = ¢, the following
properties hold of S’ if they hold of S:

1. Functionality.

2. Subterm closure: S is subterm-closed if for any
a € dom(S), [a] C dom(S).

3. Range closure: S is range-closed if for any a €

dom(S), U(solvables(S(a))) C dom(S), and for
any ¢ € solvables(S(a)), S(c) = c.

4. Norm closure: S is mnorm-closed if S(a) =
norm(S)(a) for a in dom(S). This of course holds
trivially for uninterpreted terms a.

5. Idempotence: S is idempotent
it S[S(a)] = S(a), norm(S)(S(a)) = S(a), and
norm(S)(norm(S)(a)) = norm(S)(a).

These properties can be easily established by in-
spection. Since whenever merge(a, b, S) is invoked in
the algorithm, the arguments do satisfy the conditions
U(AUB) C dom(S) and for all c € AU B, S(c) = ¢,
it then follows that these properties are also preserved
by assert and cc, and therefore hold of process(T). We
assume below that these invariants hold of S whenever
the metavariable S is used with or without subscripts
or superscripts.

Lemma 5.1 (merge equivalence) Let

A = solvables(a) and B = solvables(b). Given that
U(AUB) C dom(S) and for all c € AUB, S(c) = ¢,
if S' = merge(a,b,S) # L, then

1. norm(S")(a) = norm(S")(b).
2. U(dom(S")) = U(dom(S)).

Proof. Let R = solve(a = b). By definition,
merge(a, b, S) = SoR. By Lemma 3.8, norm(R)(a) =
norm(R)(b). Since S(c) = ¢ for ¢ € AU B,
norm(S)(a) = a and norm(S)(b) = b. Hence, by norm
decomposition, we have norm(S")(a) = norm(S")(b).
By Definition 3.4, dom(R) C A U B, hence
U(dom(S")) = U(dom(5)). m

Termination. We define #(S) to represent the
number of distinct equivalence classes partitioning
U(dom(S)) as given by P(S).

E(S)(a) = {beU(dom(S)) | S(b) = S(a)}
P(S) = {E(S)(a)|ae U(dom(S))}
#(S) = P(S)

The definition of cc(S) terminates because the mea-
sure #(S) decreases with each recursive call. If
in the definition of cc, merge(S(a),S(b),S) = L,
then clearly cc terminates. Otherwise, let S’ =
merge(S(a),S(b),S) # L, for a and b in dom(S) such
that S(a) Z S(b) and a £ b. In this case a and b must
be uninterpreted terms since for interpreted terms a
and b, if a N b, then S(a) = S(b) by norm closure. By
merge equivalence, norm(S")(S(a)) = norm(S")(S(b))
and U(dom(S")) = U(dom(S)). By monotonicity,
for any ¢ and d such that S(¢) = S(d), we have
S'(¢) = S(d), and therefore #(S") < #(S). However,
by norm closure, S'(a) = S’(b) so that #(S') < #(S).

Soundness. The following lemmas establish the
soundness of the operations norm and can with re-
spect to S. Substitution soundness and can soundness
are proved by a straightforward induction on a, and
norm soundness is a simple consequence of substitu-
tion soundness.

Lemma 5.2 (substitution soundness)
If vars(a) C vars(T U S), then T, S+ a = da' is deriv-
able, for a' = Sla).

Lemma 5.3 (norm soundness)

If vars(a) C vars(T U S), then T,S + a = a is deriv-
able.

Lemma 5.4 (can soundness)

If vars(a) C vars(T U S), then T,S + a = a is deriv-

able.

Lemma 5.5 (merge soundness)

If S'" = merge(a,b,S) # L, then if T,S+a =05, and
T,5'"F ¢ = d with vars(c = d) C vars(T U S), then
T,S b ¢ = d. Otherwise, merge(a,b,S) = L, and
7,5+ L.

Proof. 1If S’ = merge(a,b,S) # L, then let R =
solve(a = b). By norm soundness, S,R + S', and
hence by cut, T, S, R+ ¢ = d is derivable. By the solve
rule, T, S F ¢ = d is derivable.

If merge(a,b,S) = L, then by similar reasoning us-

ing the solve- L rule, T, St false is derivable. =
Lemma 5.6 (cc soundness) If S' = cc(S) #

7,8 F a =10 for vars(a = b) C wvars(T,) fhen
T,S F a=0bis derivable. Otherwise, cc(S) = L, and

S+ false is derivable.

Proof. By computation induction on the definition
of cc using merge soundness. [

Lemma 5.7 (process soundness)

If S = process(T;) # L, Ty C Ty, and T»,S + ¢ =
d for vars(c = d) C vars(Te), then Ty + ¢ = d is
derivable. Otherwise, process(T;) = L, and Ty + false
is derivable.

Proof. By induction on the length of 7}. In the
base case, S is empty and the theorem follows triv-
ially. In the induction step, with Ty = {a = b, T} and
S' = process(T}), we have the induction hypothesis
that Ty F ¢ = d is derivable if 75,5’ F ¢ = d is deriv-
able, for any ¢, d such that vars(c = d) C vars(Ts).
We know by can soundness that T>, S’ F @ = a and
T5,58" - b = b are derivable. When S’ is augmented
with identities over subterms of @ and b to get S'*, we
have the derivability of T, S’ - S'T. By cc soundness,
we then have the derivability of Ty, S'" F ¢ = d from
that of Ty, S F ¢ = d. The derivability of T», S’ Fc=d
then follows by cut from that of T%,S'* F ¢ = d, and
we get the conclusion 75 F ¢ = d by the induction
hypothesis.

A similar induction argument shows that when
process(Ty) = L, then Ty F false. [

Theorem 5.8 (soundness) If S = process(T) # L,
vars(a = b) C vars(T), anda = b, then T - a = b is
derivable. Otherwise, process(T) = L, and T + false
15 derivable.

Proof. If S = process(T) # L, then by can sound-
ness, T,S + a = @ and T,S + b = b are derivable.
Hence, by transitivity and symmetry, 7,5 F a = b is
derivable. Therefore, by process soundness, T - a =10
is derivable.

If process(T) = L, then already by process sound-
ness, T F false. [

Completeness. We show that when S = process(T)
then can(S) is a o-model satisfying T'. When this is
the case, completeness follows from proof soundness.
In proving completeness, we exploit the property that
the output of process is congruence-closed.

Lemma 5.9 (confluence)
If S is congruence-closed and U([a]) C dom(S), then
can(S)(a) = norm(S)(a).

Proof. The proof is by induction on a. In the
base case, when a is a variable, can(S)(a) = S(a) =
norm(S)(a).

If a is uninterpreted and of the form f(a1,...,a,),
then can(S)(a) = lookup(S)(f(az,...,ay)). Since S is
subterm-closed, by the induction hypo‘rhesm and norm
closure, we have a; = d; = S(a;) for 0 < i < n. Then

there must be some b of the form f(by,...,b,) such
that S(b;) = S(a;), for 0 < i < n, since a itself is such
a b. Then by congruence closure and norm closure,
a=S(b) = S(a) = a, since a 2.

If a is interpreted, by the induction hypothe-
sis and subterm closure, a = o(f(ar,...,a,)) =

o(f(ay,...,dn)) = a.

Lemma 5.10 (can composition) If S’ = So R and
S' is congruence-closed, then can(S")(can(S)(a)) =

can(S")(a).

Proof. By induction on a. When a
is a variable. can(S)(a) = S(a). If a ¢
dom(S), then S(a) = a, and hence the conclu-

sion. Otherwise, by range-closure, U([S(a)]) C
dom(S) C dom(S'). Then, by confluence, norm
decomposition, and idempotence, can(S')(S(a))
norm(S')(S(a)) = mnorm(R)(norm(S)(S(a)))
norm(R)(norm(S)(a)) = norm(S')(a) = can(S')(a).

In the induction step, let a = f(a1,...,a,). If ais
uninterpreted, then if

for some f(b1,...,b,) € dom(S), then @ =
S(f(b1,...,by)). The reasoning used in the base
case can then be repeated to derive the conclusion.
Otherwise, @ = f(ag,...,a,) and by the induction
hypothesis and the definition of can, can(S’)(a)
lookup(S")(f (can(S")(a1),. .., can(S")(ay)))
can(S")(a).

When a is interpreted, by the induction hypothesis
and the o-norm lemma,

can(S")(a)
= can(S)(o(f(ar,...,am)))
= o(f(can(S")(ar),..., can(S")(an)))
= can(S")(a)

Lemma can composition with @ for R yields the
idempotence of can(S) for congruence-closed S so that
we can define a o-model Mg in terms of can(S). The
domain D of Mg consists of {a|can(S)(a) = a}. The
mapping of functions is such that Ms(f)(a1,...,an) =
lookup(S)(f(a1,...,an)), if f is uninterpreted. If f is
interpreted Mgs(f)(a1,...,an) = o(f(a1,...,an)). If
plz] = p(z) and p[f(ar,...,an)] = fplar], ..., plan]),
then by the idempotence of can(S), Ms[a], is just
can(S)(p[a]). Lemma o-norm can then be used to show
Ms | o(a) = a. Mg is therefore a g-model. Corre-
spondingly, for a given set of variables X, p§ is defined
so that p3 (z) = can(S)(z) for z € X.

Lemma 5.11 (can o-model) If S = process(T) #
1 and X = vars(T), then Mg,pX = a = b for any
a=beT.

Proof. Showing that Mg,pX = a = b is the
same as showing that can(S)(a) = can(S)(b). The
proof is by induction on 7. In the base case, T
is empty. In the induction step, T = {a = b,T'}
with X' = wars(T'). Let S' = process(T'). By
the induction hypothesis, Msz,pé(,' E T'. With
St = expand(S,a’,b') for a' = can(S')(a) and b’ =
can(S")(b), let Sy = merge(a, b, S'T), hence by merge
equivalence, norm(Sy)(a') = norm(Sy)(b"). By asso-
ciativity of composition, it can be shown that there
is an R such that S = Sy o R and an R’ such that
S = 5" o R'. Hence by monotonicity, norm(S)(a') =
norm(S)(b'). Since S is congruence-closed, by con-
fluence, can(S)(a') = norm(S)(a') and can(S)(b') =
norm(S)(b"). Hence, can(S)(a') = can(S)(d').

It can also be shown that can(S'")(a) = can(S’)(a),
and similarly for b. Therefore, by can composition, we
have can(S)(a) = can(S)(b), and hence Mg, p& |=a =
b. A similar argument shows that for ¢ = d € T, since
can(S")(¢) = can(S")(d), we also have can(S)(c) =
can(S)(d). L]

When T F false is derivable, we know by proof
soundness that there is no o-model satisfying 7' and
hence by the can o-model lemma, process(T) must be
1.

Theorem 5.12 (completeness)
If S = process(T) # L and T + a = b, then
can(S)(a) = can(S)(b).

Proof. Since Mg,pé(E T by can o-model for X =
vars(T), we have by proof soundness that can(S)(a) =
can(S)(b).

Complexity. We have already seen in the termina-
tion argument that the number of iterations of cc in
process is bounded by the number of distinct equiv-
alence classes of terms in dom(S) which is no more
than the number of distinct uninterpreted terms. We
will assume that the solve operation is performed by
an oracle and that there is some fixed bound on the
size of the solution set returned by it. In the case of
linear arithmetic, the solution set has at most one el-
ement. Let n represent the number of distinct terms
appearing in T' which is also a bound on |S| and on
the size of the largest term appearing in S. The com-
position operation can be implemented in linear time.
Thus the entire algorithm has O(n?) steps assuming
that the o and solve operations are length-preserving
and ignoring the time spent inside solve.

6 Conclusions

Shostak’s decision procedure for equality in the
presence of interpreted and uninterpreted functions
is seriously flawed. It is both incomplete and non-
terminating, and hence not a decision procedure. All
subsequent variants of Shostak’s algorithm have been
similarly flawed. This is unfortunate because decision
procedures based on Shostak’s algorithm are at the
core of a number of widely used verification systems.
We have presented a correct algorithm that captures
Shostak’s key insights, and described proofs of termi-
nation, soundness, and completeness.

Acknowledgments: We are especially grateful to
Clark Barrett for instigating this work and correct-
ing several significant errors in earlier drafts, and to
Jean-Christophe Fillidtre for his oCaml implementa-
tion which yielded useful feedback on the algorithm
studied here. The presentation has been substantially
improved thanks to the suggestions of the anonymous
referees and those of Nikolaj Bjgrner, David Cyrluk,
Bruno Dutertre, Ravi Hosabettu, Pat Lincoln, Ursula
Martin, David McAllester, Sam Owre, John Rushby,
and Ashish Tiwari.

References
[BDL96] Clark Barrett, David Dill, and Jeremy Levitt.
Validity checking for combinations of theo-
ries with equality. In Mandayam Srivas and
Albert Camilleri, editors, Formal Methods in
Computer-Aided Design (FMCAD ’96), volume
1166 of Lecture Notes in Computer Science,
pages 187 201, Palo Alto, CA, November 1996.
Springer-Verlag.

[Bjo99] Nikolaj Bjorner.
dures for Temporal Verification.

Stanford University, 1999.
[BRRT99] L. Bachmair, C. R. Ramakrishnan, I.V. Ra-

makrishnan, and A. Tiwari. Normalization via

Integrating Decision Proce-
PhD thesis,

rewrite closures. In International Conference
on Rewriting Techniques and Applications, RTA

‘99, Berlin, 1999. Springer-Verlag.

[BS96] F. Baader and K. Schulz. Unification in the
union of disjoint equational theories: Combin-
ing decision procedures. J. Symbolic Computa-
tion, 21:211 243, 1996.

[CLS96] David Cyrluk, Patrick Lincoln, and N. Shankar.

On Shostak’s decision procedure for combina-
tions of theories. In M. A. McRobbie and J. K.
Slaney, editors, Automated Deduction CADE-
13, volume 1104 of Lecture Notes in Artificial

[DSTS0]

[EHD93)

[FORS01]

[Kap97]

[MT96]

[NOT79]

[NOSO]

[ORS92]

[Sho78]

[Sho84]

[SSMS82]

Intelligence, pages 463 477, New Brunswick,
NJ, July/August 1996. Springer-Verlag.

P.J. Downey, R. Sethi, and R.E. Tarjan. Vari-
ations on the common subexpressions problem.

Journal of the ACM, 27(4):758 771, 1980.

Computer Science Laboratory, SRI Interna-
tional, Menlo Park, CA. User Guide for the
EHDM Specification Language and Verification
System, Version 6.1, February 1993. Three vol-
umes.

J-C. Fillidtre, S. Owre, H. Ruef}; and
N. Shankar. ICS: Integrated canonizer and
solver. In CAV 01: Computer-Aided Verifica-
tion. Springer-Verlag, 2001. To appear.

Deepak Kapur. Shostak’s congruence closure as
completion. In H. Comon, editor, International
Conference on Rewriting Techniques and Appli-
cations, RTA ‘97, number 1232 in Lecture Notes
in Computer Science, pages 23 37, Berlin, 1997.
Springer-Verlag.

Zohar Manna and The STeP Group. STeP:
Deductive-algorithmic verification of reactive
and real-time systems. In Rajeev Alur and
Thomas A. Henzinger, editors, Computer-Aided
Verification, CAV ’96, volume 1102 of Lec-
ture Notes in Computer Science, pages 415—
418, New Brunswick, NJ, July/August 1996.
Springer-Verlag.

G. Nelson and D. C. Oppen. Simplification by
cooperating decision procedures. ACM Trans-
actions on Programming Languages and Sys-
tems, 1(2):245-257, 1979.

G. Nelson and D. C. Oppen. Fast decision pro-
cedures based on congruence closure. Journal
of the ACM, 27(2):356 364, 1980.

S. Owre, J. M. Rushby, and N. Shankar. PVS:
A prototype verification system. In Deepak Ka-
pur, editor, 11th International Conference on
Automated Deduction (CADE), volume 607 of
Lecture Notes in Artificial Intelligence, pages
748 752, Saratoga, NY, June 1992. Springer-
Verlag.

Robert E. Shostak. An algorithm for reasoning
about equality. Communications of the ACM,
21(7):583-585, July 1978.

Robert E. Shostak. Deciding combinations of
theories. Journal of the ACM, 31(1):1-12, Jan-
uary 1984.

R. E. Shostak, R. Schwartz, and P. M. Melliar-
Smith. STP: A mechanized logic for specifica-
In D. Loveland, editor,
6th International Conference on Automated De-
duction (CADE), volume 138 of Lecture Notes
in Computer Science, New York, NY, 1982.
Springer-Verlag.

tion and verification.

