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Abstract. We propose failure information analysis as a novel strategy for
uncovering malware activity and other anomalies in enterprise network traf-
fic. A focus of our study is detecting self-propagating malware such as worms
and botnets. We begin by conducting an empirical study of transport- and
application-layer failure activity using a collection of long-lived malware traces.
We dissect the failure activity observed in this traffic in several dimensions,
finding that their failure patterns differ significantly from those of real-world
applications. Based on these observations, we describe the design of a proto-
type system called Netfuse to automatically detect and isolate malware-like
failure patterns. The system uses an SVM-based classification engine to iden-
tify suspicious systems and clustering to aggregate failure activity of related
enterprise hosts. Our evaluation using several malware traces demonstrates
that the Netfuse system provides an effective means to discover suspicious ap-
plication failures and infected enterprise hosts. We believe it would be a useful
complement to existing defenses.

1 Introduction

Due to the persistent and ubiquitous nature of the Internet’s background radia-
tion [35], modern enterprise networks have become relentless targets of attacks from a
plethora of Internet malware including worms, self-propagating bots, spamming bots,
client-side infects (drive-by downloads) and phishing attacks. Estimates on the num-
ber of malware instances released vary vastly (between ten of thousands to more than
hundred thousand per month) depending on census methodologies [16, 31]. However,
there is consensus that malware is becoming increasingly prevalent, sophisticated, and
a formidable threat not just to network communications but also as a purveyor of data
and identity theft. Network security analysts in today’s enterprise networks rely pri-
marily on a combination of network intrusion detection systems (NIDS) [36, 41] and
antivirus (AV) systems to shield enterprise networks from this deluge of malware.

A NIDS passively monitors packets on the network wire and uses rules to discover
suspicious activities, such as scans and exploit attempts, directed against systems in
the network. Knowledge-based and behavior-based detection are two fundamental ap-
proaches to intrusion detection [14]. Knowledge-based intrusion detection systems [41]
use signatures of well-known exploits and intrusions to identify attack traffic. How-
ever, reliable and accurate performance requires constant maintenance of the knowl-
edgebase to reflect the latest vulnerabilities. In contrast, behavior-based intrusion



detection techniques [27] compare current activity with a predefined model of normal
behavior and flag deviants from known models as anomalies. A drawback with many
behavioral approaches is the inherent difficulty of building robust models of normal
behavior whose incompleteness results in high false alarm rates.

Contemporary AV software monitors end hosts by performing periodic system
scans and real-time monitoring, checking existing files and process images with a
dictionary of malware signatures that is constantly updated. Certain vendors also
incorporate heuristic detection engines that identify infections based on static traits
(e.g., whether it is packed) or approximate behavioral profiles of known malware.
Despite their ubiquity and sophistication, most AV systems have been shown to
have unsatisfactory detection rates [10] especially in early days of an outbreak. Our
experience at honeynets shows that the median day-zero detection rate for 30 AV
vendors is around 82% [26]. The proliferation of the recent Conficker A and B worms
offers further testament to the inefficacy of current AV systems. By leveraging a
well-publicized Windows RPC vulnerability (MS08-67) [32], Conficker has success-
fully infected millions of hosts [17, 18], and in the early days of the outbreak only
3/39 AV engines were able to detect this binary as being malicious [43]. Like most
malware, Conficker disables AV updates after infection, so subsequent signature
updates by AV vendors were not particularly effective in curtailing this worm.
In summary, the remarkable success of a scan-and-infect worm such as Conficker
(seven years after Code Red I [13]), underscores why network security analysts
need better tools to understand, react to, and cope with infections in their enterprises.

Our approach: In this paper, we introduce a new behavior-based approach to detect
infected hosts within an enterprise network. Our objective is to develop a system that
is independent of malware family and requiring no apriori knowledge of malware
semantics or command and control (C&C) mechanisms. We devise an approach that
is motivated by the simple observation that many malware communication patterns
result in abnormally high failure rates. While prior efforts have tried to exploit this
in the specific context of portscans [28] or studied types of failures [39, 44], we extend
this to broadly consider a large class of failures in both transport and application
levels. We have developed a prototype system called Netfuse that correlates network
and application failures to detect infected hosts within enterprise networks. The event
correlation engine of our system is inspired by prior systems such as BotHunter [23].
While BotHunter relies on exploit signatures from Snort, an important distinction of
our approach is that it requires no specific knowledge of malware. Instead, Netfuse
relies on application knowledge that it obtains from network protocol analyzers such
as Wireshark [8] and L7 filters [5]. In some sense, Netfuse could be considered a
behavior-based detection system whose model for malicious behavior is derived from
underlying protocol analyzers. However, its novelty lies in its use of multipoint failure
monitoring for support vector machine (SVM)-based classification of malware failure
profiles. We believe that Netfuse could be a useful sensor input to BotHunter.

The Netfuse system has several integral components. First, it has a protocol failure
analysis component that is built on the Wireshark protocol analyzer. It specifically
analyzes transport failures (TCP RSTs, ICMP) and application failures on common
ports TCP/25 (SMTP), TCP/80 (HTTP), UDP/53 (DNS) and TCP/6667 (IRC).
Furthermore, it uses L7 filters to detect when common protocols are observed in
nonstandard ports (e.g., HTTP or DNS activity on a high-order port) and routes
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them to the appropriate Wireshark protocol handler. Second, it has a lightweight
DNS monitor that monitors DNS activity between enterprise clients and the DNS
server. Finally, it has a clustering and correlation component that aggregates alerts
observed by the two sensors producing a condensed summary of failure activity
that classify anomalous activity. For every IP with failure activity, it computes
four different scores: (i) composite failure (ii) divergence (iii) persistence and (iv)
failure entropy. This information is used by an SVM driven classification engine to
detect suspicious hosts. Furthermore, a cluster summary is produced that aggregates
suspicious hosts with similar failure profiles. The combination of these scores and
clustering enables security analysts to easily comprehend failure patterns in the
enterprise and quickly identify suspicious hosts in the network. We find that our
approach is effective in isolating the presence of a vast majority of contemporary
malware without specialized signatures.

Contributions: The contributions of our work are as follows:

1. We describe application-aware failure monitoring as a new approach for identifying
infected hosts and uncovering anomalies in enterprise traffic.

2. We develop a prototype implementation of the Netfuse monitor using Wireshark
and L7 filters. An important aspect of the implementation is multi-point failure
monitoring.

3. We develop an SVM-based classifier to identify infected hosts.
4. We use multiple network traces of malware and benign traffic to evaluate detection

rates and the false positive rate of Netfuse.

The remainder of the paper is organized as follows. In Section 2, we provide an
analysis of network and application failures that motivate the Netfuse system. In Sec-
tion 3, we introduce our Netfuse prototype implementation. In Section 4, we describe
our classification and clustering algorithm. Then we describe our in-situ and online ex-
periences with the Netfuse system and analyze results in Section 5. We survey related
work in Section 6. We summarize our results and discuss future work in Section 7.

2 An Empirical Survey of Application Failure Anomalies

We explore reasons behind the occurrence of application failures in enterprise traffic.
We begin with a case study analysis of the failure patterns of malware using over
30 long-lived malware (5-8 hour) traces. We then examine failure profiles of several
normal applications that may cause failures similar to malware including webcrawlers,
P2P software and popular video sites. Then we discuss the potential and implications
of using protocol failure anomalies to detect misbehaving clients in the enterprise
network.

In the following, we define the term failure to broadly refer to both network and
application failures. Network failure corresponds to presence of packets, indicating
transport-level failures such as TCP RSTs and ICMP unreachable messages in the
trace. Application failures indicate higher-level protocol failures as shown in Table 1.

2.1 Malware Trace Analysis

The first part of our analysis is a study of application failure patterns observed in
contemporary Internet malware. We started with a corpus of 32 different malware
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Table 1: Commonly observed protocol failure messages

Protocol Layer Failure Types

DNS Application NXDOMAIN (No such domain)

HTTP
Application 400 Bad Request, 404 Not Found,

403 Forbidden, 411 Length Required
500 Internal Server Server, 501 Not Implemented

FTP
Application Transient Negative Completion reply

Permanent Negative Completion reply

SMTP

Application Domain service not available, mailbox unavailable
Syntax error, command not implemented

Machine does not accept mail, mailbox unavailable
User not local, requested mail action aborted

IRC
Application No such nick, No such server

No such channel, Cannot send to channel

instances that we each executed in a controlled virtual machine (VM) environment
for several hours. The sources of the malware include our honeynet [43], malicious
email attachments, and the Offensive Computing website [6]. To obtain accurate and
complete results of network interaction, it was necessary to collect long-lived traces
and to allow the hosts to communicate with the outside world. We collected tcpdump

traces of all network activity, and we analyze the failure patterns found in these traces
below.

We find that contemporary malware instances generate a diverse set of failures,
in both the transport and application levels. Interestingly, we find that these failures
could be attributed to a small set of causes, i.e., broken C&C channels, scanning
and spam delivery attempts. Furthermore, the volume of failure activity seems to be
strongly correlated with the volume of overall network activity. For example, scanners
tend to generate a lot of flows, many of which generate transport failures. Likewise,
many malware instances periodically retry failed communication attempts, which re-
sults in larger network traces with redundant activity.

Among the 32 malware instances, eight did not generate failures. These include
two worms, three IRC botnets, and three spyware instances. As the three IRC bots
contacted the server successfully and did not receive any MOTD commands from
the server, there were no failures. Likewise, the well-behaved spyware binaries simply
contacted a few active websites.

Table 2 illustrates the distribution of failures by protocol for each of the mal-
ware instances that generated transport or application failures. First, we note that
24/32 botnet and worm instances generate some sort of failure (either application
or transport). We find that most of them (18/24 instances) trigger DNS failures.
Furthermore, malware with spam capabilities (notably Storm) also tends to produce
high volumes of SMTP failures. Finally, malware with P2P C&C channels and mal-
ware with scanning behavior are also associated with abnormally high ICMP failures.
We examine the failure breakdowns within each protocol in greater detail below and
provide explanations for their causes.

DNS failures: In our analysis, we found that 18 malware traces contained DNS
failures. All of these were due to unresolved domain names or NXDOMAIN responses
from the DNS server. In many cases, particularly for IRC bots, these arise because
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the C&C server gets taken down by ISPs or is otherwise blocked by law enforcement.
While many well-behaved applications terminate connection attempts after a few
failed tries, we find that malware tends to be remarkably persistent in its repeated
attempts to contact its C&C server. We also observed that for certain malware, there
is built-in redundancy in that they will query a set of domain names for the remote
server. Although some domains do not resolve, C&C communication will still continue
based on the successful DNS lookups.

In fact, for some bots, such as Kraken, DNS failures could be considered part of
normal behavior. This malware uses a dynamic C&C-based communication structure
that constructs a new list of C&C rendezvous points each day. The fully qualified
domain name (FQDN) of the C&C server is constructed from a dynamically generated
hostname (based on the date) and one of the following four base domain names:
.mooo.com, .dynserv.com, .dyndns.org, and .yi.org. As long as the botmaster
and the malware use the same algorithm to generate domain names, it is very easy for
the botmaster to change the C&C server names and IP addresses to evade detection.
While resolutions for most of these DNS domains are expected to fail everyday, the
botmaster simply has to register one of the daily domains when he wants to instruct
the bots to perform a task. Hence, a lot of DNS lookup failures are observed in
the trace. For example, our trace shows that the host received 1740 DNS failures in
about 5 hours, which is highly anomalous for a normal host. A similar strategy is also
adopted by the recent Conficker worms [18].

SMTP failures: In our analysis, we found that SMTP failures result from spam-
ming behaviors. A typical example is the Storm botnet, which also uses SMTP to
generate emails for spam as well as propagation. Hence, its trace includes a flurry of
SMTP activity and a lot of failures. Certain SMTP servers immediately close the con-
nection after the TCP handshake. Other failures occur early in the SMTP connection
setup, most common reason being “550 Recipient address rejected: User unknown”.
In our traces, we found hundreds of SMTP failures from several email servers. But
these failures were not persistent, i.e., Storm does not retry a rejected username on
the same SMTP server. In certain traces of the Storm botnet, this spam behavior
stops after an hour, suggesting that certain malware instances do eventually learn
from failures (albeit after a long time). We feel that any malware that generates spam
is bound to produce such failures. Besides Storm, there were other malware instances
that attempted to send spam email, e.g., Bobax, but could not succeed in establishing
communication with the remote SMTP server.

HTTP failures: We found that the HTTP failures in our traces could be at-
tributed to two reasons: (1) sending mal-formed packets for DoS attacks and (2)
querying for a configuration file that has since been removed from the control server.
For example, malware Mimail.L sends the following request to the target HTTP server
to launch a DoS attack: “GET / HTTP/1.0” to port 80, followed by 2048 bytes of
data to port 80. As a result, it receives a flurry of “HTTP 400” errors from the
server implying “Bad or Malformed HTTP request”. Certain other failures are due
to the missing files in controlling servers. For example, clients infected with the Weby
malware will try to get a configuration file from several servers. Since this file is re-
moved in the servers, it results in “HTTP 404/File not found” errors, which are quite
persistent. In our 5-hour trace, there were 335 “HTTP 404/File not found” failures.

IRC failures: For botnets that use the IRC protocol for communication and
control, the following failure modes are common. Sometimes, the channel is removed
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Table 2: Failure profile summary (in hourly rates) of 24 malware instances

Malware Class DNS HTTP ICMP SMTP TCP

rate rate rate rate rate

Look2me Spyware 5
Wsnpoem Spyware 15

Bobax HTTP botnet 148 191
Kraken I HTTP botnet 348

AgoBot IRC botnet 5312
Gobot IRC botnet 891 9539
Sdbot IRC botnet 2188

Sdbot II IRC botnet 53
Spybot I IRC botnet 283 1506
Spybot II IRC botnet 16 50
Spybot III IRC botnet 16
Wootbot IRC botnet 275

Irc.Webloit IRC botnet 477

Nugache P2P botnet 291
Storm I P2P botnet 26 5432 284 73
Storm II P2P botnet 27151

Allaple Worm 9 33413 5738
Grum Worm 60 160 31330
Kwbot Worm 37
Mytob Worm 221 385 53
Netsky Worm 51012

Protoride Worm 503 151
Virut Worm 222 10 409 14
Weby Worm 67 24

from a public IRC server, which results in IRC application failures like “no such
channel”. In certain other cases, the channel might be full due to too many bots,
which would result in a “Cannot join channel” message.

TCP layer failures: We consider unproductive TCP flows i.e., which do com-
plete a TCP handshake and/or terminate the connection with RST prior to sending
any payload. The prevalence of such unproductive flows (which also results from scan-
ning behavior), is another characteristic of malware. For some malware instances, we
observed that there were continuous TCP layer failures in certain ports. For example,
some IRC botnet clients receive failures in the IRC port (TCP/6667) from the remote
servers (either because the server has been taken down or because it is too busy).
Certain Bobax clients receive failures in the SMTP (TCP/25) port from remote email
servers because the client network has been blacklisted. While scanning is usually
good evidence of malware, we find that persistent TCP failures from the same remote
host could be another useful indicator of malware. For example, we observed that
many IRC botnets generate TCP failures from being unable to contact a previously
active C&C server that has since been taken down.

ICMP failures: In our analysis, we found that ICMP failures result from scanning
behavior and communication patterns of P2P botnets such as Storm. As we discuss
below, this is quite unlike normal P2P applications, such as BitTorrent and eMule,
that generate few ICMP failures.

2.2 Failure Patterns of Normal Applications

The second part of our analysis studies failure patterns of normal applications. As
studying failure patterns of all applications is outside the scope of this study, we focus
on applications that one might typically expect to produce failure patterns similar
to what was observed in the malware corpus that we analyzed. The goal of this
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Table 3: Normal application trace summary

Type Site Size Time Pkts # URLs
news.sohu.com 3.1 GB 2 days 3577674 25334

Webcrawler amazon.com 1.9 GB 2 days 2058630 23111
Mirror bofa.com 144 MB 12 hours 186711 4141

imdb.com 252 MB 16 hours 333583 8113
P2P BitTorrent 6.1 GB 18 hours 7338627 n/a
P2P eMule 1.3 GB 1 day 1982682 n/a

Video youtube.com 16MB 2 hours 25498 n/a

study is to understand the degree to which malware failure patterns could be used to
distinguish malware traffic from other benign enterprise traffic. Our Netfuse system
uses these network failures as symptoms to detect suspicious hosts. Thus, these results
could inform the feasibility and design of the Netfuse system and help us prioritize
failure patterns that are used for detection. Specifically, we focus our investigation on
three classes of applications, which at the first glance may cause similar failures: web
crawler, P2P applications (BitTorrent, eMule), and online video service (youtube).

We collected several long-lived traces for each of these normal applications, in
order to get a good understanding of the types of failures they generate. Table 3
provides a summary of these traces.

Webcrawler: webcrawlers, popularly known as webspiders or webrobots, are au-
tomated scripts that systematically scan all web-pages in a site looking for specific
types of content. These are commonly used by search engines to build automated
meta-data (indexes) of public web-pages, but are also used for mirroring websites,
data mining, and by other web-based applications such as mashups and portals. Since
webcrawlers have become very popular and they follow hyperlinks in an automated
fashion, one might expect such systems to frequently stumble upon many failed links
and generate HTTP failures. Hence, we pick them as the first class of application to
study.

We used the default settings and -m (mirror) option in wget [3] that forces wget
to act as a webcrawler, recursively following all links in a given site. until all the
pages have been downloaded. We collected traces from crawling four popular websites
in the US and China including bofa.com, amazon.com, imdb.com and sohu.com.
Each crawl took 1-2 days and involved 144 MB to 3 GB of data transfer. We found
that the webcrawler produced very few HTTP and transport failures. As an example,
for the website news.sohu.com, there were only 18 transport layer (TCP) failures
and 66 HTTP failures in 2 days. Other websites also show the similarly low failure
patterns as shown in Table 4. As one might expect, we find that in webcrawlers,
HTTP failures are restricted to “HTTP 404/File not found” messages.

P2P applications: We select two popular peer-to-peer (P2P) software programs
for our analysis: BitTorrent and eMule. BitTorrent and eMule are P2P file sharing
protocols used to transfer large amounts of data such as media files, software, and
OS distributions. A single large file is broken up into pieces, which are replicated and
distributed among a set of peers. In BitTorrent, the publisher of the file acts as the
first seed, and every peer who downloads the data also uploads the content to other
peers. A client wishing to download the file first obtains the meta-data file, called the
torrent, which specifies where to download the pieces. Thus, a single HTTP request
for a large file is translated into several small data requests to various peers in the
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Table 4: Failure profile summary (in hourly rates) for normal applications

Application Name HTTP ICMP TCP

rate rate # ports / rate
Web crawler(sohu) 1.4 1/0.4

Web crawler(amazon) 1/1.4
Web Crawler(imdb) 0.04 1/0.2
Web Crawler(bofa) 0.8 1/0.9

BitTorrent 0.6 382/333
eMule 68 839/370

network. eMule is similar in concept but implements a different protocol based on
Kademlia [4].

Since the status of peers in both of these networks can dynamically change (from
online to offline), we expect these P2P applications to have many failures. We used
BitTorrent to download a popular Linux distribution (Fedora 10) and monitored the
activity of this peer for one day. It turns out there were very few (11) ICMP failures
and HTTP failures, but many TCP failures. Likewise, we used eMule to download
another popular Linux distribution (Ubuntu) and monitored its activity for a day.
It had many ICMP and TCP failures. An important difference between transport-
level failure profiles of BitTorrent and the malware we analyzed is that for BitTorrent
the TCP failures happen on a large set of ports. This did not occur in the malware
traces, i.e., failures were restricted to fewer ports and typically occurred in one or two
ports. As an example, most TCP failures with the Storm worm were dominated by
its activity on port 25/TCP (arising from its spam campaigns and unrelated to its
P2P communication).

Online video service: YouTube.com is one of the largest and most popular web-
sites that provide online video hosting service. Users can upload, view, and publicly
share video clips. In this experiment, we collected traces by opening videos from
youtube.com, and then keeping the browser open for several hours. In analyzing the
trace, we found that there were no transport-layer failures. While we did find several
“HTTP 304/Not Modified” errors, we did not find any other application-level failures.
Since “HTTP 304/Not Modified” messages were not found in the malware traces, we
infer that this might be an error code to be considered in a whitelist.

2.3 On the Potential of Failure Analysis to Uncover Suspicious

Activities

We summarize the results of our exploratory empirical analysis on the utility of failure
profile analysis. After our analysis of a collection of traces from both malware and
benign applications, we find several notable differences in failure pattern between
malware and normal applications that could be exploited in network-based detection
systems.

1. Failures in malware occur frequently in both the transport and application levels.
In general, failures are rare for normal applications, except for certain P2P pro-
tocols that can generate high volumes of transport failures. Thus high volume of
failure traffic could be a useful indicator of malware.
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2. DNS failures and in particular NXDOMAIN errors are common among malware
applications and relatively infrequent in normal applications. Furthermore, these
failures tend to persist (repeat with high frequency) in malware.

3. Failures in malware applications tend to be restricted to a few ports and often a
few domains. Thus, malware failure patterns tend to have low entropy.

3 Architecture

In the prior section, we explored the possibility to using failure information to detect
suspicious hosts in the enterprise network. Here, we describe the system framework
and our prototype implementation of a system that realizes our ideas.

3.1 System Overview

As shown in Figure 1, Netfuse is composed of three parts: the failure information anal-
ysis (FIA) engine, DNSMon and the correlation engine. The FIA engine will typically
be deployed on the perimeter of the enterprise networks. The major function of this
component is to extract the failure information by looking at all packets that transit
the enterprise gateway router. It will generate the failure information if any, by in-
cluding both flow-level and application-level information (if available). The DNSMon
system monitors interaction between enterprise clients and the local DNS server.

After the failure information is collected, the correlation engine implements a
diagnostic algorithm to classify hosts according to their failure profiles and to group
those suspicious hosts with similar failures. It then generates a classification report
that identifies suspicious hosts based on four different criteria: failure volume, failure
entropy, failure persistence, and failure uptick. We implemented our prototype FIA
engine by modifying the wireshark network protocol analyzer. Our correlation engine
is implemented in Python and uses a publicly available clustering package [1].

3.2 Building an FIA from Wireshark

Wireshark( [8]) is an open-source network protocol analyzer that is based on libpcap
library. Hence, Wireshark can analyze packets captured from a live network connection
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or read from a captured pcap trace file. It is distinguished by its flexible design that
makes it easy to add dissectors for new protocols and built-in support for hundreds
of popular protocols.

We modified Wireshark to automatically extract failure information. The failures
we consider include transport-level and selected application-level protocols such as
FTP, HTTP, SMTP, DNS, and IRC. For each ICMP failure, we record the error type
and client IP address. For TCP failure, we record client and server IP addresses and
corresponding port numbers. For DNS failures, we record the failure type, domain
name, and client IP address. For FTP, IRC, HTTP and SMTP failures, we record
the server IP address, error code, client IP address, and detailed failure information
that may be helpful to an administrator. We also capture the packet associated with
each failure message. We focus on these five protocols simply because they were the
most popular in the enterprise traffic that we monitored. However, the design of
Wireshark makes it straightforward to track failures in other protocols. Finally, as
we are interested only in identifying potentially infected local hosts, we configure our
system to only track inbound failure messages.

3.3 L7-based Automatic Protocol Inference

One problem with Wireshark is that it does not have built-in protocol inference ca-
pability. It does not detect when a well-known protocol, e.g., HTTP, is used in non-
standard ports. Wireshark expects each dissector to be tied to one or more ports and
relies on the user to explicitly decode the packet by choosing a dissector when the
packets are observed in unspecified ports. This is a fundamental limitation especially
for malware analysis, as malware often transmits packets in nonstandard ports to
evade monitoring systems.

To improve the fidelity of the FIA engine, we enhance Wireshark with L7 filter
protocol signatures. L7-filter [5] is a classifier that can identify packets based on
packet payload. It uses regular expressions to automatically classify packets as
belonging to certain common protocols. We provide below examples of L7 protocol
signatures for HTTP and IRC:

− HTTP Protocol: http/(0.9|1.0|1.1)[1-5][0-9][0-9][\x09-\x0d-˜]*(connection:|
content-type:|content-length:|date:)|post[\x09-\x0d-˜]*http/[01].[019]

− IRC Protocol: ˆ(nick[\x09-\x0d]*user[\x09-\x0d]*:|user [\x09\x0d]*:[\x02-
\x0d]*nick[\x09-\x0d]*\x0d\x0a)

We modified the connection struct in Wireshark to maintain a dissector tag for
each connection. Every connection starts without any pre-specified dissectors. When a
packet arrives, we first check to see if the connection has been allocated to a dissector.
If not, we check to see if the packet matches one of the L7 filter signatures. If it finds
a suitable dissector, then the connection struct is updated so future packets can be
accelerated, bypassing the L7 regular expression check. Once the packet is parsed
with the appropriate dissector, the output is examined for any failure messages that
are stored in a log file. The FIA engine is installed as a monitor on the span port of
the gateway router of the enterprise networks and logs inbound failure responses from
remote servers. Figure 2 illustrates the modified Wireshark packet processing engine.
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Fig. 2: Modified Wireshark packet processing engine

3.4 Multipoint Deployment

We begin with a simplified overview of a domain name lookup using the domain name
service. As in our deployment, DNS servers are typically located inside the enterprise
network. Local enterprise clients submit name resolution requests to the local DNS
server (resolving name server). The resolving server checks its cache and if the name
does not exist queries the authoritative name server on behalf of the local client.
(The resolving server might have to query additional servers to obtain the name of
the authoritative server for a specific domain.) Finally, the resolving name server
responds back to the client with the appropriate IP address or NXDOMAIN if the
name does not exist, or other type of DNS failure.

A side-effect of the hierarchical DNS system is that it poses additional challenges
for any network-based monitoring system as monitoring the gateway only provides a
view of the interaction between the resolving name server and external DNS servers.
While suspicious domain lookups could be identified, they cannot typically be tracked
back to the client that originated the name lookup. Netfuse addresses this problem
by integrating an additional lightweight monitor (which we call DNSMon) that tracks
activity between the local clients and the resolving name server. DNSMon produces
regular alert logs that summarize DNS failure activity of all enterprise hosts. By
combining DNSMon alerts with the data collected at the gateway monitor, we get a
comprehensive log of network failure activity. Next, we describe how the Netfuse cor-
relation engine processes this information to intelligently isolate suspicious enterprise
hosts.

4 Correlation and Clustering Engine

Here, we first describe the algorithm that we implement for ranking suspicious hosts
based on failure profiles. Next, we describe our algorithm for classifying groups of hosts
with similar failure profiles. Finally, we discuss some techniques that we implemented
for reducing false positives in our enterprise network.
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Based on our empirical experience from analyzing malware traces, the current
prototype system implementation is focused on failures that occur in the transport-
layer and five application-layer protocols: HTTP, FTP, SMTP, DNS, and IRC. As
Wireshark has dissectors for hundreds of protocols, it is not difficult to extend the
system to support additional protocols. We now describe how our detection algorithm
works based on failure input from these protocol analyzers.

4.1 Detecting Suspicious Hosts

The primary inputs to the diagnostic algorithm are failure logs obtained from the FIA
engine and DNSMon described in Section 3. First, we classify and aggregate failure
information based on host IP address, protocol, and failure type. Next, we compute
the following four different scores for each host in the enterprise network with failure
activity: (i) composite failure, (ii) failure divergence, (iii) failure persistence and (iv)
failure entropy. The scores are each normalized to be in the range of 0 and 1. Finally,
we use an SVM-based learning technique to classify suspicious hosts. We begin by
describing the four scoring functions in greater detail.

Composite Failure Score: This score estimates the severity of the observed failures
by each host based on volume. For every host, the failure profile can be represented
as a vector{Ni}, where Ni represents the number of failures of the ith protocol. We
proceed as follows to compute the composite failure score for each host.

Step 1: In Section 2, we observed that malware tends to have a large number of
failures. So the first step in our analysis is a filtering step that culls hosts with the
fewest number of failures. Let αi, βi, and γi represent the number of application level
failures, number of TCP RSTs and number of ICMP failures respectively of host i.
Furthermore, let µ(β) and σ(β) represent the average and standard deviation of TCP
failures for a host. Likewise, let µ(γ) and σ(γ) represent the average and standard
deviation of ICMP failures for a host.

Specifically, we consider only hosts that satisfy either of the following three con-
straints: (1) αi > τ (where τ is a constant, set to be 15 for our experiments); (2)
βi > µ(β) + 2 ∗ σ(β) (TCP RST count more than two standard deviations from the
mean); or (3) γi > µ(γ) + 2 ∗ σ(γ) (ICMP failure count more than two standard
deviations from the mean). The final two constraints remove backscatter traffic [33],
which artificially inflates the TCP RST and ICMP failure counts for IP addresses in
the network.

Step 2: Next, we compute a composite score for each of the remaining hosts as
follows: score(hosti) =

∑n

i=1 Ni/Ti, where Ti is the total number of failures for ith
protocol across all hosts.

Step 3: Finally, we sort all the hosts according to the score calculated in the
second step. Hosts with higher scores are more suspicious than hosts with lower scores.

Failure Divergence Score: The objective of the failure divergence score is to mea-
sure the degree of uptick in a host’s failure profile. In particular, we would like to
measure the delta between a host’s current (daily) failure profile and past failure
profiles. We expect that newly infected hosts would show a strong and positive di-
vergence in their failure patterns while other hosts (clean hosts and those that have
been infected for a while) would demonstrate a more stable failure profile.
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To quantify this we adopt a well-known statistical forecasting technique, exponen-
tially weighted moving averages (EWMA) [7], that uses a weighted moving average of
past observations as the basis for predicting the failure profile for the next day. EWMA
uses an exponential distribution to weigh recent observations more heavily than past
observations and it is controlled by the parameter α, where α is the smoothing factor,
and 0 ≤ α ≤ 1. In our measurements, we set α to be 0.5. We compute divergence as
follows for each host in the network. Let Eijt correspond to the expected number of
failures for host i, on protocol j on day t. We compute Eijt as shown in Figure 3.
We then compare the actual value Xijt with Eijt by calculating the distance as fol-
lows: 1-(Eijt-Xijt)/(Eijt+Xijt). Finally, we normalize by dividing by the maximum
divergence score across all hosts in that day to obtain a score in the range [0,1].

Eij0 = Xij0 (1)

Eijt = αXi,j,t−1 + (1 − α)Ei,j,t−1 (2)

Distit =
n

X

j=1

1 −
Eijt − Xijt

Eijt + Xijt

(3)

Divergenceit =
Distit

∀k max(Distkt)
(4)

Fig. 3: Simple exponential prediction model and divergence computation

Failure Entropy Score: The failure entropy score measures the degree of diversity
in a host’s failure profile. This is based on the insight derived from Section 2 that
failures in many malware applications tend to have a high degree of redundancy, e.g.,
failures are often restricted to a few ports or domains such as in a bot that tries to
repeatedly contact a C&C server that is currently inactive.

For TCP failures, we track entropy in the server distribution and host distribution
of each client receiving TCP RST failures. For every server Hi, we record the number
of Ni failures from it. We repeat the same for each server port Pi. For DNS failures,
we track entropy in the domain names that are associated with failures. For each
domain name Di appearing in failure response, we record the number Ni. For HTTP,
FTP IRC, and SMTP failures, we track entropy in the disribution of various failure
types (e.g., HTTP/404) within each protocol and remote servers that issue the errors.
For each host Hi and each error type Ei, we calculate the corresponding number Ni.
We do not consider ICMP failures in the entropy computation.

For those protocols that have two distribution sets, we calculate the average
entropy [2] for each set. We begin by computing weights for each host i and protocol
j. Then, for each host i, we compute the significance (s) of protocol j as sij =
Nij/

∑
k = 1nNkj (i.e., number of failures of host i in protocol j divided by the

total number of failures in protocol j across all hosts). The weight of protocol j for
host i is simply its normalized significance wij = sij /

∑n

k=1 sik. The weighting
function ensures that for each host, protocols that are responsible for a large portion
of its failures will dominate its entropy value. Next, for each host i and protocol j,
we calculate the entropy pij . The failure entropy score for the host is simply the
weighted average entropy score, i.e.,

∑n

i=1 wi ∗ pi.
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Failure Persistence Score: The final score is failure persistence, which is motivated
by the observation from our case study that malware failures tend to be long-lived.
Prior approaches have used autocorrelation techniques to detect long-lived periodic
behavior of malware additivity [24]. While we could leverage similar statistical
approaches to measure persistent malware activity, we adopt a simpler approach to
measure persistence. We simply split the time horizon into N parts (where N is set to
24 in our prototype implementation), and compute the percentage of parts where the
failure happens. High failure persistence values provide yet another useful indicator
of potential malware infections.

SVM-based Algorithm to Classify Suspicious Hosts: Support vector machines
are a recent and well-studied family of supervised learning algorithms used for classi-
fication of multidimensional data. Given a training data set, SVMs work by building
a hyperplane (or a predictor function) that efficiently seperates positive and negative
examples. In our case, we are interested in the maximal margin classifier, i.e., a hyper-
plane that separates positive and negative examples with maximal distance. In many
environments, SVMs have been shown to outperform traditional linear classifiers. In-
deed, we had a similar experience in testing different classifiers on our data set. For
this system, we use a publicly available tool WEKA [9] to implement our SVM-based
classification. The input to the system is a series of four-dimensional vectors where
each vector corresponds to the four scores of a individual host. We train the system
using a set of malware traces and clean traces for which we have ground truth. The
classification problem is identifying the set of suspicious hosts in the network.

4.2 Detecting Failure Groups

After we get the result of suspicious hosts, we want to know whether they are infected
by the same malware. For example, we want to know whether they belong to the
same botnet. This information can help the network administrator rapdily assess
what has happened inside the network. To enable this, we developed a clustering
algorithm to detect failure groups which we discuss below. We begin by defining the
scoring function that is used for comparing failure profiles.

Scoring Function: According to the description above, each type of failure can
be represented as a set of (Fi,Ni), where Fi is the failure property and Ni is the
number of failures with this property. Given this representation, we can define the
similarity between two hosts as follows. The pseudocode for the algorithm is provided
in Algorithm 1. For each protocol, the algorithm compares the number of failures for
hosts i and j. The similarity score is incremented by protocol failure count of each
host minus the difference between the larger and smaller failure count. It should be
apparent that hosts with identical failure profiles would end up with higher similarity
scores. Finally, the similarity score is normalized by dividing by the total number of
failures between the two hosts.

Clustering Method: The similarity metric enables us to cluster hosts into distinct
groups based on their respective failure profiles. We apply hierarchical clustering
based on Peter Kleiwig’s publicly available clustering package [1]. The unique aspect
of this tool is its flexibility, which lets us choose between seven different clustering
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Let (Fi,Ni) be the set of one host, and (Fj ,Nj) be the set of the other.
procedure Similarity((Fi,Ni), (Fj ,Nj))
Let sum = 0 be the total number of failures of these two sets ;
Let sim = 0 be the number of failures that show similarity;

1 foreach (Fik,Nik) in set (Fi,Ni) do

2 foreach (Fjl,Njl) in set (Fj ,Nj) do

3 if Fik = Fjl then

4 sim = sim + (Nik + Njl − abs(Nik − Njl))
5 sum = sum + Nik + Njl

end
end

6 Return sim/sum;

Algorithm 1: Function to calculate similarity between two failure profiles

Table 5: Training and testing data set

5-day 12-day

Institute Trace Institute Trace

Malware Trace I Training Testing
Malware Trace II Testing
Malware Trace III Testing

algorithms. We chose Ward’s minimum variance clustering method, which is widely
used for hierarchical clustering. The clustering generates a dendrogram that illustrates
similarity among hosts in the network based on their failure profiles. Then instead
of fixing a threshold to cut them into clusters, we implement Silhouette Validation
Method [37] to find the optimal cut index.

5 Evaluation

To evaluate the performance of Netfuse, we conducted comprehensive tests to
measure its detection and false positive rates. The traffic that we use includes five
traces shown in Table 5: three malware trace sets and two clean traces from a
research institute network, which we refer to as the institute trace. First, we built a
model from the training trace. Then to test the classification performance, we use
traces from different malware sets and mix them with the institute traces.

1. Malware Trace I: We reuse 24 traces from Table 2 which we combine with clean
traces to build the classification model.

2. Malware Trace II: This data set contains five malware families that are not
included in the training set (Peacomm, Kraken, Rbot, Mimail and Bifros) and three
malware instances represented in the training set. We created a VMware-based
virtual machine (VM) environment running eight isolated Windows XP virtual
machines, infecting each with a different malware instance. We let these systems
run for 10 hours and collected traces of all their network activity. We repeated the
experiment three times collecting a total of 24 traces (three per malware). We use
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Fig. 4: Detection (left) and False Positive (right) rates on Institute/malware I,II,III mixture
traffic

this trace to evaluate the classification system and the clustering component.

3. Malware Trace III: This data set contains more than 5,000 malware traces
that were obtained from a sandnet. This corpus is particularly attractive because it
represents a large and diverse collection of malware. However, a deficiency of sandnet
traces is that the malware binaries are often run only for a short period and many of
them do not generate any network activity. From this large corpus, we downselected
242 longer running traces based on duration and trace size.

4. Benign Institute Trace: We deployed our system online in the research institute
network and continuously ran it for over three weeks. The network is rigorously mon-
itored by NIDSs and has more than one hundred systems (mix of Linux, Macs and
Windows PCs). Being a relatively small, well-administered network with a diverse
mix of traffic makes it a good candidate for evaluating false positives. We use two
traces from this network (a 5-day trace for training and a 12-day trace for testing).
In our analysis of clients that generate many failures, we stumbled upon a group of
misconfigured Tor nodes that are part of another project. These hosts are grouped
together by the clustering engine and classified as benign by the SVM classifier.

5.1 Classification and Detection Results

We will first describe the training process. Then we use the built model to test the
performance of our system, including detection rate and false positives.

Training Process: In the training process, we use the SVM algorithm to build
a classification model. First, we combine malware trace I with the 5-day institute
trace to construct the input data set. Intuitively, a larger training set implies a more
accurate model. An example of a rule generated by the SVM algorithm is −4.266 ×
(normalized) divergence score −0.042 × persistence score +0.664 × entropy score
+0.561 × failure score + 1.8486. For our evaluation the detection rate for training is
97.2% and the false positive rate is 0.3%.

16



A0
C0
C1
C2
A1
A2
D0
D1
D2
H0
H2
H1
E0
E1
E2
G0
G2
G1
B0
B2
B1
F0
F2
F1

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 5: Malware clustering dendrogram

Bot Trace Packets Clustered Accuracy

Peacomm 999905 3/3 100%
Bifrose 30635 3/3 100%
Mimail 279962 3/3 100%
Kraken 49505 3/3 100%
Sdbot 312796 3/3 100%
Spybot 79750 3/3 100%
Rbot 1175083 3/3 100%
Weby 9000 3/3 100%

Table 6: Malware clustering summary

Performance Evaluation: To measure the detection performance and estimate
false positive rates, we mixed different malware traces I, II, and III with 12 days of
institute traces. We then processed them through the Netfuse classifier, which took
under one hour to process the failure logs for 12 days. In each case, we counted the
number of malware traces that were identified (true-positives) and the number of
benign clients that were classified incorrectly. The results are shown in Figure 4. The
detection rate is more than 92% for traces I and II. For trace 3, the detection rate
varies between 35% and 40%, i.e., around 90/242 malware instances detected. The
lower detection rate for trace 3 could be attributed to two reasons. First, the trace
set includes many types of malware, including adware that often have traffic profiles
similar to benign applications. Second, the traces are quite short (around 15 minutes
long). Despite this, Netfuse is able to detect over a third of the malware without any
specialized signatures. The false positive rate is consistently lower than 5%.

Clustering Results: After we identify suspicious hosts, we group them according
to their failure profiles to simplify analysis of the network administrators. We use
malware trace II to test the clustering engine. As shown in Table 6, we find that in
all cases the clustering is quite robust. The corresponding dendrogram is provided in
Figure 5, where 24 hosts are infected with eight malware instances listed A-H.

6 Related Work

Over the last three years, botnets have become one of the hot areas in networking
and security research. In [40] Rajab et al. use a multifaceted approach to conduct
a comprehensive study on the prevalence of IRC botnets. Dagon et al. ( [12]) use
DNS sink-hole redirection to measure botnet properties and develop a diurnal model
for botnet propagation. In [21], Grizzard et al. study the structure of botnets and
discuss how the single point weakness will force botherders to a P2P structure using
the Storm botnet as an example. Vogt [42] et al. discuss a recent trend toward smaller
botnets and raise the threat of superbots, i.e., an army of distributed botnets that
can be coordinated to act as a single network. More recently, Holz et al. discuss the
emerging threat of fast-flux service networks [25]. Bayer et al. [11] propose a scalable
algorithm to cluster the malware according to the host behavior profiles.
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Inspired by these measurement and modeling studies, there has been a considerable
research thrust in building better botnet detection systems. The Rishi [20] system
detects IRC botnets by matching IRC bot nickname patterns. BotHunter was the
first system to use dialog correlation to detect botnet activity. BotSniffer uses spatio-
temporal correlation to detect botnet C&C activity [24]. The BotMiner system [22]
combines clustering techniques with heuristics developed by BotHunter and BotSniffer
to classify malware based on both malware activity patterns and C&C patterns. The
motivation for Netfuse and its correlation approach bears certain similarities to these
systems. However, these systems fundamentally differ from Netfuse in that they ignore
application-layer failures and focus on successful communication patterns of bots.

Others have developed machine-learning approaches to detect botnets [19, 30].
Bayesian network classifiers are used in [30]. In this paper, authors use machine
learning techniques to distinguish between non-IRC traffic, botnet IRC traffic and
non-botnet IRC traffic. A different framework, which uses an entropy classifier and
a machine-learning classifier, to detect chat bots is provided in [19]. It shows that
message sizes and inter-message delays are sufficient to differentiate humans from
chat bots. We consider these efforts complementary to our system. Statistical traffic
anomaly detection techniques have also been demonstrated to have the potential of
identifying botnet-like activity. The exPose system [29] uses statistical rule-mining
techniques to extracting significant communication patterns and identify temporally
correlated flows, such as worm flows. Threshold random walk is a well-known algo-
rithm that uses hypothesis testing to identify portscanners and Internet worms [28].

Finally, we are also informed by traffic characterization studies such as Pang et

al. [34] and efforts to automate characterization of enterprise use patterns [15]. A com-
prehensive analysis of DNS query traffic and its use in identifying network anomalies
is provided in [38]. While our system is tuned toward the botnet detection problem,
Netfuse could be easily extended to be used as a traffic characterization tool.

7 Conclusion

We propose failure information analysis as a new paradigm for detecting application-
layer failures and suspicious activities in the enterprise. We are motivated by the
goal of automatically discovering infected hosts in the enterprise. We use an empirical
analysis case study to highlight certain differences in bot-like malware and produc-
tion enterprise traffic that could be exploited to identify infection activity. Using this
framework, we develop a prototype system called Netfuse that has three integral com-
ponents: FIA, DNSMon and the correlation engine. The correlation engine uses four
different scores (composite failure, divergence, failure entropy, and failure divergence)
to classify suspicious hosts and a clustering component aggregates hosts with similar
failure profiles to simplify analysis. We evaluate the system using several malware
traces. Our evaluation and analysis shows that Netfuse is an efficient and effective
system for discovering embedded malware. In future work, we plan to address the
problem of adapting Netfuse to deal with knowledgeable adversaries.
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