
Toward Automatic Synthesis of Security Protocols∗

Hassen Säıdi
System Design Laboratory

SRI International
Menlo Park, CA 94025, USA

www.sdl.sri.com/people/saidi/
saidi@sdl.sri.com

Abstract

The use of cryptographic protocols that enforce a vari-
ety of security properties has become more and more
important in every day’s Internet transactions. The task
of designing such protocols is tedious and error prone:
many protocols that were believed to be correct for
years have been shown to contain subtle errors. More-
over, it is difficult to design protocols that are adapt-
able to different constraints on their execution environ-
ment such as CPU power and bandwith. Security pro-
tocols can be built from simple communication prim-
itives provided by standard protocols, and from cryp-
tographic primitives. The rules of the protocol, can
be derived from a high-level specification of what the
protocol is designed to achieve, and under what hard-
ware and software constraints it will be used. It has
been shown that most of these specifications are best
captured from a knowledge and belief-based viewpoint.
In this work, we propose a technique allowing the au-
tomatic synthesis of security protocols that satisfy, by
construction, their logical specification. Such specifica-
tions can be expressed using high-level communication
primitives. Primitives have security and cryptographic
attributes that include confidentiality, integrity, authen-
tication, and nonrepudiation, and can be implemented
using public and secret cryptography.

Introduction
The evolution of the Internet through the last three decades
is an indication of its future evolution into an infrastructure
for service delivery. This evolution requires building an en-
tirely new class of protocols, networks, and infrastructures
that will search, access, provide, and assemble services. In
this highly dynamic environment, and with the increasing
number of Web-enabled devices that operate under differ-
ent environments and with different computation and com-
munication capabilities, it will be hard to provide standards
for many of the possible applications. We expect that pro-
gram synthesis tools will play an important role in building
bridges between applications and services, and generating

∗This research was partially supported by DARPA/AFRL con-
tract F30602-00-C-0087
Copyright c© 2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

services on the fly by assembling, adapting, and synthesiz-
ing basic components. Moreover, the synthesis approach
provides greater confidence in the correctness of the gen-
erated applications which would otherwise have to be care-
fully designed, tested, and verified, which is a tedious and
error prone task.

Cryptographic protocols are an important component in
this new architecture, and are designed to provide a secure
communication capability over an insecure network in order
to protect business transactions, individual privacy, and na-
tional critical resources. Cryptographic communication pro-
tocols are the basis of security in many distributed systems,
and it is therefore essential to ensure that these protocols
function correctly and do not exhibit vulnerabilities that can
be maliciously exploited. In every day’s Internet transac-
tions, secure communication achieving authentication, fair
exchange, nonrepudiation, and contract signing, protocols
must be carefully designed, tested and verified. However,
for new application, the task of designing such protocols is
tedious and error prone. Protocols may operate under dif-
ferent CPU and bandwidth constraints. Moreover, protocols
must be adaptable to changes in security policies such as the
length of encryption keys or a limit on the lifetime of a cer-
tificate. It is therefore difficult to design such protocols to be
adaptable to these different constraints.

Security protocols can be built from simple communica-
tion primitives provided by standard communication proto-
cols, and from cryptographic primitives. The rules of the
protocol, that is, message content, can be derived from a
high-level specification of what the protocol is designed to
achieve. We believe that when such a higher-level specifi-
cation is expressed in a logical formalism to which one can
associate a reasoning framework, it is possible to automat-
ically synthesize security protocols from that specification.
Figure 1 shows a description of the synthesis methodology.
First, we define the protocol by a set of goals it is designed
to achieve. A set of constraints on the environment can also
be provided. Such constraints may be used to select the best
protocol that satisfies the constraints among a set of possible
protocols that satisfy the same goal. Once a high-level de-
scription of the protocol is given and a set of protocol rules is
generated, one can compile it into an executable form, using
standard communication primitives and standard encryption
mechanisms.

The constraints on the execution environment of the pro-
tocol might be used to generate a protocol that satisfies its
functional specification but also takes advantage of the en-
vironments. For instance, if the device that runs the proto-
col has access to a powerful-enough CPU, but limited band-
width, one can generate a protocol that uses short messages
for communication, but heavily uses encryption that can be
handled by the CPU power.

Cryptographic primitives
Communication primitives

Environment
Constraints

Protocol
Code

Synthesis
Process

Code Generation
Process

of the protocol goals

Logical specification

Protocol
Rules

Figure 1: Protocol Synthesis

In this work, we propose a synthesis methodology that
allows the automatic derivation of cryptographic protocols
from a higher-level specification expressed in a logical form.
Our synthesis methodology is based on derivation rules and
consists of three main ingredients:

• A logic that describes assumptions on the environment,
the initial configuration of the protocol, and the set of
goals, that is, the logical specification of what the pro-
tocol is designed to achieve

• A proof system associated to the logic in order to decom-
pose the set of goals into elementary goals that must be
satisfied by the designed protocol

• A realizationfunction that maps an elementary goal into
protocol actions. That is, a function that maps the logical
reasoning steps into protocol actions

• A set of constraints on the execution environment of the
protocol

Middleware Architecture for Protocol
Synthesis

Our synthesis methodology is part of a middleware archi-
tecture that facilitates the interoperability of web-enabled
devices. The architecture (Denker & Saı̈di 2001) shown

in Figure 2, enables different devices to use the middle-
ware capabilities and interfaces to request customized ser-
vices that will become part of their applications. Devices are
hardware and software components that have an interface to
the middleware. The embedded systems may interact using
the middleware to communicate and exchange information
about their interfaces, constraints, and policies under which
they are allowed to operate. Such information is expressed
and exchanged in a common representation defined as part
of an interface ontology for security services and protocols.
The result of the interaction is code generated for the de-
sired security services. The code generation is facilitated
by a deductive system that implements a translation from
high-level security service descriptions and system restric-
tions into logical properties, a proof system to reason about
those properties, and a realization and synthesis module that
generates code for the given goals and constraints. The syn-
thesis module has the power to compute the necessary secu-
rity protocols and will distribute the results to the devices,
where the code is integrated into the application layer.

Protocol’s goals
Security Policy
Functional constraints

Protocol’s goals
Security Policy
Functional constraints

Logic-based Synthesis
Composition
Code Generation

Application

Code

Interface

OS

Application

Code

Interface

OS

Figure 2: Middleware Architecture for Protocol Synthesis

Logic for Cryptographic Protocols and
Synthesis Approaches

Parties involved in a protocol are considered as principals
that have the ability to act when certain constraints are sat-
isfied. Such constraints usually represent the state of knowl-
edge of the principals. In such an application there is a
strong link between knowledge and action. It has been
shown (Halpern & Zuck 1992; Faginet al. 1995) that a
knowledge-based viewpoint gives a unifying framework for
understanding, verifying, and designing protocols.

Logic of knowledge is the right level of abstraction for
reasoning about security protocols. In security protocols, de-
tails about the data transfer protocol details are often omit-
ted, and the focus is only on the cryptographic part that is
best captured by the notion of knowledge. For instance,
to deduce the correctness of an authentication protocol, one
would need to prove that both parties are who they say they
are. In a particular logic system, this could be X believes Y
believes X and Y believes X believes Y, which is the formal
way of saying that X and Y trust each other.

The use of logical analysis in protocol design is not
widely implemented in the security protocol sector. This is
mainly due to the lack of tools to implement such a logic sys-
tem easily and also to the lack of trust in these well-known

logic systems. This lack of trust may have a basis since flaws
in logic systems have been uncovered. In addition, no one
logic system has been proven to be both sound and complete.
Logics like BAN (Burrows, Abadi, & Needham 1990) and
GNY (Gong, Needham, & Yahalom 1990) have the most ex-
posure as security logic systems and are the subject of much
research. Syverson and van Oorschot also proposed a formal
framework to unify several different cryptographic protocol
logics (Syverson & van Oorschot 1994), and Abadi and Tut-
tle proposed a similar logic system (Abadi & Tuttle 1991b).
However, most of the work on logics for security protocols
is dedicated to authentication properties.

The two main techniques for the automatic derivation of
protocols, are the model-based and the proof-based tech-
niques. Recently, a model-based technique for the auto-
matic generation of authentication protocols has been pro-
posed by Perrig and Song (Perrig & Song 2000b; 2000a).
Their technique is implemented as a procedure that takes as
input a specification of the security properties that the pro-
tocol must satisfy, and a system requirement that includes a
metric corresponding to the cost or overhead of the proto-
col. The metric imposes a limit on message size. During
the protocol generation, all possible protocols up to a maxi-
mum cost threshold are generated. A model-checker (Song
1999) is used as a protocol screener to verify the generated
protocols in order to eliminate those that do not meet the
security specification. The logic that expresses the security
properties of the protocols is weak in the sense that different
protocols can be generated from the same set of properties,
showing that the logic does not capture all the differences
that exist between the generated protocols although they sat-
isfy the same set of goals.

Different proof-based synthesis techniques have been
proposed recently (Buttyán, Staamann, & Wilhelm 1998;
Monniaux 1999; Clark & Jacob 2000). In (Buttyán, Staa-
mann, & Wilhelm 1998) it was proposed to extend a BAN-
like logic with a synthetic rules that when reversed can be
used in a systematic way to design protocols. The synthetic
rules introduce an abstract notion of channels, and define the
set of readers and writers for a channel.

We believe that a logic-based synthesis methodology is
more suitable for security protocols. The usefulness of a
complete, correct logic system is quite substantial. The
availability of a logic suitable for reasoning about secu-
rity protocols greatly simplifies the protocol designer’s task.
Another useful side effect from using logic systems is that
one is required to explicitly formalize the assumptions one
makes, and this forces the use of a more stringent design
methodology. Using a stringent methodology can only in-
crease confidence in the resultant protocol.

Our logical framework is a general framework where au-
thentication, confidentiality, fair exchange, nonrepudiation,
contract signing, and secure group communication proper-
ties can be expressed. Our framework captures propositional
attitudes as knowledge, belief, trust, and different notions of
evidence. We use the BAN logic as a basis for the definition
of our logic.

Figure 3 shows the formulas of the BAN logic and their
informal meaning. The semantics of the belief modality is

Formula Meaning
P |≡ X P believesX
P / X P seesX
P |∼ X P once saidX
P |⇒ X P has jurisdiction overX
](X) X is fresh
P K←→ Q K is a symmetric key forP andQ
P X←→ Q P andQ share secretX

+K7→Q +K is the public key ofQ
{X}K X encrypted withK
{X}K−1 X encrypted with the private keyk−1

corresponding to the public keyK
〈X〉Y X combined withY
(X,Y) pair ofX andY

Figure 3: BAN logic formulas

similar to the one of knowledge and is expressed by the ax-
iom: P |≡ X ⇒ ` X. We use the following belief
production:

Belief production rules

R4
P |≡](X) P |≡ Q|∼ X

P |≡ Q|≡ X
R5

P |≡ Q|⇒ X P |≡ Q|≡ X
P |≡ X

In our approach, we also use cryptographic channels that
achieve some security goal. We define a more general and
expressive notion of channels that have the following prop-
erties: integrity, confidentiality, authentication, and non-
repudiation. Principals may use a combination of such chan-
nels, and may send channels to each other in the spirit of
the SPI calculus (Abadi & Gordon 1999) through meta-
channels.

Secure Communication Channels
Cryptography has four major goals that can be combined to
provide most other security goals (Menezes, van Oorschot,
& Vanstone 1996):
• Confidentiality, also called privacy or secrecy, is the old-

est and most studied goal of cryptography. It assures that
data can be read only by authorized persons. Many solu-
tions using symmetric-key or public-key encryption have
been proposed in literature.

• Data integrityprevents an unauthorized person from al-
tering a message.MDCs (manipulation detection codes)
based on cryptographic hash functions are generally used
to provide such a service.

• Authenticationhas been studied extensively in the litera-
ture, and many discussions have arisen concerning its def-
inition. Here we will consider two notions of authentica-
tion: message and entity.Message authentication, or data

origin authentication, provides the identity of the author
of a message to a given recipient. Message authentica-
tion can be implemented usingsecure envelopesor MACs
(message authentication codes) based on keyed crypto-
graphic hash functions.Entity authenticationprovides an
identification of an entity in a communication. An impor-
tant difference between these two notions of authentica-
tion is that message authentication is not limited to a cer-
tain time period, while entity authentication is limited to
the duration of the communication. Entity authentication
needs the execution of a protocol. Such a protocol could,
for instance, consist in sending somefresh information,
while assuring message authentication.

• Nonrepudiationis the property that binds an entity to a
message. A complete nonrepudiation service must ensure
both nonrepudiation of originandnonrepudiation of re-
ceipt (Zhou 1996). Nonrepudiation of origin providesev-
idenceto the recipient of a message about the identity of
the author who wrote the message. Until today, the only
way of providing such evidence has been through using
digital signatures. The difference is that nonrepudiation
provides evidence that can be shown to an adjudicator
about the identity of the author, while authentication only
assures that the recipient is convinced of the identity of
the author. Nonrepudiation of receipt provides an origina-
tor of a message with evidence that the recipient received
a previously sent message. A complete nonrepudiation
service cannot be implemented by a single cryptographic
primitive. It needs a non-repudiation protocol to be run
between two entities.

Communication channels are logical connections be-
tween principals. On addition to delivering messages, they
can provide other cryptographic services. We define four
channels that provide confidentiality, data integrity, message
authentication, and nonrepudiation of origin.

Definition 1 (integrity channel) An A-integrity channel
assures that if entity A sends a message on the network, ev-
eryone will receive a nonaltered message.

Definition 2 (authentic channel) An AB-authentic channel
provides message authentication between the two entities
A and B: whenever a message arrives on an AB-authentic
channel B, can be sure that the message was sent by A. Note
that the message does not need to be fresh and that B can
not convince anyone else that A is the author of the message.
Moreover, authentication does not require the message to be
secret.

Definition 3 (nonrepudiable channel) A non-repudiable
channel provides nonrepudiation of origin. When a mes-
sage arrives on an A-nonrepudiable channel, everyone is
convinced that A is the author of the message.

Definition 4 (confidential channel) A B-confidential chan-
nel provides the service that only the author and B can read
the content of message m.

These channels can be used as building blocks to design
more complex services. Channels can be implemented using

a variety of cryptographic primitives. For instance, a confi-
dential channel established betweenA andB can be imple-
mented either by using the public key ofB, or by using a
shared secret key betweenA andB. It could even be imple-
mented using a physically secure channel. Such a choice of
implementation may depend on the availability of a public
key infrastructure, or adequate software and hardware for
generating shared keys. However, all of these possibilities
guarantee the requirements of a B-confidential channel.

We can establish a hierarchy between these channel types.
A nonrepudiable channel offers a stronger service than an
authentic channel: as an A-nonrepudiable channel convinces
everyone that A is the author of the message, it also con-
vinces B in particular. In the same way, an A-integrity chan-
nel can be implemented by the stronger AB-authentic chan-
nel or an A-nonrepudiable channel, as changing the message
m would change the author. A consequence of this hierar-
chy is that whenever we need a channel offering integrity
services, we can implement it by an authentic or a nonrepu-
diable channel.

In practice, more complex services than those provided
by the above-defined channels are needed. Therefore it is
important to have the possibility to combine the services of
the four basic channels. To do so, we define a message m
that can be sent on a channel as either data or a channel in the
spirit of the SPI calculus (Abadi & Gordon 1999) through
meta-channels. Consider the following example, where A
wants to send a messagem to B that has first been digitally
signed by A and then been encrypted for B:

sendB−c(A, sendA−nr(A,m,))

This example shows the expressive power of our model. B is
the only one except the sender who can get the information
sent on the confidential channel. Receiving a nonrepudia-
ble channel means that B has all the knowledge to build this
channel. B can thus decide to send this information to ev-
eryone else—and convince everyone else that A is the orig-
inator of messagem—or decide to keep this information
secret. By the same mechanism we can implement nested
encryption and other more complex cryptographic mecha-
nisms, while staying at a high level.

Computational Model
Our computational model is based on execution traces sim-
ilar to the one proposed by Abadi and Tuttle (Abadi & Tut-
tle 1991a) for the BAN logic. We also use Paulson’s ap-
proach (Paulson 1998; Millen & Ruess 2000) to model the
behavior of principals, where protocols are inductively de-
fined as sets of traces. A trace is a list of communication
events. We consider protocols that are interactions between
a set of principals using communication channels. A run
of the protocol is a sequenceσ of states. Each state corre-
sponds to the execution of a communication step via a speci-
fied channel. We assume that all principals can read all mes-
sages. LetQ denote the global state space of the system.
In a system stateq ∈ Q, we denote bytrace(q) the set of
messages that have been exchanged so far and bytrace(q)
the message contents that occur intrace(q). Given a set of
fields S, the following sets are used:Parts(S), Analz(S),

and Synth(S). Parts(S) is the set of fields and subfields
that occur inS. Analz(S) is the set of fields that can be ex-
tracted from elements ofS without breaking the cryptosys-
tem. Synth(S) is the set of fields that can be constructed
from elements ofS by concatenation and encryption. For-
mal definitions can be found in (Paulson 1998) or (Millen &
Ruess 2000). In a stateq, the set of fields thatG can access
is then

Know(G, q) = Analz(I(G) ∪ trace(q)).

This is the set of fields thatG can obtain from its initial
knowledgeI(G) and the messages seen so far. In the BAN
logic, the semantics of the belief modality is defined as
knowledge. Therefore, we use the trace model and the pred-
icatesParts(S), Analz(S), andSynth(S) to provide a se-
mantics for BAN logic. Thus, our model allows us to char-
acterize the state where a certain formula is valid as a state
in a particular sequence of events that corresponds to the
messages observed so far. This allows us to construct, for
a set of goals expressed in the BAN logic, a trace of events
that starts from the state that satisfies the initial configura-
tion of the protocol, and leads to the state where all goals
are satisfied. Thus, in any stateq, the belief of an agentA is
characterized as the setKnow(A, q)

q |= A|≡ S iff B ∈ Know(A, q)
Communication eventA→ 〈M〉mode →B expresses the

fact thatA sends a messageM toB with the attributemode
that can be confidential, nonrepudiable, and authenticated,
and preserve the integrity of messages. The attributes can
be considered as logical channels betweenA andB. Chan-
nels can be implemented using a variety of cryptographic
primitives. For instance, a confidential channel established
betweenA andB can be implemented either by using the
public keys ofA andB, or by using a shared secret key
betweenA andB. Such choice of implementation may be
decided depending on the availability of a public key infras-
tructure, or adequate software and hardware for generating
shared keys.

In its simple form, a messageM can consist of data. It
can also consist of a belief formula. Thus, it is possible to
express howA can transfer knowledge toB.

Example

As an example of the feasibility of our approach, we
show how the well-known Needham-Schroeder authentica-
tion protocol can be generated from its logical specification,
expressed in the BAN logic (Burrows, Abadi, & Needham
1990). Following is a complete derivation of the Needham-
Schroeder protocol using BAN logic, in which initial and
final states are, respectively

Initial State:

S|≡ +B7→B

S|≡ +A7→A

A|≡ S|⇒ +B7→B
A|≡](Na)
B|≡ S|⇒ +A7→A
B|≡](Nb)

Goals:

A|≡ +B7→B

∧ B|≡ +A7→A
∧ A|≡ B|≡ A Nb←→ B
∧ B|≡ A|≡ A Na←→ B

that can be used. The derivation process consists in using a
set of rules that can correspond to proportional logic rules, or
BAN logic rules. The derivation process terminates when all
the goals are realized. From the derivation process, the com-
munications are extracted and ordered in time. The resulting
ordered communication messages are the derived protocol.

For synthesis purposes, we augment the BAN logic rules
with additional production rules that allows the generation
of protocol rules. The derivation process is presented in a
deductive proof style where a combination of the BAN logic
proof rules, propositional proof rules, and additional rules
are used. A particular rule is added. This is therealization
rule that allows us to build protocol rules from the beliefs of
the principals. Also, a precedence rule is added to express
chronological order between BAN formulas. For instance,
one can assume that the formulaB|≡ A Nb←→ B becomes
valid beforeformulaA|≡ B|≡ A Nb←→ B. A similar no-
tion is used in the strand spaces model (Thayer, Herzog, &
Guttman 1998). Thus, we use the following

precedence rule

B|≡ A Nb←→ B B → 〈B|≡ A Nb←→ B〉s → A

A|≡ B|≡ A Nb←→ B

that expresses the fact thatA believes thatB believes that
B and A share a secret,B must first believe that it in-
deed shares the secret withA, and then it communicates
this fact toA in a secure way expressed byB → 〈B|≡
A Nb←→ B〉s → A that preserves the shared secret. This
usually indicates thatB acknowledges an earlier message
containing the shared secret and sent byA.
⇓
Goal: 1

A|≡ +B7→B

∧ B|≡ +A7→A
∧ A|≡ B|≡ A Nb←→ B
∧ B|≡ A|≡ A Na←→ B

Rule? (Split)
⇓

Goal: 1.1

A|≡ +B7→B

Rule? (applyR5)
⇓

Goal: 1.1
(∃Q : Principal) : A|≡ Q|⇒ +B7→B

∧ A|≡ Q|≡ +B7→B

Rule? (instQ with S)
⇓

Goal: 1.1
A|≡ S|⇒ +B7→B

∧ A|≡ S|≡ +B7→B

Rule? (split)
⇓

Goal: 1.1.1
A|≡ S|⇒ +B7→B

Rule? (assert)
⇓

Goal: 1.1.2
A|≡ S|≡ +B7→B

Rule? (assert)
Asserting

A|≡ S|⇒ +B7→B implies A|≡ S|≡ +B7→B

⇓

Goal: 1.2
(∃Q : Principal) : B|≡ Q|⇒ +A7→A

∧ B|≡ Q|≡ +A7→A

Rule? (instQ with S)
⇓

Goal: 1.2
B|≡ S|⇒ +A7→A

∧ B|≡ S|≡ +A7→A

Rule? (split)
⇓

Goal: 1.2.1
B|≡ S|⇒ +A7→A

Rule? (assert)
⇓

Goal: 1.2.2
B|≡ S|≡ +A7→A

Rule? (assert)

Asserting

B|≡ S|⇒ +A7→A implies B|≡ S|≡ +A7→A

⇓

Goal: 1.3
A|≡ B|≡ A Nb←→ B

Rule? (apply precedence rule)
⇓

Goal: 1.3.1
B|≡ A Nb←→ B

Rule? (realize)
⇓

Goal: 1.3.1
B|≡]Nb ∧ B → 〈Nb〉s → A

∨ A|≡]Nb ∧ A→ 〈Nb〉s → B

Rule? (assert)
⇓

Goal: 1.3.1
B|≡]Nb ∧ B → 〈Nb〉s → A

Rule? (split)
⇓

Goal: 1.3.1.1
B|≡]Nb

Rule? (assert)
⇓

Goal: 1.3.1.2
B → 〈Nb〉s → A

Rule? (realize)
⇓

Goal: 1.3.1.2
(∃K : Key) : B|≡ +K7→A ∨ B|≡ A K←→ B

∧ B → 〈{Nb}K〉 → A

Rule? (instK with A)
⇓

Goal: 1.3.1.2
B|≡ +A7→A ∨ B|≡ A A←→ B

∧ B → 〈{Nb}A〉 → A

Rule? (assert)
⇓

Goal: 1.3.1.2
B → 〈{Nb}A〉 → A

Rule? (realize)

⇓

Production

Produce ruleB −→ A : {Nb, B}A

Goal: 1.3.2
B → 〈B|≡ A Nb←→ B〉s → A

Rule? (acknowledge)
⇓

Production

Produce ruleA −→ B : {Nb, A}B

Goal: 1.4
B|≡ A|≡ A Na←→ B

Rule? (apply precedence rule)
⇓

Goal: 1.4.1
A|≡ A Na←→ B

Rule? (realize)
⇓

Goal: 1.4.1
B|≡]Na ∧ B → 〈Na〉s → A
∨ A|≡]Na ∧ A→ 〈Na〉s → B

Rule? (assert)
⇓

Goal: 1.4.1
A|≡]Na ∧ A→ 〈Na〉s → B

Rule? (split)
⇓

Goal: 1.4.1.1
A|≡]Na

Rule? (assert)
⇓

Goal: 1.4.1.2
A→ 〈Na〉s → B

Rule? (realize)
⇓

(∃K : Key) : A|≡ +K7→B ∨ A|≡ A K←→ B
∧ A→ 〈{Na}K〉 → B

Rule? (instK with B)
⇓

Goal: 1.4.1.2

A|≡ +B7→B ∨ A|≡ A B←→ B
∧ A→ 〈{Na}B〉 → B

Rule? (assert)
⇓

Goal: 1.4.1.2
A→ 〈{Na}B〉 → B

Rule? (realize)
⇓

Production

Produce ruleA −→ B : {Na, A}B

Goal: 1.4.2
A→ 〈A|≡ A Na←→ B〉s → B

Rule? (acknowledge)
⇓

Production

Produce ruleB −→ A : {Na, B}A

Final Goal:
The initial goal can be realized by the following protocol:
A −→ B : {Na, A}B
B −→ A : {Nb, B}A
A −→ B : {Nb, A}B
B −→ A : {Na, B}A

Rule? (extract protocol)

Solution

A −→ B : {Na, A}B
B −→ A : {Nb, Na, B}A
A −→ B : {Nb, A}B

The rulesplit is a propositional rule. The ruleassertal-
lows assertion of a formula that is, either an initial condition
of the protocol or an already-realized formula. Finally, the
extractionrule collects the generated protocol actions, or-
ders them, and produces the protocol.

Implementation
We have implemented a simple procedure for the automatic
generation of security protocols as an interactive theorem
prover. From the conjunction of the protocol goals, the user
can invoke a set of commands allowing the derivation of
a protocol that satisfies the set of goals. The prototype is
implemented in the ocaml language (Ocaml2000). A new
implementation built on the PVS theorem prover is under
way. The use of PVS allows us to use its typechecker and
its powerful specification language. PVS (Owreet al. 1999)
also implements different useful instantiation and proposi-
tional simplification rules. A set of new rules is added to

the prover and allows us to derive from the proof the set of
protocol rules.

Discussion
We have sketched a method for automatically generating se-
curity protocols from their logical specification. We use the
well-known BAN logic (Burrows, Abadi, & Needham 1990)
to describe protocol goals, and we extend the logic with pro-
tocol derivation rules that allow the derivation of messages
from logical statements. The correctness of the derivation
rules is justified using a trace model that allows us to char-
acterize the state where a certain formula is valid as a state in
a particular sequence of events that corresponds to the mes-
sages observed so far. Our method is correct. That is, all
rules are correct and any protocol generated will satisfy its
security properties. However, we do not address the issue
of completeness. It will be interesting to take advantage of
the decidability of modal logics such as the BAN logic to
provide complete methods for the generation of protocols.

Acknowledgement
I’m grateful for useful criticisms and suggestions made
by the anonymous referees and by my colleagues Bruno
Dutertre, Bob Riemenschneider, Victoria Stavridou, and
Tomás Uribe.

References
Abadi, M., and Gordon, A. D. 1999. A calculus for crypto-
graphic protocols: The spi calculus.Information and Com-
putation148(1):1–70.
Abadi, and Tuttle. 1991a. A semantics for a logic authenti-
cation (extended abstract). InPODC: 10th ACM SIGACT-
SIGOPS Symposium on Principles of Distributed Comput-
ing.
Abadi, M., and Tuttle, M. R. 1991b. A semantics for a logic
of authentication. In Logrippo, L., ed.,Proceedings of the
10th Annual ACM Symposium on Principles of Distributed
Computing, 201–216. Mont́eal, Qúebec, Canada: ACM
Press.
Burrows, M.; Abadi, M.; and Needham, R. 1990. A logic
of authentication.ACM Transactions on Computer Systems
8(1):18–36.
Buttyán, L.; Staamann, S.; and Wilhelm, U. 1998. A
simple logic for authentication protocol design. InPro-
ceedings of the 11th IEEE Computer Security Foundations
Workshop. Rockport, MA, USA: IEEE Computer Society
Press.
Clark, J., and Jacob, J. 2000. Searching for a solution:
Engineering tradeoffs and the evolution of provably secure
protocols. InRSP: 21th IEEE Computer Society Sympo-
sium on Research in Security and Privacy.
Denker, G., and Saı̈di, H. 2001. Middleware of security
services for embedded systems. Technical report, System
Design Laboratory, SRI International, Menlo Park, CA.
Fagin, R.; Halpern, J. Y.; Moses, Y.; and Vardi, M. Y. 1995.
Reasoning about Knowledge. Cambridge, Massachusetts:
The MIT Press.

Gong, L.; Needham, R.; and Yahalom, R. 1990. Reasoning
about belief in cryptographic protocols. InProceedings of
the IEEE Symposium on Research in Security and Privacy,
234–248. Oakland, CA: IEEE Computer Society, Techni-
cal Committee on Security and Privacy.
Halpern, J. Y., and Zuck, L. D. 1992. A little knowledge
goes a long way: Knowledge-based derivations and cor-
rectness proofs for a family of protocols.Journal of the
ACM39(3):449–478.
Menezes, A. J.; van Oorschot, P. C.; and Vanstone, S. A.
1996. Handbook of applied cryptography. CRC Press
series on discrete mathematics and its applications. CRC
Press. ISBN 0-8493-8523-7.
Millen, and Ruess. 2000. Protocol-independent secrecy.
In RSP: 21th IEEE Computer Society Symposium on Re-
search in Security and Privacy.
Monniaux, D. 1999. Decision procedures for the anal-
ysis of cryptographic protocols by logics of belief. In
12th Computer Security Foundations Workshop. Mordano,
Italy: IEEE Computer Society.
The Objective Caml language.http://caml.inria.
fr/ .
Owre, S.; Shankar, N.; Rushby, J. M.; and Stringer-Calvert,
D. W. J. 1999. PVS System Guide. Computer Science
Laboratory, SRI International, Menlo Park, CA.
Paulson, L. C. 1998. The inductive approach to verify-
ing cryptographic protocols.Journal of Computer Security
6:85–128.
Perrig, A., and Song, D. 2000a. Looking for diamonds
in the desert – extending automatic protocol generation
to three-party authentication and key agreement protocols.
In PCSFW: Proceedings of The 13th Computer Security
Foundations Workshop. IEEE Computer Society Press.
Perrig, A., and Song, D. 2000b. A first step towards the
automatic generation of security protocols. InSymposium
on Network and Distributed Systems Security (NDSS ’00),
73–83. San Diego, CA: Internet Society.
Song, D. 1999. Athena: A new efficient automatic checker
for security protocol analysis. InPCSFW: Proceedings of
The 12th Computer Security Foundations Workshop. IEEE
Computer Society Press.
Syverson, P., and van Oorschot, P. C. 1994. On unify-
ing some cryptographic protocol logics. InProceedings of
the IEEE Symposium on Research in Security and Privacy,
14–28. Oakland, CA: IEEE Computer Society, Technical
Committee on Security and Privacy.
Thayer, J.; Herzog, J.; and Guttman, J. 1998. Honest ideals
on strand spaces. InProceedings of the 11th IEEE Com-
puter Security Foundations Workshop (CSFW ’98), 66–78.
Washington - Brussels - Tokyo: IEEE.
Zhou, J. 1996.Non-repudiation. Ph.D. Dissertation, Uni-
versity of London.

