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Operator-Defined Reconfigurable Network OS
for Software-Defined Networks
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Abstract— Barista is a novel architecture that seeks to enable
flexible and customizable instantiations of network operating
systems (NOSs) for software-defined networks (SDNs). As the
NOS is the strategic control center of an SDN, implementing
logic for management of network switches as well as higher-level
applications, its design is critical to the welfare of the network.
In this paper, we focus on three aspects of composable con-
troller design: component synthesis, dynamic event control, and
predictive NOS assessment. First, the modular design of the
Barista enables flexible composition of functionalities prevalent
in contemporary SDN controllers. Second, its event handling
mechanism enables dynamic customization of control flows in a
NOS. Third, its predictive NOS assessment helps to discover the
optimal composition for the requirements specified by operators.
These capabilities allow Barista operators to optimally select
functionalities and dynamically handle events for their operating
requirements while maximizing the resource utilization of the
given system. Our results demonstrate that Barista can synthesize
NOSs with many functionalities found in commodity controllers
with competitive performance profiles.

Index Terms— Software-defined networking, component
synthesis, dynamic event control, predictive NOS assessment.

I. INTRODUCTION

SOFTWARE-defined networks have emerged as a
compelling alternative to traditional, vertically integrated

networks, which offer limited flexibility, programmability, and
customizability. Among the motivations that drive SDNs is a
desire to address the “islands of functionality” challenges that
arises in traditional networks, in which disparate functions
must be independently deployed, separately managed, and
require distinct policy control. In theory, the programmable
control layer of SDNs offer a more agile platform on which
diverse functions can be integrated in a more unified manner.

However, from interactions with SDN operators in industry
and academia, it appears that stovepiped functions persist
within SDNs, albeit in a different manifestation. For example,
it is indeed common for network administrators to manage
multiple SDN sub-networks with disparate requirements and
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policies using distinct network verticals managed by different
controllers (e.g., a campus network consisting of department
networks with differing management policies). This invariably
leads to increased management costs, because each controller
has its own programming architecture and software APIs (e.g.,
an SDN application running on ONOS cannot be directly
moved to OpenDaylight).

We posit that the design choices and rigidity in composi-
tion of contemporary SDN controllers significantly limit their
ability to fully address the challenge of satisfying competing
demands within enterprise networks. We further make the
case for a new controller design that allows for customizable
controllers while retaining a uniform programming API.

A NOS Overview. The NOS provides a unified abstraction
of the SDN and implements the interface between higher-
level applications and the software-defined data plane. Further,
it provides global network programmability, enabling seamless
deployment of dynamic and intelligent services across the net-
work. A modern NOS is arguably the most critical component
in the SDN stack, as it is responsible for both controlling the
underlying network substrate (through the southbound API),
and managing higher-level network applications (through the
northbound API). Hence, the SDN control layer represents a
vibrant area of active research and development, where signif-
icant software abstraction, security, and reliability challenges
are centered.

There have been several notable efforts to develop NOSs
both in academia (Onix [1], Beacon [2], Rosemary [3])
and industry (e.g., HP VAN [4] and Bigswitch BigNet-
work Controller [5], ONOS [6], OpenDaylight [7], and
FloodLight [8]). Interestingly, each of these systems spe-
cializes in different dimensions, offers varying system and
performance capabilities, and differs in their appeal across
different operational settings. For example, the Beacon [2]
controller is highly optimized for providing maximal through-
put from a single controller, while ONOS [6], Onix [1], and
OpenDayLight [7] focus on distributed scalability. Alterna-
tively, SE-FloodLight [9] attempts to address a range of secu-
rity requirements that are imposed within sensitive network
computing environments.

Barista. In this paper, we propose Barista, an event-driven
composable SDN controller generation framework. Barista
enables the rapid modular prototyping, customization, and
fielding of control layer logic to meet a wide-range of oper-
ational requirements found in many diverse network environ-
ments. We discuss the internal logic of existing NOSs, their
lack of customization, and the difficulties involved in embed-
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ding new functions, and their inability to alter their functional
behaviors when network operating conditions change. Barista
incorporates an event handling model that provides a diversity
of events. It offers a dynamic composition of event chaining,
and policy-based event distribution. Through those features,
operators can even customize the flows of event data through
the NOS itself. Finally, we provide the analytic tool that
assesses the impact of each piece. This tool enables opera-
tors to consider their requirements, and intelligently integrate
components to produce a NOS instance that supports those
requirements, while maximizing the resource utilization.

Contributions. In summary, the salient contributions of
our work include the following.
• We present the design of a new SDN controller brewing

framework, called Barista, which substantially accelerates the
ability of the SDN research community to rapidly prototype
and integrate new control layer functionality into a distributed
NOS environment. Barista reduces the implementation costs
required to create new modular NOS functional extensions
while increasing the sharability of these components.
• We introduce a new SDN event handling framework that

enables fine-grained control over events delivered to NOS
components that implement the network control logic. Barista
introduces an event broker model that enables the NOS author
to 1) associate components to a diverse set of event types,
2) define dynamic event chaining among components, and
3) express event distribution policies that control network
event visibility per NOS component.
• We present an approach to NOS component performance

assessment that operators can use to select the best NOS
component compositions given target network conditions. This
assessment approach stands in complement to NOS bench-
marking services such as Cbench [10], which is widely used
to evaluate throughput and latency performance of a NOS
under various PACKET_IN volume streams. Here, we present
an approach that assesses NOS performance under diverse
event workloads, extends the assessment to consider NOS
resource utilization (CPU, memory), and assists in identifying
the best component composition given target performance
constraints.
• We evaluate Barista against a set of diverse use cases,

and demonstrate its modular composability, and its ability to
address a range of operational use cases that no single current
NOS can address.

II. MOTIVATION FOR THE BARISTA NOS

Over the past few years there has been a growing list of
competing NOS software projects that have explored features
that appeal to various network operator communities. Barista
represents a unique design perspective among this growing
spectrum of competitive NOS software projects. Here we
motivate the need for a highly composable NOS compilation
framework, which enables the rapid integration of new NOS
features and extensions, while allowing operators to flexibly
compose the most appropriate features to match the needs of
their individual target environments. Combined, we believe
Barista offers a unique NOS approach, that is applicable to

both the research community and to operators in a wide-range
of operational settings.

A. The Academic Case for Barista

The SDN control layer has garnered much of the focus
among those involved in software-defined network research. In
surveying this work, researchers often employ an existing NOS
as a base from which to explore new control-layer features. For
example, Ravana [11] modifies Ryu [12], a well-known open-
source NOS, to introduce fault-tolerant features to the SDN
control layer. Other groups have integrated extensions, such
as strong security features, into established NOSs, such as [9]
and [13]. Unlike the proprietary nature of legacy networks,
SDN researchers enjoy access to a wide range of opensource
platforms from which to experiment, including some of the
most visible and widely used NOSs, such as ONOS [6]
and OpenDaylight [7]. Alternatively, other researchers have
introduced complete ground-up NOS proposals, which focus
on exploring specialized properties, such as robust application
management with high performance [3].

Barista seeks to further extend the ease with which
new NOS components can be designed and integrated.
It minimizes the effort from which components, including
feature extensions to an existing NOS instance can be mod-
ularly constructed and deployed (similar to the motivation
that inspired the Click modular router [14]). For example,
with Barista, one can rapidly devise and implement a new
flow-rule conflict detection algorithm that does not require
the in-depth analysis or modification of the NOS internal
architecture (e.g., the implementation of such an algorithm
required internal modifications of the Floodlight NOS [9]).
Barista-hosted NOS extensions offer modular components that
do not require NOS-internal modifications to join its event
pipeline. We believe that Barista’s approach to a component-
based NOS architecture provides the research community
with a rapid development framework, which 1) significantly
accelerates experimentation by reducing the implementation
cost, and 2) produces cleanly-composable NOS functional
extensions that are easily shared.

B. The Industrial Case for Barista

When network operators deploy SDN-enabled networks,
they commonly face a basic question of how to select the
best NOS to match the operational requirements of the target
network. For example, consider a case in which a network
operator must manage two networks: network A consists
of 1,000 switches and 100,000 hosts for web testing, and
network B consists of 10 switches and 100 hosts that provide
database services for a corporate-sensitive dataset. For this
scenario, our operator may conclude that a NOS designed
for network scalability and high-performance would best suite
network A, while a NOS that offers strong security policy
enforcement would best suite network B. Unfortunately, while
managing two separate NOSs may offer the ability to match
each environment with the most applicable NOS features,
the deployment of two different NOS platforms will also
impact the overall management cost.
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Fig. 1. Barista System Overview: Predictive NOS assessment, Base and Event Handling Frameworks, and Use Cases

Thus, the second motivation for Barista is to design a
NOS compilation framework that enables the NOS to be
customized at deployment time, with those critical features that
best suite the target environment. Here, our network operator
simply specifies the functional requirements that are present
in each network, and produces two automated compilations
of Barista that deliver the comparable functional services that
are provided by the two independent NOS platforms. Once the
functional requirements are specified (i.e., performance, secu-
rity, fault recovery protections, scalability) for each network,
the Barista compilation phase will produce a NOS composition
that integrates those functional components that match the
stated objectives.

III. SYSTEM DESIGN

In this section, we present the design of Barista and explain
how it facilitates the development of functionalities as compo-
nent extensions that are assembled to build customized NOS
instances. The Barista design sits on the opposite spectrum
of prior NOS work that has focused on specialization of
NOS features to better support target network environments.
Rather, its goal is to enable operator-defined composability of
NOS features that can be assembled under the constraints of
available resources. Here, we first describe the composability
through the base framework, and look into the flexible event
handling framework in Section IV and the predictive NOS
assessment tool in Section V.

A. Base Framework

The Barista base framework is composed of two key ele-
ments: components and events. A component represents the
implementation of a specific NOS function. Here, the frame-
work provides two classes of components. The first class
is a general component (e.g., packet I/O engine and Open-
Flow engine). General components are designed primarily to
become a functional logic inside of a NOS. The second class
is an autonomous component (e.g., statistics and resource
managements). Autonomous components are quite similar to
general components. However, they are intended to indepen-
dently conduct certain actions without intervention.

In the framework, events play a central role by driving
component-to-component information flow. All communica-
tion between components is managed in an event handler.
To communicate with other components, the incoming and
outgoing events of each component should be first registered
at the event handler. Then, the event handler identifies which
components have registered for an event and delivers the event
to those components. Barista does not support non-event-based
interaction between components. Rather, all intercommunica-
tion between components is done through events. While this
event-handling mechanism may increase the communication
overhead compared to direct function calls, it enables com-
ponents to be highly decoupled and enhances the ability for
components to be combined automatically during the NOS
build phase and even in runtime.

In terms of integrating NOS components, it provides a
component designer with a degree of abstraction from the
NOS internals as well as an abstraction for defining component
composability. Since each component is isolated from others
and events are the only way to communicate with each other,
operators can easily add, remove, and substitute components.

While the base framework also provides applications and
an application event handler as shown in Figure 1, their
functionality is exactly the same with components and the
event handler. The only difference is what kinds of information
they deal with. Components focus more on lower-level data to
manage connected switches and hosts, discovering a network
topology and so forth. On the other hand, applications use
application events to handle network flows in the data plane.

B. Component Development

The code template of a Barista component is illustrated in
Figure 2. A component is composed of four pieces: main,
cleanup, CLI (command-line interface), and handler functions.
The main and cleanup functions have similar functionalities
of a constructor and a deconstructor. The CLI function is the
interface of a component for operators. It allows operators to
interact with the component in runtime. The handler function
plays a role of the core function of a component. It is
responsible for receiving predefined (inbound) events in the
configuration of a component.
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Fig. 2. Code template of a Barista component

In the configuration of a component, there are several fields
besides the inbound events. Each component can be either
general or autonomous. Based on the type of a component,
the framework handles the component differently. The role
field indicates what kinds of events a component can receive
and trigger. By defining a role, the framework restricts the use
of receiving and triggering events. It currently provides 5 roles:
admin, security, management, network, and base. The per-
mission field defines the ability of a component (reading the
internal data of events, modifying the data, and cutting off the
event distribution). Finally, the outbounds field describes what
kinds of events will be triggered from a component. Through
the configuration, the framework determines how a component
would be integrated and operated.

To integrate a component into the framework, Barista
provides a command-line interface. Thus, an operator dynami-
cally (un)loads a component at runtime through its CLI. Once
a component is integrated into the framework, its execution
order is automatically determined according to its role, per-
mission, and dependencies on other events. If a component has
a higher role or permission, it will be executed before other
components that have a lower role or permission. In terms of
event dependency, let us say that component i and j listen to the
same event, A. At the same time, component i triggers event B
to update some data, and component j triggers event C to read
the data updated through event B. In this case, the former
component will be executed first for event A. The framework
also allows operators to adjust the execution order among
components to give more flexibility to them.

C. Component Portability

Barista allows a component to be executed either inside
or outside the framework by providing a wrapper between
external components and the framework. The wrapper allows
the same code of a component to be used, no matter where it
is executed, without any modification. As shown in Figure 3,
the wrapper is composed of four functions: channel, event
and component managers and an external event handler. The

Fig. 3. Using wrappers for component portability

Fig. 4. A base component workflow example

channel manager coordinates all messages between an external
component and the framework (including events) and delivers
the messages to the corresponding managers. The event and
component managers emulate the behavior of the framework
based on the given messages. The external event handler
converts incoming messages to actual events. With those
functions, external components can transparently communicate
with other components.

Furthermore, Barista provides a JSON-based message for-
mat for communications between external components and
the framework. Basically, in order to execute a component
either inside or outside the framework, the development lan-
guage of the component should be the same with that of the
Barista framework. In this case, Barista may limit the freedom
of development languages. Thus, with a more generalized
message format (i.e., JSON format), Barista allows external
components written in other languages (e.g., Java, Python) to
be integrated while they cannot be directly embedded into the
framework.

D. Component Composition

Barista provides a component pool (as summarized
in Table I) that includes a set of pre-developed components
supporting the functionalities of today’s NOSs. Thus, operators
can develop their own components by themselves or pick-and-
choose components that they want from the component pool.

Base components: The Barista NOS requires a base set of
components to function. Abstractly, a NOS requires a packet
I/O engine to receive messages from the data plane, a parsing
engine to interpret the contents of messages, and a decision
maker to decide where packets should be forwarded to provide
the minimum functionality of a NOS. Besides them, since
those components do not provide a global network view,
we include five additional management components (switch,
host, topology, flow, and statistics) that maintain a range of
network state information and pass that information to other
components.

Figure 4 illustrates how the base components are combined
with events, excluding management components for simplicity.
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TABLE I

DESCRIPTION OF BASE AND EXTENSIBLE COMPONENTS CURRENTLY IMPLEMENTED IN BARISTA

Each component has inbound and outbound events. For exam-
ple, the protocol parser (i.e., OpenFlow engine) has two
inbound events (i.e., OFP_MSG_IN and OFP_FLOW_MOD)
and two outbound events (i.e., OFP_PACKET_IN and
OFP_MSG_OUT). Once one of the inbound events is trig-
gered, the protocol parser receives the events through the
event handler. Then, when it generates one of the outbound
events, the event handler takes and delivers it to the appli-
cation handler and the packet I/O engine according to
the event type. Similarly, the application handler triggers
received events from the event handler to the application
event handler. Then, the L2 forwarding application receives

inbound events (DP_RECEIVE_PACKET) and generate out-
bound events (DP_INSERT_FLOW).

Extensible components: Besides the base components,
we currently provide 14 extensible components for scalabil-
ity, performance, confidentiality, integrity, and availability as
shown in Table I-(b). Those components support specific func-
tionalities to achieve each feature. For instance, the role-based
authorization serves to improve the confidentiality of a NOS.
The internal and OpenFlow message verification components
keep the integrity of a NOS. Likewise, the combination of
those components allows operators to support multiple capa-
bilities depending on their needs at the same time.
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Fig. 5. Integrating extensible components into a NOS

To add extensible components at a NOS, the base framework
generally employs the events of the base components. Figure 5
presents how the extensible components are integrated into the
NOS. Since most of the components intervene in the control
flows of a NOS, those components exploit the same events
as the base components. For example, the flow rule cache
registers the OFP_PACKET_IN event to check if it has any
flow rule whose matching information is the same with that
of the PACKET_IN message in the OFP_ PACKET_IN event.
If it has one, it attempts to redirect the original control flow
with the OFP_FLOW_MOD event containing the cached rule.

IV. SDN-SPECIFIC EVENT HANDLING MODEL

Current NOS designs largely employ an event-driven pro-
gramming model, wherein the SDN control logic defines the
actions and OpenFlow protocol outputs that occur in response
to notification events from the data plane. Within the topic
of SDN event handling, most of the focus of prior work has
involved issues of scalability in the presence of high-frequency
events [16]. In modern NOSs, control layer event handling is
primarily viewed as a notification interface between the data
plane and components that implement network control logic.

The Barista event-handling framework seeks to service a
broader range of component composition strategies and expose
event-handling configuration as part of the NOS customization
process. For example, Barista introduces an event broker that
enables the NOS author to 1) associate components to a diverse
set of event types, 2) define dynamic event chaining among
components, and 3) offer policy-based event distribution. This
section presents these three event brokerage issues as they are
addressed within the Barista framework.

A. Handling Diverse Event Classes

In the Barista framework we seek to extend the SDN event
handling model to incorporate inter-component communica-
tions and event-broker-derived meta events as two additional
event classes that Barista authors can define. Inter-component
events provide a departure from the use of implementation-
dependent function call exchanges to implementation-agnostic
strategy for allowing components to interoperate. Meta events
enable a novel strategy for altering the accessibility and
behavior of Barista components based on live event stream
characteristics observed by the event broker. We illustrate the
processing paths of these three event classes in Figure 6.

Notification events: The event-handling mechanisms used
by today’s SDN controllers are quite straightforward. A com-
ponent first registers a callback function to an event handler

Fig. 6. Barista event processing logic

for receiving a subset of data plane events. When a registered
event occurs the event handler forwards the event by invoking
the callback function. Barista also provides a mechanism man-
aging notification-based data-plane events. When a component
is integrated into the framework, it registers event notification
criteria, and the Barista event broker delivers these events via
the component’s notification interface.

Inter-component events: While today’s NOSs pro-
vide dynamic and modular component designs through soft-
ware services such as the use of OSGi [17] in ONOS,
inter-component dependencies remain tightly coupled to com-
ponent implementations. For these environments, events are
used for message distribution, and direct function calls
are used for component to component data exchanges.
Indeed, even very modular components designs may require
inter-component data sharing.

Let us define two terms: contextual dependency and func-
tional dependency. A contextual dependency arises when
one component i requires information that is produced from
another component j in order for i to operate. A functional
dependency arises when a component i must submit data to
a component j (e.g. employing an API function call) in order
for j to produce a result that is then consumed by i. Most of
existing NOSs have functional dependencies among compo-
nents. A highly modular system is one in which functional
dependencies are minimized among the system components.

Barista replaces functional dependencies among compo-
nents using the event broker, where inter-component commu-
nication occurs through the exchange of request and response
events. A component simply triggers a request event to the
event handler. Then, the event broker delivers the event to
a target component while it holds the event of the original
component. Once the target component triggers a reply event,
the event broker replaces the request event to the reply
event and releases the event of the original component. That
is, the Barista event handling framework replaces functional
dependencies between components with an inter-component
event mechanism that removes component-specific implemen-
tation dependencies.

Meta events: Meta events are produced for live event
statistics as observed by the event handler. Example event
statistics include event volume, component level statistics
regarding event consumption or production, and event type
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distribution statistics. Barista allows operators to define the
thresholds under which trigger meta events, and to associate
handling logic with produced meta events. For example,
meta events may be configured to dynamically activate or
deactivate components, or to filter certain events that are
otherwise delivered to specific components. The event handler
automatically triggers the predefined handling logic as defined
by the operator when meta events are produced.

Meta events offer a novel mechanism to define specialized
handling components to deal with dynamic event stream
conditions, such as dynamically activated component logic
to deal with flashmob traffic or other unexpected saturation
events. Meta events offer the operator the ability to activate and
deactivate components that are pre-deployed to address certain
event production anomalies that may arise from a wide-range
of anticipated operating conditions. This meta event handling
service represents an extension beyond existing NOSs, which
may dynamically load and unload components, but require
human intervention to do so as anomalous event production
patterns arise. Meta events offer administrators a means to
express conditional component activation in advance, and to
deactivate such logic when event production patterns indicate
that such conditions are no longer present. Meta events can
also impose event handler filtering adjustments, such as the
filtering of specific events to certain components that may
otherwise result in unwanted resource utilization. For example,
if the volume of events, such as Packet-In events, rapidly
increases, meta events may be configured to deploy DoS
mitigation components while also selecting to suspend certain
(normal mode) flow handling components.

B. Dynamic Component Event Chaining

An event chain arises when the event handler must service
a group of components that are designed to consume a
common event. Modern SDN controllers do not usually expose
services to define chaining strategies among its components.
Rather, such strategies must be defined within the code or
through manual component priority configuration. The lack of
event-chain support for components among NOSs may arise
as they are often primarily concerned with non-interference.
However, some components (e.g., flow rule conflict resolution,
message verification, and integrity check) may require find-
grained controls when defining event processing ordering.
With this in mind, Barista facilitates explicit event chaining
by default.

Unfortunately, there could be a conflict between compo-
nents due to mutual event dependencies. Thus, to detect such
conflict, we first define a dependency graph, a directed graph
G = (V, E), where V = {v1, v2, . . . , vn} denotes the set
of components, and E = {e1, e2, . . . , em} represents the set
of dependencies between components. We let n = |V | and
m = |E| denote the number of components and dependencies
respectively. Also, we define P (vi, vj), a sequence (path) from
vi to vj where vi, vj ∈ V . Then, when defining event process-
ing ordering, Barista checks dependency conflicts between
components based on the existence of P (vi, vi) where vi ∈ V .
If P (vi, vi) exists, there is a cycle from vi, meaning that vi

Fig. 7. Handling events in sequential and in parallel

Algorithm 1 Chaining components
1: # graph = dependencyGraph
2: # compList = the list of components that listen to an event
3: function CHAINCOMPONENTS(graph, compList)
4: newList = []
5: compList = sortByRole(compList)
6: compList = sortByPermissionInSameRole(compList)
7: for comp in compList do
8: for otherComp in compList do
9: if otherComp �= comp then

10: if Path(graph, otherComp, comp) �= ∅ then
11: if otherComp not in newList then
12: newList.append(otherComp)
13: if comp not in newList then
14: newList.append(comp)
15: if comp.permission ∩ (W or X) �= ∅ then
16: comp.delivery = sequential
17: else
18: comp.delivery = parallel
19: return newList

has dependency conflicts with the components in P (vi, vi).
In this case, it notifies the conflicts and requires the conflict
resolutions to an operator.

With respect to evaluating the event processing sequence,
Barista has two ways to deliver events to components,
as shown in Figure 7: sequential delivery and parallel delivery.
Sequential delivery arises when a component is granted per-
mission to potentially terminate the event-chaining sequences
based on an internally-defined decision regarding the event,
such as a filter criteria match. Parallel delivery is applicable
when components consume events but do not impact the
delivery of the event to other components.

Event sequence formulation begins by first ordering com-
ponents based on their roles and authorities (i.e. permissions)
as shown in Algorithm 1. Then, it checks if there is an
event dependency among the given components. For each
component, if there is a path from other components to the
component in the dependency graph, it imposes sequencing
such that the dependent components follow the event process-
ing of the component. Once the order of the components
is determined, it evaluates which component can be handled
in parallel, or which component requires sequential delivery.
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Algorithm 2 Handling event chains
1: function EVENTHANDLER

2: while True do
3: eventChain = popChain(eventQueue)
4: if eventChain.reference_count > 0 then
5: pushChain(eventQueue, eventChain)
6: else if emptyChain(eventChain) then
7: releaseChain(eventChain)
8: else
9: for component in eventChain do

10: eventChain.reference_count += 1
11: pushToWorker(eventChain, component)
12: popComponent(eventChain, component)
13: if component.delivery = sequential then
14: pushChain(eventQueue, eventChain)
15: break
16: function EVENTWORKER(eventChain, component)
17: component.handler(eventChain.event)
18: eventChain.reference_count -= 1

Finally, the adjusted component event chains are processed as
shown in Algorithm 2.

This dynamic composition of event chaining enables a fine-
grained control of component composition within the NOS,
which is of particular relevance when integrating security
and fault recovery components. While existing NOSs enhance
network serviceability through various network components,
they face some limitations when adding security features,
due to their architectural design choices. For example, SE-
Floodlight [9] required modification to the internal logic of
Floodlight to embed a flow-rule conflict detection mechanism,
as Floodlight provided no means to modularly incorporate this
service as the first evaluation point for all notification events.
In contrast, the Barista architecture is fundamentally designed
to modularize not only components but also the event handling
flows among components. It dramatically simplifies the ability
for third-party research extensions to be integrated into the
processing pipeline of notification and inter-component events.

C. Policy-based Event Distribution

Rather than intelligently utilizing event handling mecha-
nisms, existing NOSs focus on adding more functions into
their NOSs to satisfy ever increasing operating requirements.
This approach is not scalable, and neither does its provide
robustness to the overall NOS event handling services. In con-
trast, Barista takes a different approach that allows operators
to not only select a set of components they wish to deploy,
but also specify the event handling policy for the selected
components.

To dynamically handle events, Barista provides
operator-defined policies (ODPs). Each operator-defined
policy is composed of 7 fields: datapath ID, in-port (incoming
port of a switch), protocol, source/destination IP addresses
and ports. While operators can define multiple values for
each field, in the case of IP address fields, Barista currently
supports matching a single IP address and the range of IP

Fig. 8. Policy-based event distribution

addresses based on a subnet mask. Once an operator defines
an ODP, Barista updates the policy table in a target component
as shown in Figure 8. Then, when the event handler identifies
an incoming event, the event handler matches the event with
the policy table of a current component before pushing it into
the worker pool. If the event is matched with the component
policy, it is pushed into the worker pool. Otherwise, the event
handler skips it and deals with the next component in an
event chain. Using ODPs, operators can provide different
functionalities to different administrative networks. They can
also be used to instantiate preferred functionalities to specific
customers, as part of service level agreements (SLAs).

Event distribution across instances: The Barista event
handler uses the cluster component to deliver events to other
instances. The cluster component at each instance shares its
events through a distributed storage. When indicated events
are triggered at one of the instances, the cluster component
receives them from the event handler and stores them in the
distributed storage. At the same time, the cluster component
keeps polling for new events from other instances and triggers
those events to the event handler at its instance. The distributed
storage maintains logical sequences to ensure the incoming
events are ordered chronologically. Since the current cluster
component uses a polling mechanism to get events from the
distributed storage, it currently supports eventual consistency
only. Supporting strong consistency is one of our future goals.

The information to be shared across Barista instances is
dependent on what events the cluster component receives. For
example, if an operator only wants to share the topology
information, he simply needs to set switch and topology
events at the cluster component. It is also possible that some
events can be shared among specific instances rather than all
instances. Thus, operators can strategically distribute events at
each instance to others.

V. PREDICTIVE NOS ASSESSMENT

The predictive NOS assessment tool operates as an assistant
to operators. It helps to estimate how much throughput they
can achieve through the selected components and what kinds
of functionalities the components will provide. It also identifies
the component set that is best suited to satisfy the operating
requirements specified by operators. This involves three major
steps: component analysis, performance estimation, and com-
ponent recommendation. Here, we describe each step in detail.
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A. Component Analysis

First, the tool analyzes the functionality of each component
and how the component affects the overall NOS system.
The goal of this component analysis is to understand how
differently each component influences on the NOS system.
Since the overall throughput would vary based on hardware
specifications and the system resource utilization would vary
based on workloads, it conducts micro-evaluation of each
component to develop a base knowledge.

The tool employs a self-evaluation mechanism that
generates various virtual network environments and control
messages. Operators can define the number of switches,
the number of ports that each switch has, how many hosts
(pairs of IP and MAC addresses) are connected to each switch
and the amount of control messages per second. Using this
mechanism, it automatically evaluates each component and
generates a component assessment report using throughput,
latency, CPU utilization, and memory utilization profiles for
each component. Besides the influence of specific components
on the NOS, it is also important to consider the impact of
various event types on NOS performance, as performance can
vary across different workloads. Hence, the prediction tool
explicitly tracks the per-component overhead associated with
each event type.

B. Performance Estimation

Next, the tool predicts the estimated latency and through-
put when operators choose a set of desirable compo-
nents with a specific workload. Current benchmark tools,
(e.g., CBench [10]) are insufficient for our purpose as they
are limited in the workload and set of event types that they
generate. Thus, we develop an analytic benchmarking strategy,
i.e., a performance model, with heterogeneous workloads, that
captures the per-component impact of each event type.

Performance model: Our performance model is based
on event dependencies. For example, as shown in Figure 4,
OFP_PACKET_IN should be followed by OFP_MSG_IN, and
OFP_MSG_OUT should be followed by OFP_FLOW_MOD.
Likewise, according to event dependencies, we define a
directed graph G = (E, L), where E = {e1, e2, . . . , en}
denotes the set of events, and L = {l1, l2, . . . , lk} represents
the dependencies between events. Here, we let n = |E| and
k = |L| denote the number of events and links respectively.
For an event ei ∈ E, we denote pi as a component list listening
to ei, and we use expLatency(pi) to get the approximated
latency with given components in processing event ei as shown
in Algorithm 3. Here, the tool utilizes the results of the
component analysis.

Latency estimation: To calculate the expected latency
with selected components by operators, we first define wi =
{wi1, wi2, . . . , wim} as the set of probability for each event
type where

∑n
j=1 wij = 1, indicating how often each event is

triggered from ei. Since each event may have an dependency
on another event, we need to calculate the conditional prob-
ability of each event. For this, we use backwardWeight(ei)
(shown in Algorithm 4) to get the conditional probability of ei.
Here, we assume that there is no cycled dependency between

Algorithm 3 Get the expected latency of an event
1: function EXPLATENCY(componentList)
2: latency = 0.0, max_parallel = 0.0
3: for component in componentList do
4: if component.delivery = sequential then
5: if max_parallel �= 0.0 then
6: latency += max_parallel
7: max_parallel = 0.0
8: latency += component.latency
9: latency += sequential_overhead_by_eventHandler

10: else
11: if max_parallel < component.latency then
12: max_parallel = component.latency
13: latency += parallel_overhead_by_eventHandler
14: if max_parallel �= 0.0 then
15: latency += max_parallel
16: return latency

Algorithm 4 Get the conditional probability of an event
1: function BACKWARDWEIGHT(currEvent)
2: prevWeight = 0.0
3: if empty(prevEvents(currEvent)) then
4: prevWeight = 1.0
5: else
6: for prevEvent in prevEvents(currEvent) do
7: prevWeight += backwardWeight(prevEvent)
8: return prevWeight × currEvent.weight

events. Finally, the tool computes the expected latency with
the given components as follows.

expLat =
n∑

i=1

backwardWeight(ei)expLatency(pi)

Throughput estimation: Unlike the latency estimation,
we need to consider the parallelism of Barista architecture
to predict the throughput with selected components, which
is too complicated to consider all possible parameters. Thus,
we use a heuristic method to get the expected throughput.
Here, we define x as the number of workers, and Latio which
is the packet receiving overhead of the packet I/O engine (i.e.,
the latency of OFP_MSG_IN). Also, we define T1 which is
the base throughput with a single worker.

As a large number of incoming messages arrive within a
short time, the packet I/O engine will receive a batch of the
messages from a packet buffer at once. In addition, since mul-
tiple workers process events in parallel, the overall latency will
be reduced as well. Thus, we assume that the overall latency

with burst traffic would become approximately expLat−Latio
2

2 .
In the same context, we also define expLat × T1 as the
parallelized ratio based on the correlation between expLat
and T1. Finally, the tool estimates the expected throughput as
follows.

Tx = (expLat × T1)(
expLat − Latio

2

2
)ln(t) + T1



NAM et al.: OPERATOR-DEFINED RECONFIGURABLE NOS FOR SDNs 1215

TABLE II

REQUIREMENTS SUMMARY

C. Component Recommendation

As the final step, this tool recommends a component set
that is optimal to satisfy the operating requirements. Table II
presents a list of requirements that operators can choose. Each
requirement contains one or multiple components to support
specific functions and each component may be associated with
multiple requirements. With given requirements, we employ
multiple-criteria decision analysis (MCDA) [18], which is
commonly used to make a decision among multiple criteria,
and linear programming techniques to discover an optimal set
of components.

Here, we first define R = {r1, r2, . . . , rn} as the set
of requirements and C = {c1, c2, . . . , cm} as the set of
components. n = |R| is the number of requirements, and
m = |C| is the number of components. Then, based on the
selected requirements, we build a decision matrix, D where
dij ∈ {0.001, 1}, dij = 1 if an operator selects requirement
j and requirement j contains component i. To calculate the
overall preference, we build a matrix, D′, which normalizes
the weight of a requirement across all components.

D′ =

⎛

⎝
r11 . . . r1n

. . . rij . . .
rm1 . . . rmn

⎞

⎠ where rij =
dij∑m

k=1 dkj

Finally, we extract the relative weight of component i as
follows.

wi =

∑n
j=1 rij

∑m
k=1

∑n
j=1 rkj

Now, to discover a component set that satisfies the given
requirements while maximizing the resource utilization of the
given system, we produce a model of the component selection
problem. To achieve the optimal set, we define the objective
function Z, and xi = 1 if ci is explicitly selected.

Z =
m∑

i=1

wixi, where xi ∈ {0, 1}

Then, we add constraints for performance and resource uti-
lization. Each constraint contributes to the evaluation of the

best-effort component set.

Tmin ≤ Tx (default, 8 workers)
m∑

i=1

cixi ≤ cpulimit (default, 100%)

m∑

i=1

mixi ≤ memlimit (default, physical mem size)

We then use the PuLP constraint solver [19] to auto-
matically discover an optimal component set for operators.
Unfortunately, it is possible that the system cannot find any
component set that satisfies the requirements. For example,
the required throughput could be higher than that of the
base framework. In such instances, the operator is notified
and prompted to readjust the requirements until a satisfying
component set may be found.

VI. SYSTEM IMPLEMENTATION

A prototype of Barista has been implemented to evaluate the
efficiency and effectiveness of its design. This implementation
includes the base framework [20], a broad set of components
and the predictive NOS assessment tool. The Barista prototype
consists of over 19K lines of mostly C code and supporting
Python scripts, and the source code of the base framework,
pre-developed components, and the NOS assessment tool is
available at https://github.com/sdx4u/barista.

The base framework maintains a component list, containing
operator-defined configurations (JSON format). The event han-
dler restricts the type of data per event to avoid type-unsafe
boilerplate code. For handling events, we use worker pools,
and events are processed in each worker. For event distrib-
ution across Barista instances, we use MariaDB and Galera
Cluster [21] and make transactions in batch.

The predictive NOS assessment tool is implemented with
NumPy [22] and PuLP [19]. To conduct component analysis,
we developed the self-evaluation mechanism that automati-
cally generates component configurations and executes the
Barista prototype with those files. To generate control traffic,
we modified Cbench [10] and integrated it with the mecha-
nism. The modified CBench produces more diverse control
messages with specific input parameters such as IP/MAC
address range, the number of switch ports, and the number
of messages per second.

VII. SYSTEM EVALUATION

We describe experimental results that validate the effi-
ciency and effectiveness of the Barista prototype system.
First, we present per-component microbenchmark results and
then present the assessment results. Finally, we describe three
scenarios illustrating the flexibility and usability of the system.

A. Test environment

Our experimental testbed comprised of six machines. Three
machines ran Barista instances, each with Intel E5-2620 CPU
(12 cores, 2.40 GHz) processors and 32 GB of RAM. Three
other machines, each with an Intel i5 CPU (4 cores, 3.50GHz)
and 16 GB of RAM were used for control message generation.
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Fig. 9. Per-component throughput variations with different number of switches. Note) BASE: base components, RM: resource management, CTM: control
traffic management, CFI: control flow integrity, IMI: internal message integrity, OMV: OpenFlow message verification, FRC: flow rule cache, CAC: component
access control, FCR: flow-rule conflict resolution, FM: failure management, SBI: southbound-core isolation, AI: application-core isolation, CL: cluster

TABLE III

PER-COMPONENT CPU UTILIZATION

The topology involved 1,000 virtual hosts connected across
48 ports per switch. Hence, our self-evaluation mechanism
generated 1,000 independent pairs of IP and MAC addresses
for each switch.

B. Microbenchmarks

To understand how each component affects a NOS, we mea-
sure the throughput, CPU use, and memory use of a set
of extensible components along with the base components.
Figure 9 illustrates the throughputs for each component with
different number of switches while we set the number of
workers as 8. We find that the throughput of most components
is comparable to that of the base components (from 462K to
1428K responses/s on average). The maximum throughput is
saturated at 1.4M responses/s due to NIC bandwidth limita-
tions (1 Gbps). When the number of switches is lower than
the number of workers, the throughput suffers because of the
imbalance of workers.

While most components have minimal impact on the overall
throughput, there are 5 components whose throughputs are
noticeably lower than that of the base components. In the case
of Internal Message Integrity (IMI) component, the inspection
overhead of all internal messages causes the overall per-
formance degradation. Similarly, the conflict checks against
all outgoing flow rules decrease the throughput of Flow-rule
Conflict Resolution (FCR) component. In terms of external
communications, the throughputs of Application (AI) and
Southbound Isolation (SBI) components significantly dropped
due to message passing overheads, causing the higher CPU
uses (over 80%) than other components (23.9% on average)

as shown in Table III. Cluster (CL) component also suffers
performance degradations due to the DB query overheads.

The memory utilization for most components is static, with
the notable exception of some components (e.g., host and
switch management) that can dynamically allocate memory
for new hosts and flow rules.

C. Dynamic Component Activation

One of Barista’s contributions is dynamic component
composition in runtime. To show this flexibility, as shown
in Figure 10, we measure the throughput variations before
and after some changes in component composition occur
while feeding low volumes of traffic into the Barista NOS.
When Barista runs with base components, it handles around
158.6 flows/s on average. After 5 seconds, we activate the
internal message integrity, causing a noticeable performance
degradation (95.6 flows/s). To get higher performance again,
we remove the internal message integrity (at time 17), and
then the number of flows gets back to the previous number.
Likewise, Barista does not require any interruption in order to
make changes in component composition. When an operator
activates a new component, Barista first configures the com-
ponent while it does not feed any events to it. Then, once the
component is ready to handle events, it starts to feed events.
When a component is deactivated, Barista first stops feeding
events while it waits for the component to process pre-assigned
events, and then detaches it. As a result, Barista can achieve
dynamic component composition in runtime.

D. Performance Estimation

Next, we evaluate the accuracy of the performance esti-
mation tool by comparing the difference between the actual
throughput and estimated one. For this, we use three different
machines: Xeon E5-2620 (2.40GHz, 24-cores), Xeon E5-1650
(3.50GHz, 12-cores), and i5-6600K (3.50GHz, 4-cores).

Figure 11 presents the actual and expected throughputs
using our performance model. When the number of workers
exceeds the number of cores, the actual throughput becomes
saturated; thus, the expected throughput is no longer mean-
ingful. Our measurement shows that the overall accuracy is
94.43% (from 87.3% to 97.6%) while the margins of those
throughputs get larger as the number of workers increase. This
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Fig. 10. Throughput variations during component composition

Fig. 11. Comparison of actual and estimated throughputs

performance model does not incorporate hidden overheads
such as context switching and network delays, leading to some
of the variability in results between expected and observed
throughput. However, the performance model can provide a
basis for comparing the impact on system performance from
various components.

E. Use Cases

In this section, we present the effectiveness of the Barista
through three use cases: a distributed and secure NOS, sep-
arated network management using operator-defined policies,
and a lightweight NOS for IoT environments.

1) Distributed and Secure NOS: Here, we describe how
operators can build their own NOSs using the Barista. We
assume that an operator wants to build a distributed but
secure NOS for his network by selecting requirements 1, 5,
6, 10, and 15 in Table II. In addition, the operator sets the
target CPU and memory utilization to be 60% and 1 GB
respectively, and 1M responses/s as the minimum through-
put with 8 workers. Since it does not select the flow rule
conflict resolution, which is one of the key components in
SE-Floodlight, during the recommendation phase we explicitly
choose it to compare ours with SE-Floodlight. By inserting
them into the assessment tool, it finally discovers the optimal
component set, {Base, CTM, CL, SFE, UA, AA, RA, CAC,
FCR, FM}. Figure 12 illustrates the throughput of the 3-node
Barista cluster, 3-node ONOS cluster and SE-Floodlight with
varying number of switches. Each ONOS instance saturates at
940K responses/s on average and SE-Floodlight saturates at
357K responses/s. In contrast, Barista instance has a maximum
throughput of 1,059K responses/s.

2) Separation of Network Management: Barista
allows operators to define operator-defined policies at a
per-component level (i.e., they can use policies to affect the

Fig. 12. Throughput comparison of the distributed and secure Barista NOS
with representative NOSs for each feature

Fig. 13. Selective network management with ODPs

set of flows seen by each Barista component). To illustrate
this capability, we instantiated a simple network, shown
in Figure 13, that is managed with a Barista controller.
Here, an operator wants to separately manage network traf-
fic with a forwarding application and local traffic at the
VNF box with a VNF manager. Achieving this requires the
definition of three ODPs. To handle traffic on the physical
network using the forwarding application, the operator defines
two ODPs: “forwarding dpid:!2” and “forwarding dpid:2;
port:1,2; proto:lldp”. To handle local traffic at the VNF
box using the VNF manager, the operator defines a third
ODP: “vnf_manger dpid:2”. These ODPs allow Barista to
filters out events so that each application sees only the events
defined by ODPs. This requirement can be satisfied without
any application modification by applying ODPs that control
event flows inside the controller. Thus, Barista empowers
operators by providing the ability to dynamically control flow
handling within the controller through well-defined policies.
As another example, operators may define policies to scale
up the throughput of a component by increasing the number
of component instances and assigning a subset of traffic
to each one (i.e., “forwarding_1 dstip:192.168.0.0/25” and
“forwarding_2 dstip:192.168.0.128/25”).

3) Lightweight NOS for IoT Environments: IoT devices
require a lightweight NOS as they have much lower com-
puting power than commodity servers. Unfortunately, most
contemporary NOSs [6], [7] are designed for server-side
deployments and unsuitable to be run on small devices
with limited resources. However, we found that a few
controllers [8], [12], [23] to be readily executable on such
devices (specifically the ODROID XU4 [24]).
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Fig. 14. Throughput comparison of the lightweight Barista NOS with existing
NOSs on a single-board device

To demonstrate the flexiblity of Barista, we compare it with
Ryu [12] and Floodlight [8]. For this, we use ODROID XU4
(ARM Cortex-A7, Octa-core, 2 GB of RAM) and a set of
base components for the Barista cases. Figure 14 illustrates
the throughput of each NOS (line graph in Figure 14). Ryu
runs with a single thread; thus, its throughput does not
scale up. The throughput is 2,058.4 responses/s on average.
On the other hand, Floodlight runs with multiple threads;
thus, throughput goes up to 55,005.0 responses/s with a
93.8% CPU utilization. In contrast, Barista shows much
higher throughput. With a single worker, Barista performs
up to 63,523.5 responses/s while consuming up to 14.5%
of CPU utilization. With 8 workers, Barista performs up to
254,071.0 responses/s which is 117 and 4.7 times higher
than Ryu and Floodlight respectively. With this measurement,
we show that the Barista NOS is suitable for small computing
devices such as IoT gateways.

VIII. RELATED WORK

NOX [25] emerged as the first network operating system
for SDNs and has since been ported to Python - POX [23].
Both Floodlight [8] and Beacon [2] followed the release of
NOX and were primarily optimized to maximize connection
throughput. Later NOS architectures have extended early NOS
functions to address the growing interest in SDNs for manag-
ing large and dynamic (virtual) network environments. Onix
represents the first effort to address scalability by developing
a distributed NOS platform [1]. ONOS [6], Hyperflow [26],
Kandoo [27], and OpenDaylight [7] incorporate similar objec-
tives. They are designed as distributed platforms to support
large numbers of requests in wide-area environments, and
emphasize the need for greater scalability while maintaining
high performance. However, these platforms do not focus on
security or robust network application management in their
designs.

SE-Floodlight [9], FortNOX [15], Rosemary [3], and
LegoSDN [28] demonstrate the integration of multi-network-
application security features into the SDN control layer.
These projects focus on application consistency and robust
application management to enhance NOS reliability when
errant application-layer problems arise. They focus on
addressing the needs of sensitive computing environments
with less regard to the scalability and performance issues
that are presented in other production environments. Some
NOSs have adopted component-based architectures, such

as ONOS [6], OpenDaylight [7], and Ryu [12]. However,
while one can integrate new features into them, the method
of attaching new components is quite complicated (e.g.,
ONOS [6] and OpenDaylight [7]). Ryu [12] provides a basic
set of components (a subset of Barista components) and does
not consider the issue of how to optimally select components
based on operator-defined requirements.

Other approaches to flexibly build up SDN environments
include FlowVisor [29], [30], CoVisor [31], NetIDE [32],
Frentic [33], and Pyretic [34]. In terms of multi-controller
environments, FlowVisor divides a SDN network into slices
and enforces strict isolation between controllers running above
it, while managing provisioning and shared resources. Sim-
ilarly, CoVisor allows multiple controllers to cooperate on
managing the same shared traffic while assembling network
policies from these controllers into single policies for a
physical network. In terms of dynamic composition, NetIDE
focuses on application composition across multiple controllers
by providing a composition semantics with filters and merge
policies. On the other hand, Pyretic provides a higher-level
runtime that resides “above” a single controller providing com-
positional operators for querying and transforming network
streams. In fact, Barista’s sequential and parallel composition
functions are inspired by Pyretic. Such runtimes could be
ported to run over Barista controllers.

IX. CONCLUSION

The NOS is an integral piece of the SDN, and thus selecting
the right controller is a crucial step in orchestrating networks
for optimal security, performance and availability. We observe
that contemporary NOS solutions tend to be limited to spe-
cific purposes making it challenging for operators to satisfy
competing demands of disparate subnets using a homogeneous
platform. Barista takes an important step toward addressing
this problem by providing an event-driven NOS synthesis
framework that simplifies integration of composable modules
with the enhanced event handling mechanism and a predictive
NOS assessment tool that intelligently selects an appropriate
set of NOS modules. We evaluate the system against a range of
commodity NOSs, finding that Barista simplifies instantiation
of custom controllers with diverse feature combinations and
efficiently replicates functionality commonly found in major
controllers while delivering competitive performance.
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