
Communication Pattern Anomaly Detection in
Process Control Systems

Alfonso Valdes
SRI International

333 Ravenswood Avenue
Menlo Park, CA 94025

Email: alfonso.valdes@sri.com

Steven Cheung
SRI International

333 Ravenswood Avenue
Menlo Park, CA 94025

Email: steven.cheung@sri.com

Abstract—Digital control systems are increasingly being deployed
in critical infrastructure such as electric power generation and
distribution. To protect these process control systems, we present
a learning-based approach for detecting anomalous network
traffic patterns. These anomalous patterns may correspond to
attack activities such as malware propagation or denial of
service. Misuse detection, the mainstream intrusion detection
approach used today, typically uses attack signatures to detect
known, specific attacks, but may not be effective against new or
variations of known attacks. Our approach, which does not rely
on attack-specific knowledge, may provide a complementary
detection capability for protecting digital control systems.

I. INTRODUCTION
Intrusion Detection Systems (IDS) using anomaly detection

(AD) techniques are not widely deployed in enterprise systems,
because such systems typically exhibit highly variable
behavior. As such, AD systems, particularly those based on
learning normal system activity and alerting on abnormal
activity, often alert on activity that is unusual, but not
malicious, while failing to alert on malicious activity that
recurs frequently enough to not appear unusual.

By contrast to enterprise systems, process control systems
often exhibit regular and predictable communication patterns,
which can be leveraged in an AD system. An attack launched
against a process control network may exhibit communication
patterns quite different from those observed during normal
operations. In our earlier work, we have demonstrated that
these regularities can form the basis of a model-based IDS in
control systems, where much of the expected behavior of the
system can be coded into a fairly compact ruleset/model, which
complements misuse detection rules used for detecting known
malicious activity. Because developing the models to specify
the expected system behavior by hand is error-prone and time-
consuming, this paper presents a learning-based
communication pattern anomaly detection approach for process
control systems.

Our approach involves learning network communication
patterns in process control networks by passively monitoring
network traffic. Specifically, our IDS employs network flow
information such as connection endpoints (i.e., source and
destination IP addresses and port numbers), the rate of packet
flow between network endpoints, and the set of hosts with
which a host communicates. The IDS maintains a database of

recent and historical network flow profiles observed in process
control networks. A flow record is generated or updated as
packets are observed. Detected network flow patterns are then
evaluated against the learned historical norms. An observed
pattern can either match an existing historical flow profile
through reinforcement learning, or start a new pattern
exemplar. The pattern exemplars are effectively different
modes of observed activity, so our system does not require
attack-free training data. By default, the system alerts on
observed flow patterns that are statistical exceptions to the
learned norms. We are interested in anomalies such as new
network flows (with estimates of how unlikely it is to observe a
new flow), significant changes in flow rates, and the absence of
expected network flows. These anomalies may correspond to
network probing attacks, propagation of malware, introduction
of rogue master or slave devices, flooding-based denial-of-
service attacks, or attacks that cause host or service failure.

The principal contribution of this paper is a demonstration
that anomaly detection, and specifically methods based on
adaptive learning, can provide a useful intrusion detection
capability in process control networks. This is in contrast to the
efficacy of these methods in enterprise settings, where highly
variable behavior leads to inadequate sensitivity and high false
alarm rates.

The rest of this paper is organized as follows. In the next
section we describe our techniques to learn normal patterns and
alert on anomalous patterns. We introduce methods to detect
suspicious traffic rates, suspicious new flows or the absence of
expected flows, and changes in node fan-in or fan-out patterns.
The development is based on statistical learning, which enables
us to quantify a priori the expected false positive rate for the
monitoring apparatus. This is followed by a description of our
test environment, built around a commercially available
Distributed Control System (DCS) communicating with a
number of emulated field devices in a virtual machine
environment. Next we describe characterization of normal and
abnormal flows for system startup, steady state operation,
nonmalicious failures of various components, and a variety of
attacks. The attacks include probes, denials of service, and
attempts to introduce rogue traffic. We then present
experimental results to validate the usefulness of the proposed
techniques. We conclude with a summary and suggestions for
future work.

II. COMMUNICATION PATTERN ANOMALY DETECTION IN
PCS

Process Control Systems (PCS) are often characterized by
fairly regular communication patterns between master and
slave units, and a fairly static address space. This can be
exploited in the form of a compact ruleset that alerts to
violations of expected communication patterns, presented in
our earlier work [1]. Here we extend the concept to effectively
learn normal flows and alert on statistical exceptions to the
learned norms. This paper describes two anomaly detection
techniques: pattern-based anomaly detection for monitoring the
patterns of hosts with which each host communicates, and
flow-based anomaly detection for monitoring the traffic
patterns for individual network flows.

III. PATTERN-BASED ANOMALY DETECTION

We analyzed data traces for normal, anomalous, and attack
conditions using an adaptation of the pattern anomaly
detection technique of [4]. This method examines patterns in a
stream of observations via a version of competitive learning
[2,3]. A pattern is a vector of feature values relevant to a
particular implementation; here we applied the technique to
patterns formed from source and destination IP addresses and
destination port. We considered that source port would
typically be ephemeral (that is, system assigned) and therefore
not useful, but destination port is often bound to a particular
service.

Patterns are evaluated against an initially empty pattern
library. If a pattern matches an existing pattern, according to
some similarity function returning a value above a specified
similarity threshold, then the best-matching library pattern
“wins”. In the (typical) case that the match is not exact, the
winning library pattern is slightly adapted in the direction of
the new pattern, where the degree of adaptation is based on
how many previous instances of the pattern have been
observed. The historical, aged number of instances also
provides an estimate of the probability with which this pattern
is observed.

€

Algorithm to pick winner :
Find K s.t.
Sim X,EK() ≥ Sim X,Ek()∀k
X = observed pattern
Ek = kth pattern exemplar in library
If Sim X,EK() ≥Tmatch ,EK is the winner
Else insert X into the library of pattern
exemplars
Tmatch = Minimum match threshold

Adaptive modification of the winning pattern:

€

EK ←
1

nK +1
nKEK + X()

nK = Historical (possibly aged) count
of observances of EK

An anomaly is generated when the tail probability (the
historical probability of the winning pattern plus that of all
patterns in the library with equal or lower probability) is below
a specified anomaly threshold.

€

Pr EK() = Historical probability of
pattern K

=
nK
nk

k
∑

Tail _ Pr EK() = Historical tail probability of
pattern K

= Pr E j()
Pr Ek()≥Pr E j()
∑

If Tail _ Pr EK() ≤Talert , generate alert
Talert = alert threshold

A periodic library update procedure consolidates similar
patterns and prunes rare patterns and feature values. In
practice, the heuristics used in update prevent state space
explosion in numerous applications of the approach.

An attractive characteristic of this method is that it can
adaptively learn multiple patterns of normal and abnormal
activity (we refer to these as modes), whereas many other
anomaly detection techniques use a two-class learning
approach. In particular, the system does not require attack-free
training data. Also, the use of empirical probability as the
anomaly threshold allows reasonable a priori expectations on
the false positive rate.

IV. FLOW-BASED ANOMALY DETECTION
We maintain a database of active and historical flow

records observed in the PCS. A flow record is generated or
incremented as packets are observed. As flow records are
“touched” by packet traffic, they are evaluated against learned
historical norms. In addition, there is a periodic global update
where the flow records since the last global update are folded
into historical statistical profiles. We are interested in
anomalies such as observation of a new flow (with some
estimate of how unlikely it is to observe a new flow),
significant change in the rate (packet inter-arrival time or data
volume) of a flow, and absence of an expected flow. For
indexing purposes, the historical and current flow tables can be
indexed by any suitably efficient scheme (for example, by
some hash of source and destination).

The derivation is provided in the context of PCS, where the
number of inter-communicating nodes and their addresses is
relatively static, and the number of system services relatively
small. The concepts can be extended to general network flows,
and offer potential for monitoring quality of service (QOS) and
detecting flooding-based attacks.

Packets in PCS are typically generated in a polling fashion
where a master polls a number of slaves for data. Under some
conditions, slaves may initiate flows to notify the master of an
exception. The global database update interval should be long
relative to the PCS polling interval. Notionally, we expect a
reasonable tradeoff between stable statistics in a global update
interval, and ability to alert in a timely fashion is probably
obtained with a global update interval on the order of 100 to
1000 times the interval of the most frequent expected flow (for
example, the MODBUS polling interval).

The algorithm is presented as a detector of anomalous
flows, but can be easily adapted to specific flows (for example,
specific to particular MODBUS function codes).

A flow record (FR) has the following elements:

FR = {Source, Dest, Tlast, Packets, Avg(NumBytes),
Var(NumBytes), Avg(DT), Var(DT), Score}

• Source: source IP and port of the flow

• Dest: destination IP and port of the flow

• Tlast: time of the last packet for this flow

• Packets: number of packets in this flow since the last
database update

• Avg(NumBytes): average number of bytes per packet
in this flow since the last database update

• Var(NumBytes): variance of bytes per packet

• Avg(DT): mean packet inter-arrival time (DT) since
last global update

• Var(DT): variance of DT

• Score: anomaly score for this record

The historical record (HR) corresponding to the same flow
has the following elements:

HR = {Source, Dest, UpdateTime, HPackets,
HAvg(NumBytes), HVar(NumBytes), HAvg(DT), HVar(DT)}

• Source and Dest are defined as in FR

• UpdateTime: time of last global update

• HPackets: historical aged packet count

• HAvg(NumBytes): historical average bytes per packet

• HVar(NumBytes): variance of bytes per packet

• HAvg(DT): historical average inter-arrival time

• HVar(DT): historical variance of inter-arrival time

We may relax the definition of flow to not require the same
source port, as this is likely to be system assigned and
ephemeral. The destination port is more likely bound to a
specific system service.

A. Updating and Scoring Flow Records
We discuss the update and score procedure when we

observe a packet for which there is a historical flow. In the case
that there is no active flow, we allocate a new FR, set the
Packets field equal to 1 and NumBytes equal to the observed
packet size, TLast equal to the time of the packet, and skip the
scoring. The variance calculations require at least two packets
for the flow.

If there is no HR corresponding to the flow, the FR is
updated normally as packets are observed, but the scoring
procedure is skipped since scoring requires historical data. At
the time of the next global database update, the HR is
populated with the contents of the accumulated FR.

New Flow Alert: We would probably alert in the case of a
flow with no corresponding HR, or alert if we see a new flow
after some configurable number of global updates, or when we
have observed so many flows that we consider a new flow
unlikely (say, when the count of HR flows has not changed or
is over some number).

Otherwise, when a packet is observed for a source-
destination pair, the corresponding flow record is updated as
follows:

Packets = Packets+1;

DT = current time – Tlast;

Means and variances for DT and bytes per packet in the
flow records should be computed using online algorithms
(http://en.wikipedia.org/wiki/Algorithms_for_calculating_varia
nce#III._On-line_algorithm n.d.)

Note that this implies that the flow record must be
expanded to include intermediate sums of squares for bytes and
inter-arrival time. Also note that variances are defined only for
FR records with a packet count of two or more.

The bytes per packet and inter-arrival time measures are
then scored relative to the corresponding historical quantities.
At present, this is based on a T test.

When the historical packet count is large (or has reached its
asymptotic value), the T statistic is defined as follows (where X
is replaced by packet length or DT):

€

TX =
Avg(X) −HAvg(X)
Var(X)

Packets

;

After the scoring step, Tlast is updated to the time of the
current packet.

If we treat the bytes per packet and DT as independent, we
can obtain a combined score as follows:

€

Score =
2TNumBytes +

2TDT ;

This has the advantage of giving one score per flow as it is
touched by a packet, but loses the sense of whether the score
was extremely high or low. It may be that in any case extremes
on the low side are better detected at the global update interval
(for example, we observe that the above will never allocate or
score an expected flow that is not observed in some global
update interval).

Anomalous Flow Alert: The above score exceeds some
threshold.

Note that a packet updates only one flow record. The global
update procedure modifies all flows.

B. Global Update
Global update is defined for all flows for which there is

either an FR (new flow observed in the most recent global
update interval), an HR (a flow was historically observed but
was not observed in the most recent global update interval), or
both (ideally the most common condition).

New flow alert: This is issued in the case of an FR with no
corresponding HR, and was discussed in the previous section.

Missing flow alert: This is issued in the case of an HR with
no corresponding FR, or an FR with 0 packets. We can either
issue the alert unconditionally or score the flow as having 0
bytes and DT equal to the global update time interval. The
latter approach is less likely to alert on flows that are valid but
rare, since the distribution for DT would consider long inter-
arrival times more normal.

Aging: We may age the HR database by multiplying with
some constant AGE ≤ 1.0 (using 1.0 turns off aging). Aging
allows the algorithm to adapt to changing environments.

The pseudo-code for the update equations is given below
(once again, substitute NumBytes and DT for X):

€

// Aging packet count
HPackets = HPackets * AGE;
// Update averages and variances

HAvg(X) =
HPackets *HAvg(X) + Packets * Avg(X)

HPackets+ Packets
;

HVar(X) =
HPackets *HVar(X) + Packets *Var(X)

HPackets+ Packets
;

€

// Reinitialize FR records for the next interval
// Note that we do not reset TLast, so DT could
// span several global updates, which might be
// true for every rare flows

Packets = 0;
Avg(NumBytes) = 0;
Var(NumBytes) = 0;
Avg(DT) = 0;
Var(DT) = 0;

V. TEST ENVIRONMENT
The test environment is based on a Distributed Control

System (DCS) from Invensys Process Systems, IA series
(http://www.ips.invensys.com/en/products/autocontrols/Pages/
DistributedControl-IASeries-P018.aspx). The key elements of
this system are

• An application workstation (AW) for configuration,
visualization, and control. This is dual homed with a
connection to a control LAN as well as an external
interface.

• A control LAN based on a redundant pair of Enterasys
switches (optical Ethernet).

• An Invensys Field Control Processor (FCP) module.

• A field bus that connects the FCP to (presently) two
Ethernet Field Bus Modules (FBM).

• A field LAN connecting the FBM, simulated
MODBUS devices (MODBUS simulators from
modbustools.com and Calta) running in virtual
machines.

• The monitoring system connects to the control LAN
(AW, switches, and FCP) and separately to the field
LAN (FBM and devices).

• Interfaces between the monitoring system and the
ArcSight Security Information and Event Management
(SIEM) platform.

The test environment system is shown in Figure 1. The
protocol on the control LAN, between the AW and the FCP, is
proprietary. The protocol on the field LAN, between the FBM
and field devices, can be any of a number of common industrial
protocols. For the present analysis, we have chosen MODBUS.

VI. NORMAL, ANOMALOUS, AND ATTACK FLOWS
We establish a baseline of normal flows by operating the

system under various normal and anomalous (but not
malicious) operating conditions. These conditions are
representative of startup, steady-state operation, visualization
of process variables, and change of process variables.

On the Invensys IA system, at startup the FCP obtains a
bootp file from the AW. We collected traffic from the control
LAN under normal startup as well as starting up the FCP with
the AW powered down, the latter to allow us to obtain a traffic
trace for the FCP’s efforts to obtain the boot file.

We characterize normal flows on the field network as
normal MODBUS traffic between the FBM and the emulated
MODBUS PLCs. MODBUS is a master-slave protocol wherein
the master polls for process values from the slaves (read) or
resets continuous or logical process variables on the slaves. We
also attempt to observe flows for conditions other than normal
operation but not necessarily the result of malicious activity.
For example, we collect data as well in the case of lost
connectivity to a device or loss of the FBM itself. The latter
condition effectively disconnects the field devices from the
DCS, unless redundancy is built in. Process values from the
field devices are communicated back to the AW through the
FCP and control network.

To date, our attacks have focused on the field network,
which is likely to be more exposed and therefore more
vulnerable in typical operational settings. Generally, we
observe that attacks of sufficient traffic volume to impede

normal MODBUS communications are observed at the AW as
lost connectivity to one or more MODBUS devices. Less
intense attacks, and attacks involving insertion of rogue devices
on the field network, are generally visible only by monitoring
the field network.

VII. EXPERIMENTAL VALIDATION

We first describe experimental results for evaluating pattern-
based anomaly detection. Then we describe the experimental
results for evaluating flow-based anomaly detection.

A. Pattern-based Anomaly Detection

We have conducted experiments to examine the usefulness of
the pattern anomaly detection technique applied to IP-address-
level communication. Specifically, in the experiments, for
every IP address observed in the field network, we monitored
the set of IP addresses with which it communicated for every
time period. At the end of every time period, these
communication patterns were compared with those in the
pattern libraries to detect anomalous patterns and to update the
pattern libraries.

Figure 1: Schematic of DCS Testbed Environment

1) General Experimental Setup

In the experiments, the FBM acts as the MODBUS-TCP client
that periodically retrieves data from a set of (emulated)
MODBUS-TCP servers, developed by Witte Software
(www.modbustools.com). Another host is attached to the field
network playing the role of the adversary. To generate the
datasets for our experiments, we collected TCP traffic using
tcpdump (www.tcpdump.org) on the field network. Moreover,
we extracted the relevant fields (e.g., timestamps and IP
addresses) from the packet traces, and used them as inputs for
the pattern anomaly detection algorithm.

2) Normal Traffic

To evaluate the false alarm rate of the detection algorithm, we
used three datasets pertaining to normal usage scenarios, and
the algorithm did not report any anomalies. The scenarios
include the followings

(1) FBM reads the same amount of data from all MODBUS

servers at the same frequency (1 second);
(2) FBM reads the same amount of data from the MODBUS

servers at different frequencies (0.5, 1, 5, and 10 seconds)
(3) FBM reads different amounts and types of data from the

MODBUS servers
(4) Using two MODBUS clients (including the FBM and an

(emulated) MODBUS client running on a virtual
machine) to query the MODBUS servers at different
frequencies (1 and 5 seconds, respectively)

In analyzing the communication patterns of these scenarios,
we used the following parameters for the algorithm described
in Section III. We set Tmatch to 0.6, Talert to 0.7, and period
length to 30 seconds. These parameters are quite “elastic” in
that there exists a wide range for their values that gave the
same outcome, thanks to the regularity of the network traffic
patterns. For example, setting Tmatch to 0.2 or 0.9 does not
change the results. Moreover, for every IP address pertaining
to the MODBUS servers, the FBM, or the additional
MODBUS client, the number of communication patterns is
one.

3) Anomalous Traffic

To evaluate the ability of the algorithm to detect anomalous
events, we used several datasets pertaining to potentially
malicious events, and the algorithm reported anomalies in all
those instances. These malicious events include
(1) Performing scans against the FBM or a MODBUS server

using nmap (www.nmap.org)
(2) Performing network vulnerability analysis against the

FBM or a MODBUS server using Nessus
(www.nessus.org)

(3) Running a MODBUS client on a host and modifying
MODBUS data points on a MODBUS server

In these datasets, we ran the experiment to generate about 30
minutes of normal traffic to let the detection module learn the
normal traffic patterns before performing the malicious event.

4) Nmap Scans

To better illustrate the experimental setup and results, we
describe the nmap scanning experiment in more detail.

In this experiment, we generated the background network
traffic by having the FBM retrieve data from the four
MODBUS servers at 1 second frequency (i.e., the same pattern
as the normal traffic profile (1) described earlier).

After about 30 minutes, we used a network scanning tool,
called nmap, to perform port scans against all TCP ports of the
FBM and a MODBUS server respectively. Specifically, we
ran nmap with the intense scan, all TCP ports profile, using
the command
 nmap –PE –v –p1-65535 –PA21,23,80,3389 –A –v –T4
against the IP address of the FBM or of a MODBUS server.

Using the similarity threshold of 0.6, anomaly threshold of
0.7, and time period of 30 seconds, the pattern anomaly
detection technique detected the nmap with an anomaly score
of 0.968 at the end of the first period when nmap was started.
Moreover, for the nmap run against the FBM, two patterns
were reported for the FBM, one pertaining to the normal
traffic pattern, and one for the pattern in which there was
substantial traffic between the nmap host and the FBM. In
other words, the system learned distinct patterns for the
normal and attack traffic, which permits labeling the latter
pattern as malicious even if an adversary tries to train the
system to consider the pattern normal from a threshold
probability standpoint (concept drift).

The pattern set pertaining to the FBM (a MODBUS client) is
as follows:

Pattern 1 (normal polling of MODBUS Servers):
MODBUS server 1: Prob 0.250
MODBUS server 2: Prob 0.250
MODBUS server 3: Prob 0.250
MODBUS server 4: Prob 0.250

Pattern 2 (attack pattern):
MODBUS server 1: Prob 0.001
MODBUS server 2: Prob 0.002
MODBUS server 3: Prob 0.001
MODBUS server 4: Prob 0.001
Nmap host: Prob 0.994

The numbers shown in the patterns correspond to the
probability distribution for the number of packets exchanged
between the FBM and the hosts whose names appear next to
the numbers. In other words, Pattern 1 corresponds to the

pattern that the number of packets exchanged between the
FBM and the four MODBUS servers is essentially the same.
Moreover, Pattern 2 corresponds to the pattern that the
network traffic pertaining to the FBM is dominated by the
nmap network scan traffic.

For the nmap experiment pertaining to a MODBUS server, we
obtained a similar result, with the anomaly score of 0.968 and
two traffic patterns corresponding to the MODBUS server,
one for normal traffic involving the FBM and the MODBUS
server, and one corresponding to the nmap traffic and the
normal traffic.

We have experimented with different values, ranging from 0.1
to 0.9, for the similarity threshold and the anomaly threshold,
and obtained essentially the same result. We plan to
experiment with more stealthy scanning techniques in the
future.

B. Flow-based Anomaly Detection

To evaluate the usefulness of the flow-based anomaly
detection technique of Section IV, we developed a software
module for performing offline flow-based anomaly detection.
The implementation defines a flow in terms of its source IP
address, destination IP address, and destination port.
Moreover, flows are unidirectional. In other words, an
established TCP connection consists of two flows, one in each
direction. The detection module can detect new flows and
missing flows by comparing the flow records for the latest
period and those in the historical flow database. To detect
anomalous flows based on packet length and inter-packet
arrival time, we use a simple heuristic to determine if the
historical flow records may give a good approximation for the
population means for packet length and inter-packet arrival
time—using flow records in the historical database for
anomalous flow detection only after we have observed the
flow for more than a specified number of periods (e.g., 30).
Moreover, we selected the probability threshold for detecting
anomalies as 0.001. In other words, the probability that a
normal flow is flagged as anomalous is less than 0.1%.

We used several packet traces collected in our DCS testbed
environment to evaluate the effectiveness of the flow-based
technique. In the first experiment, we significantly increased
the flow rate of a MODBUS connection to simulate a surge in
requests for a MODBUS server, which may be caused, for
example, by a flooding-based denial-of-service attack. In the
second experiment, we significantly reduced the flow rate of a
MODBUS connection, which may indicate a system
degradation problem at the MODBUS client. In the third
experiment, we used a MODBUS-TCP scanner developed by
Mark Bristow (http://code.google.com/p/modscan) against a
MODBUS server; the tool attempts to discover the unit
identifiers managed by MODBUS-TCP servers.

1) Increasing Flow Rate

In this experiment, we employed two MODBUS clients to
fetch data from the MODBUS servers in the testbed. The FBM
queried the four MODBUS servers once per second, and this
rate stayed constant throughout the experiment. A second
MODBUS client, which had a different IP address than that of
the FBM, initially queried a MODBUS server once every 10
seconds. After 2.5 hours, we changed the MODBUS request
rate to once per second, and let the experiment run for another
1.5 hours.

With a period length of 180 seconds, at the end of the first
period after the change of the request rate, the T statistic score
for DT of the flow from the second MODBUS client to the
MODBUS server was -11.13. For the sample size of 106 (i.e.,
the number of packets in the flow observed in that period), the
absolute value of the T statistic should be less than 3.39 with
99.9% probability. As a result, the flow was flagged as
anomalous. The T statistic for DT of the flow became -232.80
at the end of the next period, when more anomalous traffic
was observed, which also triggered the anomaly detection
algorithm to generate an alert. As time went on, the historical
record for the flow was updated with data pertaining to the
higher MODBUS request rate, and the T statistic for DT
gradually decreased and became -28.63 at the end of the
experiment.

2) Decreasing Flow Rate

This experiment was similar to the one pertaining to
increasing flow rate. The main difference was that we decrease
the MODBUS request rate from once every second to once
every two seconds, as opposed to increasing the request rate.

With a period length of 60 seconds, at the end of the first
period after the change of the request rate, the T statistic score
for DT of the flow from the second MODBUS client to the
MODBUS server was 3.65. For the sample size of 54, the
absolute value of the T statistic should be less than 3.49 with
99.9% probability. As a result, the flow was detected as
anomalous.

3) Modscan

In this experiment, the normal traffic profile is similar to that
of the flow rate experiments, except that we performed a
MODBUS unit identifier scan from the MODBUS client host
against the MODBUS server using the modscan tool. The
scan, lasting for several minutes, involved sending a number
of MODBUS requests to the MODBUS server with different
unit identifiers for determining the valid identifiers based on
the responses. Every MODBUS request used in the scan
involved establishing a new TCP connection, which affected
not only the DT statistic, but also the packet length statistic for
the flow.

With a period length of 60 seconds, at the end of the first
period after modscan was started, the T statistic score for DT
of the flow from the MODBUS client host to the MODBUS
server was -12.98. For the sample size of 247, the absolute
value of the T statistic should be less than 3.373 with 99.9%
probability. Thus, the flow was detected as anomalous. At the
end of the next period, the T statistic scores for DT and for
packet length were -75.16 and -8.43, respectively—both
greater than the threshold needed for anomaly detection.

The results of the flow anomaly detection indicate that the
technique is able to detect anomalous flows effectively, but it
is somewhat more subject than the pattern anomaly approach
to concept drift.

VIII. CONCLUSION AND FUTURE WORK
We investigated the usefulness of communication pattern
anomaly detection for process control networks. Specifically,
we conducted experiments to evaluate two anomaly detection
techniques, namely, pattern-based detection for
communication patterns among hosts, and flow-based
detection for traffic patterns for individual flows. Our initial
experimental results are encouraging. The absence of anomaly
reports in the normal traffic supports our hypothesis that
anomaly-based detection is feasible in process control
networks at much lower false alarm rates than in general
enterprise systems. These techniques were able to detect some
basic attacks launched against the MODBUS servers in our
DCS testbed. As for future work, we plan to develop real-time
intrusion detection sensors based on these techniques, and to
test them in more realistic environments.

ACKNOWLEDGMENT
This material is based upon work supported by the Department
of Energy under Award Number DE-FC26-07NT43314.

This report was prepared as an account of work sponsored by
an agency of the United States Government. Neither the
United States Government nor any agency thereof, nor any of
their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would
not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States
Government or any agency thereof. The views and opinions of
authors expressed herein do not necessarily state or reflect
those of the United States Government or any agency thereof.

REFERENCES

[1] S. Cheung, B. Dutertre, M. Fong, U. Lindqvist, K. Skinner, and A.
Valdes, “Using Model-based Intrusion Detection for SCADA
Networks”, Proceedings of the SCADA Security Scientific Symposium,
D. Peterson, ed., 2007.

[2] S. Grossberg (ed.), “Neural Networks and Natural Intelligence,” MIT

Press, 1988.

[3] S. Kohonen, “Self-Organizing Maps”, 3rd Edition, Springer, 2001.

[4] A. Valdes, “Detecting Novel Scans Through Pattern Anomaly

Detection”, Proceedings of the DARPA Information Survivability
Conference and Exposition (DISCEX III), Volume 1, pp. 140-151.

