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ness has steadfastly resisted proof. The proof givenby Shostak [Sho84℄ is seriously awed. Despite its sig-ni�ane and popularity, Shostak's original algorithmand its subsequent variations [CLS96, BDL96, Bj�99℄are all inomplete and potentially nonterminating. Weexplain the ideas underlying Shostak's deision proe-dure by presenting a orret version of the algorithmalong with rigorous proofs for its orretness.If the terms in a onjeture of the form T `a = b are onstruted solely from variables and un-interpreted funtion symbols, then ongruene lo-sure [NO80, Sho78, DST80, CLS96, Kap97, BRRT99℄an be used to partition the subterms into equivalenelasses respeting T and ongruene. For example,when ongruene losure is applied tof3(x) = f(x) ` f5(x) = f(x);the equivalene lasses generated bythe anteedent equality are fxg; ff(x); f3(x); f5(x)g;and ff2(x); f4(x)g. This partition learly validates theonlusion f5(x) = f(x).In pratie, a onjeture T ` a = b usually on-tains a mixture of uninterpreted and interpreted fun-tion symbols. Semantially, uninterpreted funtionsare unonstrained, whereas interpreted funtion areonstrained by a theory, i.e., a losure ondition withrespet to onsequene on a set of equalities. An ex-ample of suh an assertion isf(x�1)�1 = x+1; f(y)+1 = y�1; y+1 = x ` false ;where +, �, and the numerals are from the theory oflinear arithmeti, false is an abbreviation for 0 = 1,and f is an uninterpreted funtion symbol. The on-tradition here annot be derived solely by ongruenelosure or linear arithmeti. Linear arithmeti is usedto show that x� 1 = y so that f(x� 1) = f(y) followsby ongruene. Linear arithmeti an then be used toshow that x+ 2 = y � 2 whih ontradits y + 1 = x.



Nelson and Oppen [NO79℄ showed how deision pro-edures for disjoint equational theories ould be om-bined. Sine linear arithmeti and uninterpreted equal-ity are disjoint, this method an be applied to theabove example. First, variable abstration is usedto obtain a theory-wise partition of the term uni-verse, i.e., the subterms of T , a, and b, in a on-jeture T ` a = b. The uninterpreted equality the-ory Q then onsists of the terms ff(u); f(y); w; zg andthe equalities fw = f(u); z = f(y)g, and the lineararithmeti theory L onsists of the terms fu; x; y; x�1; w � 1; x + 1; z + 1; y � 1; y + 1g and the equalitiesfu = x � 1; w � 1 = x + 1; z + 1 = y � 1; y + 1 = xg.The key observation is that one the terms and equal-ities have been partitioned using variable abstration,the two theories L and Q need exhange only equalitiesbetween variables. Thus, linear arithmeti an be usedto derive the equality u = y, from whih ongruenelosure derives w = z, and the ontradition then fol-lows from linear arithmeti. Sine the term universeis �xed in advane, there are only a bounded numberof equalities between variables so that the propagationof information between the deision proedures mustultimately onverge.The Nelson-Oppen ombination proedure has somedisadvantages. The individual deision proeduresmust arry out their own equality propagation and theommuniation of equalities between deision proe-dures an be expensive. The number of equalities isquadrati in the size of the term universe, and eahlosure operation an itself be linear in the size of theterm universe.Shostak's algorithm tries to gain eÆieny by main-taining and propagating equalities within a single on-gruene losure data struture. Equalities involvinginterpreted symbols ontain more information thanuninterpreted equalities. For example, the equalityy+1 = x annot be proessed by merely plaing y+1and x in the same equivalene lass. This equalityalso implies that y = x � 1, y � x = �1, x � y = 1,y + 3 = x+ 2, and so on. In order to avoid proessingall these variations on the given equality, Shostak re-strits his attention to solvable theories where an equal-ity of the form y + 1 = x an be solved for x to yieldthe solution x = y + 1. If the theories onsidered arealso anonizable, then there is a anonizer � suh thatwhenever an equality a = b is valid, then �(a) � �(b),where � represents syntati equality. A anonizer forlinear arithmeti an be de�ned to plae terms into anordered sum-of-monomials form. One a solved formsuh as x = y+1 has been obtained, all the other on-sequenes a = b of this equality an be obtained by�(a0) = �(b0) where a0 and b0 are the results of sub-

stituting the solution for x into a and b, respetively.For example, substituting the solution into y = x � 1yields y = y + 1� 1, and the subsequent anonizationstep yields y = y.The notion of a solvable and anonizable theory isextended to equalities involving a mix of interpretedand uninterpreted symbols by treating uninterpretedterms as variables. For the onjeture,f(x�1)�1 = x+1; f(y)+1 = y�1; y+1 = x ` false ;Shostak's algorithm would solve the equality f(x�1)�1 = x+ 1 as f(x� 1) = x+ 2, the equality f(y) + 1 =y � 1 as f(y) = y � 2, and y + 1 = x as x = y +1. Now, f(x � 1) and f(y) are ongruent beause theanonial form for x � 1 obtained after substitutingthe solution x = y + 1 is y. By ongruene losure,the equivalene lasses of f(x � 1) and f(y) have tobe merged. In Shostak's original algorithm the urrentrepresentatives of these equivalene lasses, namely x+2 and y � 2 are merged. The resulting equality x +2 = y � 2 is �rst solved to yield x = y � 4. This isinorret beause we already have a solution for x asx = y+1 and x should therefore have been eliminated.The new solution x = y�4 ontradits the earlier one,but this ontradition goes undeteted by Shostak'salgorithm. This example an be easily adapted to shownontermination. Considerf(v) = v; f(u) = u� 1; u = v ` false :The merging of u and v here leads to the detetion ofthe ongruene between f(u) and f(v). This leads tosolving of u� 1 = v as u = v + 1. Now, the algorithmmerges v and v+1. Sine v ours in v+1, this ausesv + 1 to be merged with v + 2, and so on.An earlier paper by Cyrluk, Linoln, andShankar [CLS96℄ gave an explanation (with minor or-retions) of Shostak's algorithm for ongruene lo-sure and its extension to interpreted theories. Thoughproofs of orretness for the ombination algorithm arebriey skethed, the algorithm presented there is bothinomplete and nonterminating. Other published vari-ants of Shostak's algorithm used in SVC [BDL96℄ andSTeP [Bj�99℄ inherit these problems.In this paper, we present an algorithm that �xes theinompleteness and nontermination in earlier versionsof Shostak's algorithms. In the above example, the in-ompleteness is �xed by substituting the solution forx into the terms representing the di�erent equivalenelasses. Thus, when f(x� 1) and f(y) are deteted tobe ongruent, their equivalene lasses are representedby y+3 and y�2, respetively. The resulting equalityy+3 = y�2 easily yields a ontradition. The nonter-mination is �xed by ensuring that no new mergeable



terms, suh as v+2, are reated during the proessingof an axiom in T . Our algorithm is presented as a sys-tem of transformations on a set of equalities in order toapture the key insights underlying its orretness. Weoutline rigorous proofs for the termination, soundness,and ompleteness of this proedure. The algorithmas presented here emphasizes logial larity over eÆ-ieny, but with suitable optimizations and data stru-tures, it an serve as the basis for an eÆient imple-mentation. SRI's ICS (Integrated Canonizer/Solver)deision proedure pakage [FORS01℄ is diretly basedon the algorithm studied here.Setion 2 introdues the theory of equality, whihis augmented in Setion 3 with funtion symbols froma anonizable and solvable theory. Setion 3 also in-trodues the basi building bloks for the deisionproedure. The algorithm itself is desribed in Se-tion 4 along with some example hand-simulations. Theproofs of termination, soundness, and ompleteness areoutlined in Setion 5.2 BakgroundWith respet to a signature onsisting of a setof funtion symbols F and a set of variables V , aterm is either a variable x from V or an appliationf(a1; : : : ; an) of an n-ary funtion symbol f from Fto n terms a1; : : : ; an, where 0 � n. The metavari-able onventions are that u, v, x, y, and z range overvariables, and a, b, , d, and e range over terms. Themetavariables R, S, and T , range over sets of equali-ties. The metatheoreti assertion a � b indiates thata and b are syntatially idential terms. Let vars(a),vars(a = b), and vars(T ) return the variables our-ring in a term a, an equality a = b, and a set of equal-ities T , respetively. The operation ddaee is de�ned toreturn the set of all subterms of a.Some of the funtion symbols are interpreted , i.e.,they have a spei� interpretation in some given theory� , while the remaining funtion symbols are uninter-preted, i.e., an be assigned arbitrary interpretations.A term f(a1; : : : ; an) is interpreted (uninterpreted) iff is interpreted (uninterpreted). A term e is non-interpreted if it is either a variable or an uninterpretedterm. We say that a term a ours interpreted in a terme if there is an ourrene of a in e that is not prop-erly within an uninterpreted subterm of e. Likewise, aours uninterpreted in e if a is a proper subterm of anuninterpreted subterm of e. solvables(a) denotes theset of outermost non-interpreted subterms of a, i.e.,

those that do not our uninterpreted in a.solvables(f (a1 ; : : : ; an )) = [i solvables(ai );if f is interpretedsolvables(a) = fag; otherwiseThe theory of equality deals with sequents of theform T ` a = b. We will insist that these sequents besuh that vars(a = b) � vars(T ). The proof theoryfor equality is given by the following inferene rules.1. Axiom: T ` a = b , for a = b 2 T .2. Reexivity: T ` a = a .3. Symmetry: T ` a = bT ` b = a .4. Transitivity: T ` a = b T ` b = T ` a =  .5. Congruene:T ` a1 = b1 : : : T ` an = bnT ` f(a1; : : : ; an) = f(b1; : : : ; bn) .The semantis for terms is given by a model Mover a domain D and an assignment � for the vari-ables so that M [[x℄℄� = �(x) and M [[f(a1; : : : ; an)℄℄� =M(f)(M [[a1℄℄�; : : : ;M [[an℄℄�), and M [[a℄℄� 2 D for alla. We say that M;� j= a = b i� M [[a℄℄� = M [[b℄℄�,and M j= a = b i� M;� j= a = b for all assign-ments � over vars(a = b). We write M;� j= Swhen 8a; b : a = b 2 S � M;� j= a = b, andM;� j= T ` a = b when (M;� j= T ) � (M;� j= a = b).3 Canonizable and Solvable TheoriesShostak's algorithm goes beyond ongruene losureby deiding equality in the presene of funtion sym-bols that are interpreted in a theory � [Sho84, CLS96℄.The algorithm is targeted at anonizable and solvabletheories, i.e., theories that are equipped with solversand anonizers as outlined below. We write j=� a = bto indiate that a = b is valid in theory � . The anon-izer and solver are �rst desribed for pure � -terms, i.e.,without any uninterpreted funtion symbols, and thenextended to uninterpreted terms by regarding these asvariables.De�nition 3.1 A theory � is anonizable if there is aanonizer � suh that



1. j=� a = b i� �(a) � �(b).2. �(x) � x.3. vars(�(a)) � vars(a).4. �(�(a)) � �(a).5. If �(a) � f(b1; : : : ; bn), then �(bi) � bi for 1 �i � n.For example, a anonizer � for the theory of lineararithmeti an be de�ned to transform expressions intoan ordered-sum-of-monomials normal form. A term ais said to be anonial if �(a) � a.De�nition 3.2 A model M is a �-model if M j= a =�(a) for any term a, and M 6j= a = b for distintanonial, variable-free terms a and b.De�nition 3.3 A set of equalities S and a = b are�-equivalent i� for all �-models M and assignments �over the variables in a and b, M;� j= a = b i� thereis an assignment �0 extending �, over the variables inS; a; and b, suh that M;�0 j= S.De�nition 3.4 A anonizable theory is solvable ifthere is an operation solve suh that solve(a = b) = ?if a = b is unsatis�able in any �-model, or S =solve(a = b) for a set of equalities S suh that1. S is a set of n equalities of the form xi = ei for0 � n where for eah i, 0 < i � n,(a) xi 2 vars(a = b).(b) xi 62 vars(ej ), for j, 0 < j � n.() xi 6� xj , for i 6= j and 0 < j � n.(d) �(ei) � ei.2. S and a = b are �-equivalent.A solver for linear arithmeti, for example, takes anequation of the form+ a1x1 + : : :+ anxn = d+ b1x1 + : : :+ bnxn;where a1 6= b1, and returnsx1 = �( (d� )=(a1 � b1)+ ((b2 � a2)=(a1 � b1)) � x2+ : : :+ ((bn � an)=(a1 � b1)) � xn):In general, solve(a = b) may ontain variables that donot our in a = b, and vie-versa.There are a number of interesting anonizable andsolvable theories inluding linear arithmeti, the the-ory of tuples and projetions, algebrai datatypes like

lists, set algebra, and the theory of �xed-sized bitve-tors. In many ases, the anonizability and solvabil-ity of the union of theories (with disjoint signatures)follows from the anonizability and solvability of itsonstituent theories.1 We do not address modularityissues here but instead assume that we already have aanonizer and solver for a single ombined theory.The solvers and anonizers haraterized above areintended to work in the absene of uninterpreted fun-tion symbols. They are adapted to terms ontaininguninterpreted subterms by treating these subterms asvariables. Canonizers are applied to terms ontaininguninterpreted subterms by renaming distint uninter-preted subterms with distint new variables. For agiven term a, let  be a bijetive mapping between aset of variables X that do not appear in a and theuninterpreted subterms of a. The appliation of a sub-stitution  to a term a, written [a℄, is de�ned so that[a℄ = f([a1℄; : : : ; [an℄) if a � f(a1; : : : ; an), wheref is interpreted. If a is in the domain of , then[a℄ = (a), and otherwise, [a℄ = a. Then �(a) is[�(�1[a℄)℄.For solving equalities ontaining uninterpretedterms, we introdue, as with �, a bijetive map  be-tween a set of variables X not ourring in a or b, andthe uninterpreted subterms of a and b, suh thatsolve(a = b) = [solve(�1 [a℄ = �1 [b℄)℄ .When uninterpreted terms are handled as above, theonditions in De�nitions 3.1 and 3.4 must be suitablyadapted by using solvables(a) instead of vars(a).The proof theory for equality is augmented for an-onizable, solvable theories by the proof rules:1. Canonization: T ` a = �(a) , for any term a.2. Solve: T ` a = b T [ S `  = dT `  = d if S =solve(a = b) 6= ? and vars( = d) � vars(T ).3. Solve-?: T ` a = bT ` false , if solve(a = b) = ?.A sequent T `  = d is derivable if there is a proofof T `  = d using one of the inferene rules: axiom,reexivity, symmetry, transitivity, ongruene, anon-ization, solve, or solve-?. We say that T ` S is deriv-able if T `  = d is derivable for every  = d in S.The sequent T; S `  = d is just T [ S `  = d. Theweakening and ut lemmas below are easily veri�ed.1The general result on ombining solvers laimed byShostak [Sho84℄ is inorret, but there are some restrited re-sults on ombining equational uni�ers [BS96℄ that an be appliedhere.



Lemma 3.5 (weakening) If T � T 0 and T ` a = bis derivable, then T 0 ` a = b is derivable.Lemma 3.6 (ut) If T 0 ` T and T ` a = b is deriv-able, then T 0 ` a = b is derivable.Theorem 3.7 (proof soundness) If T ` a = b isderivable, then for any �-model M and assignment �over vars(T ), M;� j= T ` a = b.Proof. By indution on the derivation of T ` a =b. The soundness of the solve rules follows from theonditions in De�nition 3.4.A set of equalities S is said to be funtional (ina left-to-right reading of the equality) if whenever a =b 2 S and a = b0 2 S, b � b0. For example, the solutionset returned by solve is funtional. A funtional setof equalities an be treated as a substitution and theassoiated operations are de�ned below. S(a) returnsthe solution for a if it exists in S, and a itself, otherwise.If a = b is in S for some b, then a is in the domain ofS, i.e., dom(S ).S(a) = � b if a = b 2 Sa otherwisedom(S ) = fa j 9b: a = b 2 Sg:The operation a S� b heks if a is ongruent to bin S, i.e., a � f(a1; : : : ; an), b � f(b1; : : : ; bn), andS(ai) � S(bi) for 1 � i � n. A set of equalities S issaid to be ongruene-losed when for any terms a andb in dom(S ) suh that a S� b, we have S(a) � S(b).S[a℄ replaes a subterm b in a by S(b), where b 2solvables(a).S[f(a1; : : : ; an)℄ = f(S[a1℄; : : : ; S[an℄);if f is interpretedS[a℄ = S(a); otherwise.norm(S )(a) is a normal form for a with respet to Sand is de�ned as �(S[a℄). The operation norm does notappear in Shostak's algorithm and is the key elementof our algorithm and its proof. With S �xed, we use âas a syntati abbreviation for norm(S )(a).norm(S )(a) = �(S[a℄):Lemma 3.8 If solve(a = b) = S 6= ?, thennorm(S )(a) � norm(S )(b).Proof. By de�nitions 3.3 and 3.4(2), for any �-model M and assignment �0, we have M;�0 j= S ()M;�0 j= a = b. Let a0 � S[a℄ and b0 � S[b℄. By indu-tion on a,M;�0 j= a = a0, and similarlyM;�0 j= b = b0.

Hene,M;�0 j= a0 = b0. Then, sineM is a �-model, byDe�nition 3.2, it must be the ase that �(a0) � �(b0),and therefore norm(S )(a) � norm(S )(b).The de�nition of the lookup operation uses Hilbert'sepsilon operator, indiated by the keyword when , toreturn S(f(b1; : : : ; bn)) when b1; : : : ; bn satisfying thelisted onditions an be found. If no suh b1; : : : ; bnan be found, then lookup(S )(a) returns a itself. Weshow later that the lookup operation is used only whenthe results of this hoie are deterministi.lookup(S )(f (a1 ; : : : ; an )) = S(f(b1; : : : ; bn));when b1 ; : : : ; bn :f(b1; : : : ; bn) 2 dom(S );and ai � S(bi);for 1 � i � nlookup(S )(a) = a; otherwise.an(S )(a) is a anonial form in whih any uninter-preted subterm e that is ongruent to a known left-hand side e0 in S is replaed by S(e0). It is analogousto the anon operation in Shostak's algorithm. We usea as a syntati abbreviation for an(S )(a).an(S )(f (a1 ; : : : ; an )) = lookup(S )(f (a1 ; : : : ; an ));if f is uninterpretedan(S )(f (a1 ; : : : ; an )) = �(f(a1; : : : ; an));if f is interpretedan(S )(a) = S(a); otherwise:Lemma 3.9 (�-norm) If S is funtional, thennorm(S )(�(a)) � â and an(S )(�(a)) � a.Proof. We know that ` �(a) = a. Then for b0 =S[�(a)℄ and b = S[a℄, the equality b0 = b is valid inevery �-model. Then by De�nition 3.2, �(S[�(a)℄) ��(S[a℄), and hene the �rst part of the theorem.The reasoning in the seond part is similar. If we letR = fb = b j b 2 ddaeeg, then an(S )(a) � norm(R)(a).We an therefore use the �rst part of the theorem toestablish the seond part.We next introdue a omposition operation formerging the results of a solve operation into an existingsolution set. When RÆS is used, S must be funtional,and the result ontains a = b̂ for eah equality a = bin R in addition to the equalities in S.R Æ S = fa = b̂ j a = b 2 Rg [ S:The following lemmas about omposition are givenwithout proof.Lemma 3.10 (norm deomposition) If R [ S isfuntional, thennorm(R Æ S )(a) � norm(S )(norm(R)(a)):



proess(fa = b;Tg) = assert(a = b; proess(T ))proess(;) = ;:assert(a = b;?) = ?assert(a = b;S ) = (merge(a ; b;S+)); where;S+ = expand(S ; a ; b):expand(S ; a; b) = S [ fe = e j e 2 new(S ; a; b)g:new(S ; a; b) = dda = bee � dom(S ):merge(a; b;S ) = ?; if solve(a = b) = ?merge(a; b;S ) = S Æ solve(a = b); otherwise:(?) = ?(S ) = (merge(S (a);S (b);S ));when a; b :a; b 2 dom(S )a S� b; and S(a) 6� S(b)(S ) = S; otherwise.Figure 1: Main Proedure: proessLemma 3.11 (assoiativity of omposition) IfQ [ R [ S is funtional, then(Q ÆR) Æ S = Q Æ (R Æ S):Lemma 3.12 (monotoniity) If R[S is funtional,then if R(a) � R(b), then (R Æ S)(a) � (R Æ S)(b), forany a and b.4 An Algorithm for Deiding Equalityin the Presene of TheoriesWe next present an algorithm for deiding T `  =d for terms ontaining uninterpreted funtion sym-bols and funtion symbols interpreted in a anoniz-able and solvable theory. The algorithm for verify-ing T `  = d heks that an(S )() � an(S )(d),where S = proess(T ). The proess proedure shownin Figure 1, is written as a funtional program. It isa mathematial desription of the algorithm and notan optimized implementation. The state of the algo-rithm onsists of a set of equalities S whih holds thesolution set. We demonstrate as an invariant that S isfuntional. Two terms a and b in dom(S ) are in thesame equivalene lass aording to S if S(a) � S(b).The operation proess(T ) returns a �nal solutionset by starting with an empty solution set and su-

essively proessing eah equality a = b in T by in-voking assert(a = b;S ), where S is the state as re-turned by the reursive all of proess . The invoationof assert(a = b;S ) is exeuted by �rst reduing a andb to their respetive anonial forms a and b. Next,S is expanded to inlude e = e for eah subterm eof a = b where  62 dom(S ). This preproessing stepensures that S ontains entries orresponding to anyterms that might be needed in the ongruene losurephase in the operation .2 The merge operation thensolves the equality a = b to get a solution3 S0, andreturns S Æ S0 as the new value for the state S. Aswe will show, this new value aÆrms a = b, but it isnot ongruene-losed and hene does not ontain allthe onsequenes of the assertion a = b. The step(S ) omputes the ongruene losure of S by repeat-edly piking a pair of ongruent terms a and b fromdom(S ) suh that S(a) 6� S(b) and merging them us-ing merge(S (a);S (b);S ). Eventually either a ontra-dition is found or all ongruent left-hand sides in Sare merged and the  operation terminates returninga ongruene-losed solution set.The above algorithm �xes the nontermination andinompleteness problems in Shostak's algorithm by in-troduing the norm operation and the omposition op-erator R Æ S to fold in a solution. The norm opera-tion ensures that no new uninterpreted terms are in-trodued during ongruene losure in the funtion ,as is needed to guarantee termination. The omposi-tion operator R Æ S ensures that any newly generatedsolution S is immediately substituted into R and thealgorithm never attempts to �nd a solution for an al-ready solved non-interpreted term.We �rst illustrate the algorithm on some examples.The �rst example ontains no interpreted symbols.Example 4.1 Consider the goal f5(x) = x; f3(x) =x ` f(x) = x. The value of S after the base ase is;. After the preproessing of f3(x) = x in assert , Sis fx = x; f(x) = f(x); f2(x) = f2(x); f3(x) = f3(x)g:After merging f3(x) and x, S is fx = x; f(x) =f(x); f2(x) = f2(x); f3(x) = xg: When f5(x) = xis preproessed in assert , an(S )(f 5 (x )) yields f2(x)sine S(f3(x)) � x, and S is left unhanged. Whenf2(x) and x have been merged, S is fx = x; f(x) =f(x); f2(x) = x; f3(x) = xg: Now f(x) S� f3(x)and hene f(x) and x are merged so that S is nowfx = x; f(x) = x; f2(x) = x; f3(x) = xg:2Atually, the interpreted subterms of a = b need not all beinluded in dom(S). Only those that are immediate subterms ofuninterpreted subterms in a = b are needed.3Any variables ourring in solve(a = b) and not in vars(a =b) must be fresh, i.e., they must not our in the original on-jeture or be generated by any other invoation of solve.



The onlusion f(x) = x easily follows sinean(S )(f (x )) � x � an(S )(x ).Example 4.2 Consider y + 1 = x; f(y) + 1 = y �1; f(x� 1)� 1 = x+1 ` false whih is a permutationof our earlier example. Starting with S � ; in thebase ase, the preproessing of f(x � 1) � 1 = x + 1auses the equation to be plaed into anonial formas �1 + f(�1 + x) = 1 + x and S is set tof 1 = 1;�1 = �1; x = x;�1 + x = �1 + x;f(�1 + x) = f(�1 + x); 1 + x = 1 + xg:Solving �1+f(�1+x) = 1+x yields f(�1+x) = 2+x,and S is set tof 1 = 1;�1 = �1; x = x;�1 + x = �1 + x;f(�1 + x) = 2 + x; 1 + x = 1 + xg:No unmerged ongruenes are deteted. Next, f(y) +1 = y � 1 is asserted. Its anonial form is 1 + f(y) =�1+ y, and one this equality is asserted, the value ofS is f 1 = 1;�1 = �1; x = x;�1 + x = �1 + x;f(�1 + x) = 2 + x; 1 + x = 1 + x; y = y;f(y) = �2 + y;�1 + y = �1 + y;1 + f(y) = �1 + yg:Next y + 1 = x is proessed. Its anonial form is1+ y = x and the equality 1+ y = 1+ y is added to S.Solving y + 1 = x yields x = 1 + y, and S is reset tof 1 = 1;�1 = �1; x = 1 + y;�1 + x = y;f(�1 + x) = 3 + y; 1 + x = 2 + y; y = y;f(y) = �2 + y;�1 + y = �1 + y;1 + f(y) = �1 + y; 1 + y = 1 + yg:The ongruene lose operation  detets the ongru-ene f(1� y) S� f(x) and invokes merge on 3 + y and�2 + y. Solving this equality 3 + y = �2 + y yields ?returning the desired ontradition.5 AnalysisWe desribe the proofs of termination, soundness,and ompleteness, and also present a omplexity anal-ysis.Key Invariants. The merge operation is learly theworkhorse of the proedure sine it is invoked fromwithin both assert and . Let U(X) represent the setfa 2 X j a uninterpretedg of uninterpreted terms inthe set X . Let A be solvables(a), B be solvables(b),

and S0 = merge(a; b;S ), then assuming U(A [ B) �dom(S ) and for all  2 A [ B, S() � , the followingproperties hold of S0 if they hold of S:1. Funtionality.2. Subterm losure: S is subterm-losed if for anya 2 dom(S ), ddaee � dom(S ).3. Range losure: S is range-losed if for any a 2dom(S ), U(solvables(S (a))) � dom(S ), and forany  2 solvables(S (a)), S() � .4. Norm losure: S is norm-losed if S(a) �norm(S )(a) for a in dom(S ). This of ourse holdstrivially for uninterpreted terms a.5. Idempotene: S is idempotentif S[S(a)℄ � S(a), norm(S )(S (a)) � S (a), andnorm(S )(norm(S )(a)) � norm(S )(a).These properties an be easily established by in-spetion. Sine whenever merge(a; b;S ) is invoked inthe algorithm, the arguments do satisfy the onditionsU(A [ B) � dom(S ) and for all  2 A [ B, S() � ,it then follows that these properties are also preservedby assert and , and therefore hold of proess(T ). Weassume below that these invariants hold of S wheneverthe metavariable S is used with or without subsriptsor supersripts.Lemma 5.1 (merge equivalene) LetA = solvables(a) and B � solvables(b). Given thatU(A [ B) � dom(S ) and for all  2 A [ B, S() � ,if S0 = merge(a; b;S ) 6= ?, then1. norm(S 0)(a) � norm(S 0)(b).2. U(dom(S 0)) = U (dom(S )).Proof. Let R � solve(a = b). By de�nition,merge(a; b;S ) � S ÆR. By Lemma 3.8, norm(R)(a) �norm(R)(b). Sine S() �  for  2 A [ B,norm(S )(a) � a and norm(S )(b) � b. Hene, by normdeomposition, we have norm(S 0)(a) � norm(S 0)(b).By De�nition 3.4, dom(R) � A [ B , heneU(dom(S 0)) = U (dom(S )).Termination. We de�ne #(S) to represent thenumber of distint equivalene lasses partitioningU(dom(S )) as given by P (S).E(S)(a) = fb 2 U(dom(S )) j S (b) � S (a)gP (S) = fE(S)(a) j a 2 U(dom(S ))g#(S) = jP (S)j



The de�nition of (S ) terminates beause the mea-sure #(S) dereases with eah reursive all. Ifin the de�nition of , merge(S (a);S (b);S ) = ?,then learly  terminates. Otherwise, let S0 =merge(S (a);S (b);S ) 6= ?, for a and b in dom(S ) suhthat S(a) 6� S(b) and a S� b. In this ase a and b mustbe uninterpreted terms sine for interpreted terms aand b, if a S� b, then S(a) � S(b) by norm losure. Bymerge equivalene, norm(S 0)(S (a)) � norm(S 0)(S (b))and U(dom(S 0)) = U (dom(S )). By monotoniity,for any  and d suh that S() � S(d), we haveS0() � S(d), and therefore #(S0) � #(S). However,by norm losure, S0(a) � S0(b) so that #(S0) < #(S).Soundness. The following lemmas establish thesoundness of the operations norm and an with re-spet to S. Substitution soundness and an soundnessare proved by a straightforward indution on a, andnorm soundness is a simple onsequene of substitu-tion soundness .Lemma 5.2 (substitution soundness)If vars(a) � vars(T [ S ), then T; S ` a = a0 is deriv-able, for a0 � S[a℄.Lemma 5.3 (norm soundness)If vars(a) � vars(T [ S ), then T; S ` a = â is deriv-able.Lemma 5.4 (an soundness)If vars(a) � vars(T [ S ), then T; S ` a = �a is deriv-able.Lemma 5.5 (merge soundness)If S0 = merge(a; b;S ) 6= ?, then if T; S ` a = b, andT; S0 `  = d with vars( = d) � vars(T [ S ), thenT; S `  = d. Otherwise, merge(a; b;S ) = ?, andT; S ` ?.Proof. If S0 = merge(a; b;S ) 6= ?, then let R =solve(a = b). By norm soundness, S;R ` S0, andhene by ut, T; S;R `  = d is derivable. By the solverule, T; S `  = d is derivable.If merge(a; b;S ) = ?, then by similar reasoning us-ing the solve-? rule, T; S ` false is derivable.Lemma 5.6 ( soundness) If S0 = (S ) 6= ?,T; S0 ` a = b for vars(a = b) � vars(T ;S ), thenT; S ` a = b is derivable. Otherwise, (S ) = ?, andS ` false is derivable.Proof. By omputation indution on the de�nitionof  using merge soundness .

Lemma 5.7 (proess soundness)If S = proess(T1 ) 6= ?, T1 � T2, and T2; S `  =d for vars( = d) � vars(T2 ), then T2 `  = d isderivable. Otherwise, proess(T1 ) = ?, and T1 ` falseis derivable.Proof. By indution on the length of T1. In thebase ase, S is empty and the theorem follows triv-ially. In the indution step, with T1 = fa = b; T 01g andS0 = proess(T 01 ), we have the indution hypothesisthat T2 `  = d is derivable if T2; S0 `  = d is deriv-able, for any , d suh that vars( = d) � vars(T2 ).We know by an soundness that T2; S0 ` a = a andT2; S0 ` b = b are derivable. When S' is augmentedwith identities over subterms of a and b to get S0+, wehave the derivability of T2; S0 ` S0+. By  soundness,we then have the derivability of T2; S0+ `  = d fromthat of T2; S `  = d. The derivability of T2; S0 `  = dthen follows by ut from that of T2; S0+ `  = d, andwe get the onlusion T2 `  = d by the indutionhypothesis.A similar indution argument shows that whenproess(T1 ) = ?, then T2 ` false .Theorem 5.8 (soundness) If S = proess(T ) 6= ?,vars(a = b) � vars(T ), and a � b, then T ` a = b isderivable. Otherwise, proess(T ) = ?, and T ` falseis derivable.Proof. If S = proess(T ) 6= ?, then by an sound-ness, T; S ` a = a and T; S ` b = b are derivable.Hene, by transitivity and symmetry, T; S ` a = b isderivable. Therefore, by proess soundness, T ` a = bis derivable.If proess(T ) = ?, then already by proess sound-ness, T ` false .Completeness. We show that when S = proess(T )then an(S ) is a �-model satisfying T . When this isthe ase, ompleteness follows from proof soundness .In proving ompleteness, we exploit the property thatthe output of proess is ongruene-losed.Lemma 5.9 (onuene)If S is ongruene-losed and U(ddaee) � dom(S ), thenan(S )(a) � norm(S )(a).Proof. The proof is by indution on a. In thebase ase, when a is a variable, an(S )(a) � S (a) �norm(S )(a).If a is uninterpreted and of the form f(a1; : : : ; an),then an(S )(a) � lookup(S )(f (a1 ; : : : ; an )). Sine S issubterm-losed, by the indution hypothesis and normlosure, we have ai � âi � S(ai) for 0 < i � n. Then



there must be some b of the form f(b1; : : : ; bn) suhthat S(bi) � S(ai), for 0 < i � n, sine a itself is suha b. Then by ongruene losure and norm losure,a � S(b) � S(a) � â, sine a S� b.If a is interpreted, by the indution hypothe-sis and subterm losure, a � �(f(a1; : : : ; an)) ��(f(â1; : : : ; ân)) � â.Lemma 5.10 (an omposition) If S0 = S ÆR andS0 is ongruene-losed, then an(S 0)(an(S )(a)) �an(S 0)(a).Proof. By indution on a. When ais a variable. an(S )(a) � S (a). If a 62dom(S ), then S(a) = a, and hene the onlu-sion. Otherwise, by range-losure, U(ddS(a)ee) �dom(S ) � dom(S 0). Then, by onuene, normdeomposition, and idempotene, an(S 0)(S (a)) �norm(S 0)(S (a)) � norm(R)(norm(S )(S (a))) �norm(R)(norm(S )(a)) � norm(S 0)(a) � an(S 0)(a).In the indution step, let a � f(a1; : : : ; an). If a isuninterpreted, then iff(a1; : : : ; an) S� f(b1; : : : ; bn)for some f(b1; : : : ; bn) 2 dom(S ), then a �S(f(b1; : : : ; bn)). The reasoning used in the basease an then be repeated to derive the onlusion.Otherwise, a � f(a1; : : : ; an) and by the indutionhypothesis and the de�nition of an, an(S 0)(a) �lookup(S 0)(f (an(S 0)(a1 ); : : : ; an(S 0)(an ))) �an(S 0)(a).When a is interpreted, by the indution hypothesisand the �-norm lemma,an(S 0)(a)� an(S 0)(�(f (a1 ; : : : ; an )))� �(f(an(S 0)(a1 ); : : : ; an(S 0)(an )))� an(S 0)(a):Lemma an omposition with ; for R yields theidempotene of an(S ) for ongruene-losed S so thatwe an de�ne a �-model MS in terms of an(S ). Thedomain D of MS onsists of fajan(S )(a) = ag. Themapping of funtions is suh thatMS(f)(a1; : : : ; an) =lookup(S )(f (a1; : : : ; an)), if f is uninterpreted. If f isinterpreted MS(f)(a1; : : : ; an) = �(f(a1; : : : ; an)). If�[x℄ = �(x) and �[f(a1; : : : ; an)℄ = f(�[a1℄; : : : ; �[an℄),then by the idempotene of an(S ), MS[[a℄℄� is justan(S )(�[a℄). Lemma �-norm an then be used to showMS j= �(a) = a. MS is therefore a �-model. Corre-spondingly, for a given set of variables X , �XS is de�nedso that �XS (x) = an(S )(x ) for x 2 X .

Lemma 5.11 (an �-model) If S = proess(T ) 6=? and X = vars(T ), then MS; �XS j= a = b for anya = b 2 T .Proof. Showing that MS ; �XS j= a = b is thesame as showing that an(S )(a) � an(S )(b). Theproof is by indution on T . In the base ase, Tis empty. In the indution step, T = fa = b; T 0gwith X 0 = vars(T 0). Let S0 = proess(T 0). Bythe indution hypothesis, MS0 ; �X0S0 j= T 0. WithS0+ = expand(S ; a 0; b0) for a0 � an(S 0)(a) and b0 �an(S 0)(b), let S0 = merge(a; b;S 0+), hene by mergeequivalene, norm(S0 )(a 0) � norm(S0 )(b0). By asso-iativity of omposition, it an be shown that thereis an R suh that S = S0 Æ R and an R0 suh thatS = S0+ Æ R0. Hene by monotoniity, norm(S )(a 0) �norm(S )(b0). Sine S is ongruene-losed, by on-uene, an(S )(a 0) � norm(S )(a 0) and an(S )(b0) �norm(S )(b0). Hene, an(S )(a 0) � an(S )(b0).It an also be shown that an(S 0+)(a) � an(S 0)(a),and similarly for b. Therefore, by an omposition, wehave an(S )(a) � an(S )(b), and heneMS ; �XS j= a =b. A similar argument shows that for  = d 2 T 0, sinean(S 0)() � an(S 0)(d), we also have an(S )() �an(S )(d).When T ` false is derivable, we know by proofsoundness that there is no �-model satisfying T andhene by the an �-model lemma, proess(T ) must be?.Theorem 5.12 (ompleteness)If S = proess(T ) 6= ? and T ` a = b, thenan(S )(a) � an(S )(b).Proof. Sine MS; �XS j= T by an �-model for X =vars(T ), we have by proof soundness that an(S )(a) �an(S )(b).Complexity. We have already seen in the termina-tion argument that the number of iterations of  inproess is bounded by the number of distint equiv-alene lasses of terms in dom(S ) whih is no morethan the number of distint uninterpreted terms. Wewill assume that the solve operation is performed byan orale and that there is some �xed bound on thesize of the solution set returned by it. In the ase oflinear arithmeti, the solution set has at most one el-ement. Let n represent the number of distint termsappearing in T whih is also a bound on jSj and onthe size of the largest term appearing in S. The om-position operation an be implemented in linear time.Thus the entire algorithm has O(n2) steps assumingthat the � and solve operations are length-preservingand ignoring the time spent inside solve .
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