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Abstract

We explore a new approach to using a VM-based honeyfarm for harvesting complex infection forensics live
from the Internet and rapidly applying this gained knowledge to develop a new probabilistic methodology
for diagnosing the presence of malware in host computer systems. Our approach builds on a rich model of
infection representation that captures the complexities in host forensic attribute priorities and the observed
interdependencies among these attributes. We use the model to design an automated host-based malware
diagnosis system called Host-Rx, which employs probabilistic inference to prioritize symptoms and iden-
tify the most likely contagion among a suite of competing diagnosis models. The Host-Rx system, and
the underlying analytics we employ for symptom prioritization and host-side diagnosis conflict resolution
(potentially in the presence of hundreds of malware disease profiles) are inspired by the foundations of
abductive-based diagnosis algorithms. Our experimental results illustrate the potential utility and viability
of such a system.

1 Introduction

The battle to produce high-performance binary pattern recognition systems or single-event heuristics to
detect modern Internet malware binaries has been largely lost by the current generation of Antivirus tech-
nologies. Strategies such as polymorphic and metamorphic restructuring of binaries now produce monthly
binary sample corpora in the millions, and antivirus companies themselves suggest the average lifetime of a
malicious binary may be as little as six hours and two infections. Thus, there is high motivation to explore
new generalizable strategies to detect the underlying functionality of malware using techniques that produce
high detection rates, are agnostic to malware binary structural modifications, and do not impose excessive
system overhead.

It is important to understand that the corpora described above do not represent millions of unique malicious
applications, but are rather algorithmically altered variants of orders of magnitude fewer malware programs.
Thus, an important question is whether one can reliably detect the presence of the underlying malicious
program, regardless of how its code may be restructured or mutated to avoid antivirus detection. One
promising avenue is the use of behavioral-oriented detection paradigms that model and diagnose malware
infections based on their forensic impact. In such an approach, rather than reliance on signatures that attempt
to recognize a binary, multiple behavioral attributes of the malware program itself are probabilistically
modeled and used to diagnose the presence of this malware on a victim host.

Following this paradigm, we present our work toward a system for diagnosing malware infections solely
through a probabilistic model of how the malware affects that state of its victim host. As with classic AV
binary signatures, our diagnoses do depend on previous exposure to the malware family in order to con-



struct our behavioral model. However, this technique differs in that once the behavioral model is generated,
our diagnoses are then agnostic to the current crop of binary structural perturbations that prevent detection
in classic AV signature systems. We present a system that harvests malware binaries live and unattended
from the Internet, and then employ these samples to automatically derive infection forensics using an in-
strumented virtual OS environment, called a malware sandbox. The sandbox is used to collect infection
forensics, such as changes to the file system, registry, process, mutex, library and memory alterations and
network interactions such as local DNS lookups, connections, and listen port reservations.)

Each set of execution forensics that are produced for a malware binary form a forensic profile for that
binary. Next, forensic profiles are automatically processed using a clustering algorithm into groups of
common profiles. From these common profiles we derive a probabilistic infection model that captures
the broadest set of host state changes and state change relationships observed when the clustered malware
samples infected their victim sandboxes. Finally, we conduct a targeted attribute sweep on an unknown
computer system, and use this scan to diagnose whether this system has been infected by any of our candidate
probabilistic infection models, resolving conflicts and selecting the best match when multiple models match
the computer’s current forensic state. We call our system the Host-Rx system, in analogue to a doctor who
diagnoses a patient based on his symptoms.

While our work is similar, and informed by, prior studies that have applied clustering algorithm to malware
forensic attributes for the purpose of classification and labeling [3, 22], our work is distinguished by its
application of the forensic cluster. The goal of Host-Rx is to demonstrate how to build probabilistic diagnosis
models from clustered attributes, and to further use these probabilistic models to conduct infection diagnosis
on operational systems. Our objective is to construct a diagnosis model that captures a common and distinct
patter of behavior, rather than attempting to express all variant behavior. Clustering serves as a condensation
process in our system. Behavior patterns are enriched in each cluster which helps our knowledge extraction
and model building process.

Host-Rx is composed of three components: (¢) malware harvesting and infection forensic/behavior analysis,
(72) infection knowledge extraction from malware forensic/behavior profiles, and (#:7) infection diagnosis
using the gained knowledge. There are two main steps in conducing our forensic analysis. First, we group
malware according to their behavior by clustering. Second, we extract explicit patterns exhibited by each
behavior group and construct a probabilistic model for each group based on those behavior patterns. The
probabilistic models encode knowledge about the malware’s behavior and is later used in diagnosing mal-
ware infection. The explicit pattern extraction for each malware behavior group and the probabilistic model
based on these patterns form the novel contributions introduced by our system.

We report on a set of experiments with our Host-Rx system. The experiment uses behavior profiles of
the harvested malware as the true positives and profiles of clean computer systems as the true negatives.
The experimental results shown in this paper suggest that behavioral modeling can produce true positive
detection results with an accuracy rate close to 90%. Our limited diagnosis experiment on 20 benign system
profiles produced zero false positives.

There are two main contributions in our work. First, we take malware behavior clustering to its natural next
step. We use clustering to help the extraction of behavior patterns and the construction of probabilistic mod-
els. The patterns and models are incorporated into a system that diagnoses malware infection on operational
computers. Second, we introduce probabilistic models for malware diagnosis that is based on the behavior
patterns extracted from each cluster. Even after clustering, the malware in the same cluster may behave
differently to a certain extent. Probabilistic modeling provides a way to deal with uncertainty and variants
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Figure 1: The Host-Rx Framework

in the clusters.

The rest of the paper is organized as follows. In Section 2, we describe our diagnosis system and its com-
ponents in detail. In Section 3, we present the result of our experimentations. We discuss limitations of the
system in Section 4 and related work in Section 5. We conclude with a summary in Section 6.

2 Host-Rx Diagnosis System

Host-Rx is a new form of malware infection diagnosis system, under which live Internet infections are
automatically assimilated into a probabilistic infection model. These models are composed of weighted
forensic detection rules, which capture the unique state changes associated with each malware infection.
The models are compiled into a malware disease knowledge base, which is published to expert systems that
are deployed to operational computers across the Internet. These expert systems periodically interrogate the
forensic state of their hosts, gathering a corpus of relevant state attributes that are then compared against
the myriad of probabilistic infection models—some of these models will potentially capture new infection
behavior patterns that have emerged recently. The expert system’s task is to evaluate its host’s current
system state against the models in the knowledge base. The expert system must determine whether the
subject computer’s forensic state matches any of its candidate infection diagnosis models, and to conduct a
best fit analysis when multiple competing diagnostics models appear to match. We illustrate the components
of the Host-Rx system in Figure 1.

The left panel of Figure 1 represents components and data flows that occur during the automated formulation
of the malware disease knowledge base. Raw malware infection forensic data produced from an Internet
honeynet is used to drive the creation of the knowledge base. A behavior clustering algorithm produces a set
of malware infection groupings (G(1), G(2),...G(N)). Each group represents the combined forensic footprint
of malware infections that are found to have a certain degree of behavioral similarity. Each malware infection
grouping is then applied to a dynamic learning algorithm, which derives from the infection grouping a set of
forensic detection rules (i.e., predicates that describe the set of malware-related state changes). Based on the



rules, a probability model M is derived, which defines the probability that a computer with symptom set S is
infected by malware from the model M. The collection of the probability models for all the infection groups
forms a malware knowledge base, which is then used for diagnosis. The right panel illustrates an instance
of our Host-Rx expert system. This application can be deployed to host machines as a complementary
service to the antivirus and antispyware that regularly runs on host systems. The system interrogates the
host machine and collects the states and behavior of the host. The interrogation report is then compared to
each model in the knowledge base, and from this comparison a probability is derived to define the likelihood
of infection.

In the following subsections we describe the components that generate the probabilistic models and that sub-
sequently use these models in the knowledge base to diagnose possible malware infection on host computer
systems.

2.1 Behavior Analysis and Clustering

The objective of the infection forensics harvesting component is to derive a set of features that could be used
to identify an infected host. For this, we trace the behavior of the malware by running the malware executable
in a sandbox environment for several minutes. We do not assume that Host-Rx is running on the system prior
to infection or that Host-Rx is able to observe the startup of the running malware process. Hence, we do
not use API hooking techniques for forensic feature extraction. Instead, our approach relies on a combina-
tion of features that are based on comparing the pre-infection and post-infection system snapshots. Some
of the key features collected include AUTORUN ENTRIES, CONNECTION PORTS, DNS RECORDS,
DROP FILES, PROCESS CHANGES, MUTEXES, THREAD COUNTS, and REGISTRY MODS. We use
a whitelisting process to downweight certain commonly occurring attribute values for filenames and DNS
entries. To identify deterministic and non-deterministic features each malware is executed three different
times on different virtual machines and a JSON object is generated describing the malware behavior in each
execution, as illustrated in Figure 2.

We use an agglomerative hierarchical clustering algorithm to group similar malware infections into clusters.
The algorithm progressively merges elements in a set to build hierarchies. It partitions a dataset S of n
elements into partitions (groups of clusters) @);...Q0x, where each partition has multiple clusters. Here, Q1
is the partition that has IV clusters, each containing a single malware instance and (), is the partition with a
single cluster containing all /N malware instances. The algorithm processes from @Q;_1 to (Q; at each stage
and joins together the two clusters which are most similar. We stop the joining when the distance between
all pairs of clusters exceeds a threshold (distance criterion).

To measure the similarity between two malware infections, we match the behavior attributes of the two. A
profile of malware infection is the collection of its behavior attributes. We call the attributes in a behavior
profile the symptoms of the malware infection. Let S = {s1, s, ..., s, } be the set of symptoms exhibited by
malware infection 1 and T = {t1,t2, ..., tm} the symptoms of infection 2. We use the amount of matching
between S and T as the measure of similarity between the two infection. One can construct a bipartite graph
for the two infections. Each s; corresponds to a node on one side and ¢; to a node on the other side. There is
a weighted edge between the node for s; and the node for ¢; if their two symptoms show a certain degree of
similarity. The similarity measure between the two infection profiles can then be calculated by the maximum
weighted matching in the bipartite graph. This calculation also allows partial matching. For example, s; and
t; can be two processes belonging to two infections. They may have different process names but they may
use the same DLL and other resources. By adding a connection between the two nodes corresponding to the
two symptoms, such a relationship is taken into consideration in calculating the final similarity.



{
AUTORUN_ENTRIES : [
{ Entry Location : HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run,
Entry : eggs joy math type,
Enabled : enabled,
Description : Contains anave on otherede skin toplofre tismane,
Publisher : Ithellen Reject,
ImagePath : c:\documents and settings\all users\application data
\bind army eggs Jjoy\gram bias.exe,
LaunchString : C:\Documents and Settings\All Users\Application Data\Bind
army eggs joy\gram bias.exe,
MD5 : 550176d229beea38bfb8154£6c85085¢,

{ Entry Location : HKCU\Software\Microsoft\Windows\CurrentVersion\Run,
Entry : roam2,
Enabled : enabled,
Description : Range be children the clear tarno keryedin,
Publisher : Ondu Great,
ImagePath : c:\documents and settings\sri-user\application data\
boltcloseseek\one enc.exe,
LaunchString : C:\DOCUME~1\SRI-user\APPLIC"1\BOLTCL"1\One Enc.exe,
MD5 : 68cd5d7bc0£f5176c1e0788df49958a60,

{ Entry Location : Task Scheduler,
Entry : A648A72591835FAl. job,
Enabled : enabled,
Description : Present no cost chima wap nemb,
Publisher : Ser Neceh,
ImagePath : c:\documents and settings\sri-user\application data\
boltcloseseek\kindphoneblah.exe ,
LaunchString : c:\docume™l\sri-user\applic”1\boltcl 1\KINDPHONEBLAH.exe ,
MD5 : 855c902ba3ffd20cdc50239d0b48c6ab
}

’

DNS_RECORDS : [ ],

FORENSIC_DROP_NAME LIST : [
C:\Documents_and_Settings\SRI-user\Cookies\sri-user@ayb.host127-0-0-1[1].txt,

1,

FORENSIC_PROCESS_LIST : [
{ name : iexplore.exe,
cmdargs : "",
execpath : C:\Program Files\Internet Explorer\iexplore.exe,
handles : 146,
threads : 3,
openfiles : [ c:\scripts\, c:\docume 1l\alluse l\applic”l\bindar l\grambi~l.exe ],
mutexes : [hklm\system\controlset00l\services\winsock2\parameters\namespace_catalog5,
hklm\system\controlset001l\control\nls\language groups,
hklm\system\controlset00l\control\nls\language groups],
netports : [],
regkeys : [hklm\software\microsoft\windows\currentversion\telephony\country list\1l ,
hkcu\software\name 01 long ,
hkcu\software\microsoft\windows\currentversion\internet settings\zonemap],

dlls : [c:\windows\system32\mfc42.dll , c:\windows\system32\mstask.dll ],
}
{ name : iexplore.exe,

cmdargs : "",

execpath : C:\Program Files\Internet Explorer\iexplore.exe,
handles : 148,
threads : 9,

openfiles : [c:\documents and settings\all users\application data\bind army eggs joy\ ,
\device\afd\asyncconnecthlp ],

mutexes : [hklm\system\controlset0Ol\services\netbt\parameters ],

netports : [],

regkeys : [],

dlls : [c:\windows\system32\msxml3.d1ll ],

}

1,

REGISTRY MODS_LIST : [ ],

NET_DNS_LIST : [
ads.rangel59-195.com, ayb.host127-0-0-1.com,
h5323.nb.host-domain-lookup.com, n596.nb.host127-0-0-1.com,
v2367.nb.host127-0-0-1.com, x6785.nb.host127-0-0-1.com,

NET_PORTS_LIST : [ 80 ]
}

Figure 2: Behavioral summary JSON for an unclassified malware instance



Once the similarity/distance measure is obtained, we perform hierarchical agglomerative clustering to pro-
duce a hierarchical tree with all its profiles. Then to identify meaningful clusters, we walk the tree and at each
node, splitting the two branches into different clusters when the average distance between the nodes in the
branches exceeds a certain distance. (We discuss this threshold later in the experimentation section.)

2.2 Malware Disease Diagnosis

Malware infection diagnosis is the process of determining, from a behavioral profile of a computer system,
whether the system is infected with malware, and if so, which type of infection it has. By “type”, we mean
behavior type, i.e., each cluster produced by the method described in the previous subsection corresponds to
a behavior type. For this purpose, we define a MIG (malware infection group) to be a collection of malware
instances that have similar infection impact. Identifying what type of infection a computer has is essentially
a search for which MIG the host most closely matches, and deciding whether this similarity has reach a
threshold sufficient for declaring an infection.

Our diagnosis is based on a malware knowledge base learned from a collection of malware grouped into
MIGs. The knowledge base consists of a set of probabilistic infection models, each describing a MIG. Each
probabilistic model includes a set of (first order) logic rules that capture the forensic states of host machines
infected by elements of the group. The rules and their associated weights together define the probability
of a malware belonging to a certain MIG. (From the probabilistic model’s point view, one may treat the
non-infected case as a special MIG. )

Formally, let {s1s2, ...} be the set of symptoms the malware in a particular MIG displays. We may view
s; as a predicate, such that s;(z) = 1 if the malware = exhibits symptom s; and s;(z) = 0 otherwise.
A rule r is either a single symptom predicate or any logical combination of the symptom predicates, e.g.,
s1 A sg and Ts1 V (s2 A s3). We call a rule that is a logical combination of the symptom predicates a
combination rule. A weight w; is associated with each rule r(j). The infection model for a particular MIG
k consists of the set of rules {r¥(1),7%(2),...,7%(n)} and their corresponding weights {w¥ w5, ... wk}.
Let S(z) = {s1,82,...,8n} be the collection of symptoms in profile 2. The rules and weights jointly
determine the probability P(MIG(x) = k|S(x)), i.e., the probability that the profile belongs to MIG k given
the set of symptoms S. We use a logistic regression model to define this probability:

PMIG(x) =k|S(z)) = Z(;W)GXP (Z wifi($7k)> (1)

where w; is the weight associated with the ith rule and W is the weight vector whose ith entry is w;. f;
is the boolean function defined by the ith rule. Z(z, W) = 1+ >, exp(D>_, w; fi(z, k)) normalizes the
probability P(MIG(x) = k|S(z)) to ensure that the probabilities for different MIG sum to one.

Probabilistic infection models have the ability to express complex relations between forensic features. We
contrast it to linear functions, which are a simple and commonly used technique for data classification. With
linear functions, a score is computed by summing the weights specified across all malware features. If the
score exceeds a specified threshold, the malware is classified as belonging to a certain MIG. However, this
approach has significant limitations.

Consider a malware group (say MIG I) that exhibits two distinct behavioral patterns. In one scenario, the
malware instance creates a registry key A and modifies a file C. In an alternate scenario, it creates a registry
key B and performs a DNS lookup D. Let events A, B, C, and D be the observed malware forensic attributes.



We state the forensic impact of this type of malware using the logic expression (A A C') V (B A D). Given
a host profile x, the boolean function corresponding to the rule is:

1 if (A(z) AC(z)) V (B(z) A D(z))
0 otherwise.

) ={

where each letter A-D is a predicate, testing whether a host exhibits a specific forensic state change. It is
hard to express this pattern using the sum-of-the-attribute-weights scheme. For example, we may assign
weight 0.5 to A, B, C, and D and set a diagnosis threshold of 1. Clearly, a host found to exhibit both A and C
will produce a score above the threshold, and will be diagnosed with a MIG I infection, as will any host that
exhibits attributes B and D. However, hosts that exhibit attributes A and D will also be classified as MIG I,
resulting in false positives. Therefore, the sum-of-weights scheme (or any linear function) is inadequate to
express situations where an attribute pattern is relevant only when some precondition is satisfied.

We mine the combination rules for each MIG using a frequent itemset mining technique. If two symptoms
A and B are correlated, i.e., they show up together in many of the profiles in a cluster, we will make a rule
A A B. Formally, let Pf(A) be the set of profiles in the cluster that contain symptom A and Pf(B) be

the set of profiles in the cluster that contain symptom B. We form rule A A B if % > 7 fora

threshold 7. (We use | - | to indicate the size of a set.) Because our model is probabilistic, a rule does not
necessarily apply to all the members in a cluster. In fact, one may view the rules as candidate features that
may help to distinguish different clusters. In the later training process, we learn the weights such that if a
rule is irrelevant, its weight becomes zero (practically eliminating the rule). Therefore, in the mining stage,
one may set a loose threshold because we are identifying a candidate, not the final effective rules. (In our
experiment, we set 7 to be 30%.)

We use min-hash based mining to identify the combination rules. A min-hash function A, maps a symp-
tom to a number and has the following property: Given two symptoms A and B,

[Pf(A) N Pf(B)|
|Pf(A)UPf(B)

The larger the ratio %, the more likely it is that the two symptoms A and B will be hashed to

the same value. In this way, correlated pairs can be identified. We also extend this technique to mine rules
that involve more than two symptoms.

Once we obtain a set of rules (both single symptom rules and combination rules) for each MIG, we learn
the weights for the probabilistic models. We take a maximum likelihood approach to derive the weight.
Following Eq. 1, the joint conditional log-likelihood of the collection of training profiles can be written
as:

N M
L= (Z wi fi(xj, MIG(x;5)) — log Z(x;, W)) 2)
j= =1

where NV is the number of profiles in the training set and M is the total (sum over all MIGs) number of rules.
The optimal weights are those that maximize this likelihood. Taking the derivative of Eq. 2 with respect to
w; gives:

oL
87102, Zfz x],MIG xg Z Z 33'], ZGXP [Z'wsfs .’I,'J, ] fz(l'j,k>



= > filw;, MIG(z;)) = > > p(MIG(z;) = k|S(x;)) - fi(z;, k)
j ik

= Z (fi(.%'j, MIG(ZL’J)) — Ep(k;|.1;j)fi(xj7 k‘)) .

J

where E, ;) fi(z;, k) is the expected value of f; under the model distribution of the MIG label k. It
shows that, under the optimal probability distribution, the empirical number of times f; is true is equal to

the expectation of this number. We solve this optimization problem numerically using the quasi-Newton
method L-BFGS [17].

After learning the weights, we have a complete set of models for the MIGs. Given a particular profile of
symptoms, the diagnosis process calculates the probability of the profile belonging to each MIG as well as
the probability that it is from a machine that is not infected. The final decision is the case with the largest
probability over all the cases (MIGs or uninfected).

3 Experimentation

We test our system on a collection of malware. We first evaluate the system’s detection capability through a
set of experiments and then discuss the clustering step.

3.1 Malware Infection Diagnosis

The basic task a diagnosis system needs to perform is to decide, given the forensic profile of a host, whether
the host is infect by some malware or not. To do so, Host-Rx first constructs diagnosis models from the
behavior profiles of a sample of malware collections. And then using these models, it performs infection
diagnosis on operational host. In a practical setting, the collection of sample malware is always incomplete
(i.e., the malware we can harvest for building the diagnosis models is always a part of the whole collection
of malware in the wild). To test the diagnosis capability of Host-Rx system, we conduct experiments in a
fashion similar to the practical setting.

Our collection of malware that we used for testing Host-Rx includes 2140 distinct malware instances. Out of
these instances, we used a certain percentage as training samples, perform clustering on the samples to form
infection groups and construct a diagnosis model for each group. We then ran the system on the (behavior
profile) of the remaining instances (view them as the profiles from host machines that need to be diagnosed).
Clearly, a perfect system should diagnose all the profiles as infected. We also use the behavior profiles of
20 clean machines (7 real and 13 virtual) to test the false positive rate of the system. These 20 machines
were operational systems running Windows XP and Windows 2000, with different service pack levels and
software configurations that were currently under use for various projects.

We conducted our experiments with four different mixtures of training and test data (10/90%, 20/80%,
60/40% and 90/10%). Our results, plotted in Figure 3, show the detection rate (i.e., the fraction of malware
profiles that are diagnosed to be infected) of our system to vary between 80% and 90%. Each data point is
the average of 5 experiments under the same setting (but different random selection of the training malware).
In each experiment, we also ran the system on profiles obtained from the clean machines and there were no
false positive diagnoses by Host-Rx. This experiment validates the diagnosis power of the system.

Our results also indicate that the more sample malware we have, the better diagnosis Host-Rx can achieve.
When we have observed 90% of the malware, the detection rate is close to 90% (with no false positive
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Figure 3: Detection Rate of Host-Rx with Different Training Size

on the 20 clean machine). The malware instances where Host-Rx issues a false negative diagnosis display
variant behaviors that are different from the other malware. When the sample malware is only 10% of all
the malware, Host-Rx can still achieve a detection rate above 80%.

We also conducted experiments to test the effectiveness of the combination rules. We repeated the above
experiments, using models with and without combination rules. Table 1 shows the change of false nega-
tive rate when the combination rules are added. Clearly, the combination rules help to improve detection,
although the effect is not large for the set of malware used in our experiments.

10% | 20% | 60% | 90%
with comb. rules 0.196 | 0.170 | 0.121 | 0.114
without comb. rules | 0.207 | 0.172 | 0.130 | 0.114

Table 1: False Negative Rate with and without Combination Rules (no false positive in both case)

3.2 Malware Group Diagnosis

Besides determining whether or not a host is infected, Host-Rx also attempts to attribute each infection
diagnosis to a malware infection group (MIG). Note that malware infection group may differ from malware
families defined by the AV companies. Malware in the same family may form behavior subgroups due to
variant behavior in the family. Also, there may be malware instances for which AV systems currently have
no label definition. These malware may form behavior clusters and Host-Rx can identify these clusters and
construct diagnosis models for them. When diagnosing operational machines, Host-Rx reports the infection
group labels along with the diagnosis result. Such group information may also help in the development of
recovery rules for system clean up.

Although the group diagnosis capability might seem similar to the task of malware classification, Host-Rx is
very different from a malware classification system. Given a collection of malware, a malware classification
system groups the malware into families using techniques such as clustering. However, for Host-Rx, the



first task in diagnosis is to decide whether the system is infected or not. It cannot simply run clustering on
the forensic profiles from undetermined host machines and associate each cluster to a malware family (as a
malware classification system would do), since many undetermined host machines may be uninfected. And
there may be infections that behave differently from any of the families.

In the following, we describe results from experiments that test the Host-Rx’s capability in infection group
diagnosis. This set of experiments are different from experiments described in the previous section. We
still divide the malware into two sets: one used for training (clustering and model building) and the other
for testing. In the previous experiments, we had apriori knowledge about the true state of the machines that
generated the profiles, i.e., whether the profile was from a malware infection or a clean machine. In the
experiments to test group diagnosis, we don’t have the information about which group the infection should
belong to since the testing profiles are left aside and are not included in the clustering step. To illustrate the
results from the group diagnosis experiments, we plot the similarity between the testing malware infection
profile and the training malware profiles. A good group diagnosis would generate results such that when
an infection is diagnosed to be in group k, the infection profile should show high similarity to the training
samples in group k and low similarity to the samples in other groups.

There is a technical detail we need to deal with in this experiment. After clustering, we obtain malware
infection groups. Some of the groups are very small (less than 10 profiles). The members of the group are
often outlier profiles. Because these groups are too small for us to build a diagnosis model, we merge all the
small groups together and treat the amalgam as a special group. If Host-Rx indicates that a profile should
belong to the amalgam group, we may not be able to identify the type of infection, but we still identify it as
a malware infection.
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Figure 4: Malware diagnosis similarity matrix comparing testing and training profiles

To illustrate the diagnosis result, we generate a matrix showing the similarity between the testing and the
training malware sets. Each row of the matrix corresponds to a test malware and each column a training
malware. Entry (i, 7) of the matrix represents the similarity between the ith testing malware and the jth
training malware. We group the training malware according to their cluster and the testing malware accord-
ing to the diagnosis result. We plot this similarity matrix in Figure 4 using grayscale to show the similarity
(dark-high similarity, white—low similarity) and lines to separate groups. The plot shows that malware in-
fections diagnosed by Host-Rx show strong behavioral similarity with training malware in that cluster. For

10



example, profiles corresponding to rows 1-48 are diagnosed by our system to belong to MIG 1 (cluster 1).
The similarity measure shows that most of the behaviors are indeed similar to that of the members in cluster
1. The rows in the second to the last block (rows 76-135) are diagnosed by Host-Rx to be infected. How-
ever, the diagnosis cannot tell which cluster the infection belongs to. (Host-Rx maps them to the amalgam
cluster.) This is an example of the case we discussed before. That is, although the type of the infection is
not clear, our system is still able to diagnose the profile to be an infection.

The bottom few rows in the plot correspond to malware profiles that are diagnosed by our system to be unin-
fected, i.e, false negatives. The plot shows that many false negatives have extremely low or zero similarity to
any of the cluster groups, including the amalgam group. Those malware can be viewed as variants whose be-
havior is (almost) completely different from what we experienced in training. In such cases, diagnosis would
be extremely difficult. This is a fundamental limitation for any expert system, including Host-Rx.

3.3 Malware Clustering

As discussed in the introduction, we pursue malware clustering with the objective of automating malware
diagnosis. The clustering step groups together malware instances with similar behavioral profiles and prior-
itizes patterns common to the members of a cluster for the knowledge extraction process. Clustering is not
the core of the Host-Rx system. However, it is still important that we produce high quality clusters. To vali-
date the similarity measure and the clustering method used in Host-Rx, we select a set of malware instances
from our collection that can be reliably labeled by AV programs. We then calculate the similarity measure
and perform clustering on these instance. A good clustering system should produce groups corresponding
to the labels.

The following process was used to select malware instances with reliable labels. First, we used virustotal to
obtain six different AV labels for the set of malware instances used in our experiment. For most malware
instances, these programs either do not yield a label or yield inconsistent labels. To obtain reliable labels,
we further downselected 4 vendors who showed maximal consistency in labeling. (The labels from the other
2 are quite different.) We attribute a label for a malware instance if at least 2 out of these 4 AV programs
attribute the same label to the instance. Out of the 2140 malware instances, we were able to obtain only
450 malware samples with consistent labels. To test clustering, each malware family should have a minimal
number of exemplars, as otherwise, the result has minimal significance. Therefore, from our collection of
labeled malware, we removed families with less than 20 members and compiled a final collection of 393
malware instances for clustering.

These malware instances belong to six families: Allaple, Mydoom, Virut, Udr, Tibs and Ejik. We calculated
the behavior similarity between the profiles of these instances and perform clustering. Except for one cluster,
the resulting clusters contained instances from only one family. However, malware from the same family
were sometimes split into multiple clusters as there are behavior subgroups in the family and some of the
instances display outlier behavior. We summarize the clustering result in Table 2. Note that the row “outlier”
does not correspond to one cluster. Malware with outlier behavior, after clustering, fall into clusters of very
small size often containing only one instance. We treat clusters of size less than 5 as invalid clusters and
view the members of these clusters as outliers. The row “outlier” gives the number of instances from each
family that are viewed as outliers.

As shown in the table, except for one cluster, there is no mixing of malware instances from different family
in the same cluster. Instances from some family show consistent behaviors and most such instances are
grouped into one cluster. The Ejik family of adware agents, on the other hand, displays variant behavior
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Mydoom | Allaple | Virut | Udr | Tibs | Ejik
Clusterl 150
Cluster2 73 4
Cluster3 46
Cluster4 34
Cluster5 27
Cluster6 9
Cluster7 7
Outlier 1 8 16 4 14

Table 2: Summary of Clusters

and is divided into multiple clusters and many of its members are outliers. However, this does not mean the
malware cannot be detected by Host-Rx. As we demonstrated in the previous section, there are malware
whose infection forensics do not form clusters but Host-Rx is still able to detect most of these malware
infections. It’s just that in this case, Host-Rx cannot reliably attribute it to a specific malware infection

group.
4 Limitations

While we believe that Host-Rx is a viable approach for developing models that enable accurate diagnosis of
malware infections, there are certain limitations.

1. Malware could thwart model building or diagnosis by intercepting API calls that are used to build the
features. As a first step in addressing this limitation Host-Rx does not rely on a single feature, but
instead relies on a collection of attributes. To fully address this limitation in the model building step,
we plan on moving the attribute collector to a hypervisor. Similarly, the diagnosis component could
be moved to the kernel to support environments where running a VM is not a option.

2. Knowledgeable adversaries could design malware that exhibits infinite polymorphism or inject spu-
rious noise, making it resistant to classification. Host-Rx is designed to tolerate polymorphism in a
finite set of attributes. However, if all attributes are polymorphic and there is no invariant behavior, it
becomes a challenge to any learning system that is used to develop signatures. We plan on exploring
game-theory as a means to counter such threats and evaluate the worst case performance of system
under such scenarios. Similar adversarial classification techniques have been explored in the context
of spam detection [5, 12].

5 Related Work

The related work can be broadly grouped into three categories: malware classification and analysis, auto-
mated signature generation systems, and probabilistic modeling techniques. We discuss and differentiate
our approach from existing work in each area.

Malware classification and analysis: Malware classification is an important problem that has attracted
considerable attention. Of particular relevance are recent efforts that have tried to develop models for de-
scribing malware phylogeny. Karim et al. examine the problem of developing phylogenetic models for
detecting malware that evolves through code permutations [13, 26]. Carrera et al. develop a taxonomy
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of malware using graph-based representation and comparison techniques for malware [7]. Another ap-
proach to malware analysis is behavior-based techniques to classify malware [8]. Several tools exist for
sandboxed execution of malware including CWSandbox [27], Norman Sandbox [21], and TTanalyze [25].
While CWSandbox and TTanalyze leverage API hooking, Norman Sandbox implements a simulated Win-
dows environment for analyzing malware. A complementary analysis is proposed in [19], where a layered
architecture is proposed for building abstract models based on run-time system call monitoring of programs.
Bailey et al. present an automated classification system for classifying malware binaries through offline
behavioral analysis [3]. Similarly, Rieck et al. propose a learning approach to behavior-based malware
classification. We differ from these in that their objective is not to build a diagnosis system, but to solve
the labeling problem. Our diagnosis system can be informed by our own infection clustering results and by
theirs. Another related work is a contemporary paper from Kolbitsch et al. [15], where dynamic analysis
is used to build models of malware programs based on information flow between system calls. While our
objective is the same as theirs, we differ in the attributes that are considered for diagnosis. Furthermore, we
use a probabilistic model for diagnosis which tolerates uncertainty and small variations in malware behav-
ior.

Signature generation: The motivation and approach adopted by our system is similar to prior work on
automated network-based intrusion signature generation systems such as Honeycomb [16], Autograph [14],
Earlybird [24], and Nemean [28]. We are also inspired by efforts to generate vulnerability signatures [6]
and other host-based approaches that use host information to detect anomalies and generate signatures such
as TaintCheck [20], Vigilante [10], and DACODA [11]. However, unlike the aforementioned detection
systems, Host-Rx emphasizes post-infection diagnosis, and its infection models are multi-perspective in
considering both network behavior and host forensic changes. Prior work has also studied the problem of
attacks against learning-based signature systems and the cost of countermeasures [4, 9]. Data pollution
attempts from knowledgeable adversaries pose a problem for our system as well.

Probabilistic diagnosis: Many medical diagnosis systems are based on probabilistic models. Examples
include interpretation of electromyographic findings [2], insulin adjustment [1], and infectious disease man-
agement [18]. A well-known system is the QMR-dt (quick medical reference - decision theoretic) model [23]
that combines expert knowledge and probabilistic reasoning to provide diagnostic support. Bayesian infer-
ence is often used in these systems. In the Bayesian model, it is assumed that the symptoms are independent
(in probability) given the disease. Malware behavior attributes, however, are often not independent. Also,
HostRx’s probabilistic knowledge base includes combination rules, which are not independent in most cases.
Therefore, instead of Bayesian, we employ a generalized loglinear model for malware behaviors.

6 Conclusion and Future Work

In this paper, we present a new probabilistic methodology for diagnosing malware infections and evaluate
a prototype system that implements our technique. Our evaluation demonstrates the feasibility of this ap-
proach and the potential of an automated diagnosis system to accurately detect a large class of infections
with minimal false positives. It also illustrates some of the challenges in building an automated diagno-
sis system, such as dealing with polymorphic malware behavior, diverse attribute collection and the need
for whitelisting. In the future, we plan to expand our set of forensic attributes, testing on a larger corpus
of malware and incorporating profiles of normal behavior into our system. We also plan to solicit beta
testers for a free Internet distribution of the Host-Rx prototype that would help evaluate the system for false
positives.
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