
Camouflaging Honeynets
Vinod Yegneswaran

Computer Science Laboratory,
SRI International,

333 Ravenswood Ave,
Menlo Park, CA 94025.

vinod@csl.sri.com

Chris Alfeld
Computer Sciences Dept.,
University of Wisconsin,

1210 W. Dayton St,
Madison, WI 53706.
alfeld@cs.wisc.edu

Paul Barford
Computer Sciences Dept.,
University of Wisconsin,

1210 W. Dayton St,
Madison, WI 53706.

pb@cs.wisc.edu

Jin-Yi Cai
Computer Sciences Dept.,
University of Wisconsin,

1210 W. Dayton St,
Madison, WI 53706.

jyc@cs.wisc.edu

Abstract—Over the past several years, honeynets have proven
invaluable for understanding the characteristics of unwanted
Internet traffic from misconfigurations and malicious attacks.
In this paper, we address the problem of defending honeynets
against systematic mapping by malicious parties, so we can
ensure that honeynets remain viable in the long term. Our
approach is based on two ideas:(i) counting the number of
probes received in the honeynet, and(ii) shuffling the location
of live systems with those that comprise the honeynet in a larger
address space after the probe count has exceeded a threshold. We
describe four different strategies for randomizing the location of
the honeynet. Each strategy is defined in terms of the degree
of defense that it provides and its associated computational and
state requirements. We implement a prototype middlebox that we
call Kaleidoscope to gain practical insight on the feasibility of
these strategies. Through a series of tests we show that the system
is capable of effectively defending honeynets in large networks
with limited impact on normal traffic, and that it continues to
respond well in the face of large resource attacks.

I. I NTRODUCTION

One of the most basic components of malicious activity
in the Internet is the process of scanning the address space
for potentially vulnerable hosts. A fundamental challenge in
this activity is determining how to select a target address.
While many methods have been proposed, the most common
approach is by brute force,i.e., simply sending scans toall
addresses in a given network segment. While this approach
can be quite effective, it also offers the network security
community a significant opportunity for gathering detailed
information on attacks by deploying measurement systems on
the routed but otherwise unused IP addresses in a network
segment. These measurement systems are typically referred to
as ahoneynet.

The value of honeynets to security analysts is certain to
be well known to their adversaries. In fact, a series of recent
studies has shown that the locations of monitoring systems
used to gather data for well-known reporting services such
as Dshield.org [28] can be pinpointed using active probing
methods [6], [24], [21]. One must assume that savvy ad-
versaries have either adopted these methods already or will
do so in the near future. If so, then they will be able to
create blacklists, which they can incorporate into their tool,
and thereby avoid being tracked by honeynets. Obviously,
this would have a serious, detrimental impact on the network
security community.

In this paper we address the problem of protecting hon-
eynets from adversaries who seek to systematically identify the
addresses that are monitored. We propose an approach that is
based on shuffling monitored addresses with addresses used by
live (and potentially vulnerable) systems so that an adversary
is unable to be certain of the honeynet’s location. In this case,
the problem boils down to two important questions:when to
shuffle? andhowto shuffle? In the case of the former, we make
a simplifying if conservative assumption for this paper, which
is to shuffle as soon as we count one probe sent to each of
the N addresses monitored by the honeynet. We discuss more
realistic probing strategies in [7]. The issue ofhow to shuffle
actually has two components: the method for randomizing the
honeynet’s location, and the network mechanism that will be
used to facilitate the shuffling.

We describe a series of techniques for randomizing the
honeynet’s location within a large address space. While ran-
dom shuffling at the granularity of individual IP addresses is
optimal in terms of hiding the honeynet, it may not be practical
from an implementation perspective. Therefore, we describe
four different policies for shufflingblocksof IP addresses that
trade off frequency of shuffling with the amount of state that
is maintained by the shuffling mechanism.

Our deployment strategy is based on a middlebox that sits
in front of the live hosts and the honeynet. To investigate
the feasibility of this approach, we implemented a prototype
system that we call Kaleidoscope. The basic functionality
of Kaleidoscope includes counting probes to the honeynet,
shuffling addresses using one of the four proposed methods,
and providing network address translation between the systems
outside of the target network and both live and honeynet
systems within. We use this system in a series of laboratory-
based experiments with different traffic load profiles. Our
prototype system demonstrates that the shuffling policies can
be implemented efficiently, with minimal latency (under a
millisecond) and zero packet loss, under traffic loads typical
for a large campus and under different types of malicious
attacks. While quantifying the level of protection afforded by
this system is beyond the scope of this work, we argue that
the effective level of protection provided by this system is
sufficient for all but the most determined adversary.



II. BACKGROUND AND RELATED WORK

Over the past several years, a growing number of honeynets
have been deployed in the Internet. These range from simple
passive monitors to sophisticated systems that emulate re-
sponses for standard protocols (e.g.,[30]) to large deployments
of high-fidelity virtualized systems (e.g.,[8]). Furthermore, re-
search on honeynet systems is active and focused on enabling
scalable and secure measurement at greater levels of detail.
The utility of the honeynets thatrespondto connections is that
they reveal the detailed features of attacks. This information
is invaluable in both studies that characterize attack activity
(e.g., [20], [9], [12]), and in the creation of signatures that
can be used to defend against this activity (e.g.,[18], [31]). In
[25], a methodology is proposed for automatically generating
representative honeynet configurations.

To the best of our knowledge, the problem of defending
honeynets from systematic mapping has not been addressed
in prior studies. The possibility of devising methods for cam-
ouflaging honeypots is outlined briefly at the end of [29]. The
related problem of limiting the utility of hitlists of live systems
has been treated in several studies. Antonatoset al. propose
address space randomizationas a method for defending live
systems from worms that use hitlists [3], [4]. Their objective of
accelerating hitlist decay is somewhat similar to ours; however,
both their basic approach (in terms of considering hitlists of
live systems) and suggested mechanisms for random address
shuffling (primarily DHCP) differ from ours. Similar methods
for changing network configurations in order to attempt to
thwart malicious activity have been proposed in [5], [14], [19],
[15]. We differ from these efforts by focusing on protecting
honeynets and demonstrate a simple, scalable, and extensible
system for address space randomization that implements sev-
eral shuffling policies.

Our method for defending honeynets is based on the use of
a middlebox [23]. Typical instances of these include firewalls
or network address translation systems. We are informed by
Allman’s work on analyzing the performance of middleboxes
in [2]. Most specific to our work are the studies of network
address translation methods and systems such as [16]. In
that work, Kohler et al. describe an efficient architecture
for NAT functions that forms the basis of our prototype
implementation.

III. SYSTEM DESIGN AND IMPLEMENTATION

Our threat model is an adversary who desires to identify a
set of N IP addresses that comprise a honeynet in a network
segment of sizeM that also contains a set ofO IP addresses
that terminate with live hosts whereN + O = M (although
this equality is not a strict requirement). We also assume that
the adversary has the ability to determine that a given IP
address is part of a honeynet by sendingP probes to that
address (we make the conservative assumption thatP = 1 for
this study), and thatall the IP addresses that comprise the
honeynet must be probed in order to complete a mapping.
Our starting point for defense against this threat is that the set
of addressesN must be periodically shuffled (the time between

shuffles is ashuffling epoch) within M so that any complete
map generated by the adversary will quickly become incorrect.
We assume that shuffling will be done by a system that resides
at the network perimeter, and is capable of network address
translation and probe counting. Obviously, there are many
possible specifications for this framework, but we argue that
this formulation is reasonable and useful for gaining insights
on the problem — in particular in terms of the feasibility from
an implementation perspective.

A. Shuffling Strategies

In the four strategies described below, we assume that a
honeynet monitorsB blocks of IP addresses that can vary
in size and that are not necessarily contiguous or disjoint.
Likewise, the address blocks assigned to live systems can vary
in size, and are not necessarily contiguous but will always
be disjoint. Key considerations for each strategy are state
maintenance and providing an acceptable level of defense
against mapping. We do not attempt to make definitive claims
with respect to the latter in this paper. However, we argue
that a system that can quickly generate a new randomization
(those below are generated on the order of microseconds) after
a conservative number of probes are counted in the honeynet
will provide effective protection against most adversaries.
• Uniform Block Shuffling (UBS).In this strategy, the ad-

dress spaceM is divided into uniformly sized blocks. When a
shuffling epoch is triggered, the algorithm generates a random
permutation to remap all blocks and then randomly shifts each
segment by a small offset (less than the length of a block).
In this case, live network blocks could be remapped to other
live blocks, which requires continuous connection state across
the entire address space to be maintained. A perfectly random
IP shuffling strategy could be achieved by simply setting the
block size to one. However, the overhead of such a design
choice would be significant for large networks, and a given
block of the honeynet is not guaranteed to move from one
epoch to the next.
• Non-Uniform Block Shifting (NBS).In this strategy, shuf-

fling is restricted to a subset of the total network address space,
A ⊂ M. One or more honeynet blocks (of possibly varying
sizes) are specified during configuration and these block sizes
remain fixed during operation. When a shuffling epoch is
triggered, the algorithm randomizes the starting address for
each honeynet block inA. Our implementation of this strategy
allows two honeynet blocks to overlap. The advantage is that
at any point in time only a portion of the address space may
be affected. Thus, connection state for live systems affected
in the current epoch and adjacent epochs would need to
be maintained. However, some honeynet addresses may not
change between epochs and the overall size of the honeynet
is not guaranteed to remainN.
• Per Source Shuffling (PSS).This strategy is similar to

NBS except that it maintains a different view of the network
for each external host that sends packets. It assumes that
sources act independently, and thus shuffling takes place only
when a single source has reached the probing threshold. At



that point, the network is shuffled only for that external
source. The concern for this strategy is the state required to
maintain the network maps for each external host. However,
this potentially enables the system to shuffle less frequently,
and thus may require fewer resources for connection entries.
Perhaps more significantly, connections from benign hosts
(hosts that target only one or a small number of internal
hosts) would never be shuffled. This might be a feasible design
choice for networks with a small number of honeynet blocks.
An alternative formulation ofPSScould include blocking all
probes from sources after they reach a threshold.
• Source Group Shuffling (SGS).This strategy attempts to

balance the benefits ofNBSandPSSby maintaining network
maps forgroupsof sources. In our prototype implementation,
sources are grouped by their target port numbers, with the
intuition that sources, which are coordinated (distributed,
but controlled by a single agent), would attempt to identify
honeynet addresses using a consistent probing method on a
small set of services. Thus, when the scanning threshold is
met by a group of sources, their view of the network will
be shuffled. This approach is likely to be more resilient to
distributed network mapping and provides some of the benefits
of PSS.

B. The Kaleidoscope Prototype

We developed a prototype shuffling middlebox as a collec-
tion of Click routing elements [17], shown in Figure 1. Click
provides a C++ software framework for packet processing,
with impressive scaling performance and a flexible configura-
tion language, that makes it ideal for building software routers.
Our enhancements to Click involved the development of two
new classes of network elements.

• Address Modification Element. This element (NetRan-
domizer) (i) handles packet input (including probe count-
ing), (ii ) invokes shuffling elements to obtain address
mappings, and (iii ) rewrites addresses in the IP header.

• Shuffling Elements. These elements (UBS, NBS, PSS,
SGS) maintain state and implement shuffling policies.
They are programmed as Click ‘information elements’
and do not have inputs or outputs. The elements main-
tain the mapping tables and do not directly modify
network packets. This design makes it easy to specify
new shuffling components and to swap between shuffling
strategies. We implemented information elements for each
of the shuffling policies discussed above. The design
consideration for shuffling strategies involves a trade-off
between the amount of state maintained and frequency of
shuffling.

Our system maintains two types of state: connection pool
(i.e., live connections) and address mapping tables.

Connection Pools.We implement connection pools using
the HashBelt data structure that we designed, which ap-
proximates the LRU eviction policy and periodically expires
stale connections. The HashBelt maintains a list of N hash
tables and supports four operationsfind , insert , delete
and rotate . During find operations, connection entries

Po
ll

D
ev

ic
e(

et
h0

)
Po

ll
D

ev
ic

e(
et

h1
)

A
R

P
R

es
po

nd
er

C
he

ck
IP

H
ea

de
r NetRandomizer1 (UBS,NBS,PSS,SGS)

NetRandomizer2 (UBS,NBS,PSS,SGS)

Se
tT

C
P

C
he

ck
su

m

Se
tI

P
C

he
ck

su
m

R
R

Sc
he

du
le

r1
R

R
Sc

he
du

le
r2

To
D

ev
ic

e(
et

h1
)

To
D

ev
ic

e(
et

h2
)

Fig. 1. Kaleidoscope Click element configuration.

are automatically moved at the head of the HashBelt. On
rotate operations, a new hash table is inserted to the head
of the HashBelt deleting its tail (expiring all the entries
in the bottom). In our experiments, we maintain HashBelts
with five hash tables and rotate when average chain length
exceeds three lookups. Every connection is associated with the
following tuple of mapping information:<external-ip,external-
port, permuted-ip, local-ip, local-port>, where thepermuted-ip is
simply the internal address as seen by the external host, and the
local-port is identical to the port in the permuted flow. Hence,
the combination of<external-ip, external-port, local-port> forms
a unique identifier for each tracked connection.

Address Maps. Address maps keep track of honeynet
and live network blocks and translation between internal and
permuted IP address. For per-source shuffling, we reuse the
HashBelt data structure to periodically expire address maps
for stale sources. For the other strategies, we simply use a
hash table or collection of hash tables to maintain the address
maps. Each hash table maintains an entry per honeynet block,
except for the case ofUBS, which incurs an entry per address
block.

Strategies that maintain global state (NBSandUBS) devote
fewer resources to maintaining address mappings. However,
they end up shuffling more frequently, and thus are likely
to devote more resources in maintaining ongoing connection
state across shuffling epochs,i.e., larger connection pools.
In contrast, strategies that maintain per-source state (PSS
and SGS) suffer from the overhead of maintaining multiple
address-mapping tables, but they shuffle less frequently com-
pared to the former strategies, and thus might require smaller
connection pools.

Cost/Benefit Analysis.The variables affecting the perfor-
mance of network shufflers include the packet rate, number
of sources, number of ports being scanned, and the fraction
of scanning sources observed by the honeynet. Letµ be the
average probe rate per honeynet IP address andc be the arrival
rate of legitimate connections per IP address. Lets and g be
the average number of sources and source-groups respectively
tracked by the shuffler at any given time. Further, letF and
G be the fraction of scanning sources (those that scan the
entire honeynet) and the fraction of packets sent to scanned
ports respectively. We can then summarize the cost/benefit
of the four strategies, as shown in Table I. We consider the
resiliency of UBS to be low as a knowledgeable attacker could
employ block sampling to quickly identify honeynet blocks.



Shuffler E(epoch duration) State maintenance overhead Resiliency Consistency
Address Map Connection Pool

UBS PM/µ N/B cO+µM
PM/µ low high

NBS PM/µ 2M/B cM+µM
PM/µ high high

PSS PM
Fµ 2Ms/B (Fµ)∗(cM+µM)

PM medium medium

SGS PM
Gµ 2Mg/B (Gµ)∗(cM+µM)

PM high medium

TABLE I
COST/BENEFIT SUMMARY OF THE FOUR SHUFFLING STRATEGIES.

Delay emulation (Netpath)

External request
Shuffled response

MACE (malicious traffic generation)

Scan request
Shuffled response

Harpoon client pool

Forwarded request
Local response

(Kaleidoscope)
Address shuffling

Harpoon server pool

Fig. 2. Experimental setup for lab tests with Kaleidoscope.

NBS has high resiliency and high intra-epoch consistency, but
may be subject to frequent shuffling. The resiliency of PSS is
medium as it is vulnerable to attacks from coordinated sources;
moreover, the network appears inconsistent across sources.
Finally, SGS appears inconsistent across source-groups, but
might be subject to least frequent shuffling.

IV. EXPERIMENTAL EVALUATION

To assess the feasibility of deployment, we evaluated Kalei-
doscope under a number of different traffic scenarios in a
laboratory setting. The key evaluation metrics are packet loss
and delay introduced by the system. Our design goal is to
sustain traffic rates as high as 200 Mbps, which is typical
for our large campus network. Figure 2 shows the network
topology used to evaluate our system. Key components of this
setup include

1) Harpoon — a synthetic packet traffic generator [26].
Our setup includes four Harpoon clients and two Har-
poon servers. We configured the client and server IP
address pools to be 256K and 128K addresses, with
the number of active client and servers being 1024 and
512 respectively. We used the default heavy-tailed file
size distribution, and set the interconnection times to be
exponentially distributed with a mean value of 0.5 s.

2) NetPath — a Click based network delay emulator. We
configured NetPath to produce a constant delay of 15
ms in each direction between the client and server [1].

3) MACE – python-based malicious traffic generator [27].
4) Kaleidoscope— our address shuffling prototype, that

is implemented as a collection of elements in the Click
modular router, and described in Section III.

Synchronized, high-performance DAG cards [11] were used
to capture packets as they enter and exit the Kaleidoscope
system. These cards provide high-precision timestamps on all
packets over the course of an experiment, which enabled us
to establish a detailed performance profile for Kaleidoscope.
The honeynet was configured to be two /18 address blocks
(32K addresses) within a larger address space of two /16
address blocks (128K addresses). Any Harpoon connection to
the honeynet blocks was considered a probe. Each experiment
was run over a period of 15 minutes. Shuffling epochs varied in
each test but averaged several seconds in length depending on
the shuffling strategy, traffic load, and randomness of Harpoon.
• Impact of Shuffling on Performance. We evaluated

system performance in terms of packet loss, packet delay and
connection disruptions that were introduced by Kaleidoscope.
We configured Harpoon to generate average traffic loads
from 50 to 200 Mbps. Kaleidoscope causedzero packets
to be lost andzero connection disruptions. In Figure 3, the
distribution of delays introduced by the system are reported
for different shuffling strategies. It can be seen that delays are
quite minimal, typically under 300µs, which is likely to be
acceptable in most environments and far less than the response
time for some middleboxes [2]. As might be expected, delay
introduced byPSSis slightly higher thanUBS, NBS, or SGS
since the former policies maintain more state. To examine
performance of the system under heavy load, we conducted
additional measurements at 400 Mbps. Table II summarizes
the packet loss introduced by the shuffling middlebox at 200
Mbps and 400 Mbps. While this rate of traffic introduces
a noticeable 0.1% loss rate on thePSSshuffler, the other
shufflers continue to be resilient.
• Robustness to Resource Attacks.An important consid-

eration in the design of Kaleidoscope is its resiliency to re-
source consumption attacks. In particular, there are two classes
of attacks that a knowledgeable adversary might employ to
degrade the quality of service provided by the system. First,
there are attacks that overwhelm the system by filling the
connection pool (the list of live connections that are tracked
by the system). Second, there are attacks that overwhelm the
source and destination address pools that are monitored by the
system. We expect the latter to be a more significant issue for
PSSandSGSstrategies.

Figure 4 (left) shows Kaleidoscope’s resiliency to a connec-
tion pool overload attack in terms of average delay. We used
MACE [27] to initiate SYN-flood attacks of increasing severity
(from 300 to 2400 connection attempts per second). Harpoon



0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0 800.0 900.0 1000.0

Delay (in microseconds)

0.0

5.0×10
5

1.0×10
6

1.5×10
6

2.0×10
6

2.5×10
6

3.0×10
6

N
um

be
r 

of
 p

ac
ke

ts

Non-Uniform Block Shifter

0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0 800.0 900.0 1000.0
Delay (in microseconds)

0.0

5.0×10
5

1.0×10
6

1.5×10
6

2.0×10
6

2.5×10
6

3.0×10
6

N
um

be
r 

of
 p

ac
ke

ts

Uniform Block Shuffler

0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0 800.0 900.0 1000.0

Delay (in microseconds)

0.0

5.0×10
5

1.0×10
6

1.5×10
6

2.0×10
6

2.5×10
6

3.0×10
6

N
um

be
r 

of
 p

ac
ke

ts

Source Group Shuffler

0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0 800.0 900.0 1000.0

Delay (in microseconds)

0.0

5.0×10
5

1.0×10
6

1.5×10
6

2.0×10
6

2.5×10
6

3.0×10
6

N
um

be
r 

of
 p

ac
ke

ts

Per Source Shuffler

Fig. 3. Packet delay distribution for Kaleidoscope under different shuffling strategies.

was configured to generate traffic at our target average rate
of 200 Mbps. The results indicate that the system is able
to handle these attacks without service disruption — no lost
packets or stale connections. The HashBelt implementation of
the connection pool enables timely eviction of the malicious
connections without impact on normal traffic. The average
delays across the shuffling strategies remain minimal (under
300 µs). As expectedUBS, NBS, andSGSoutperformPSS.

Figure 4 (right) shows Kaleidoscope’s resiliency to an
address pool overload attack in terms of average delay. We
used MACE to initiate scanning attacks of increasing severity
(from 300 to 2400 connection attempts per second with source
addresses and destination addresses picked randomly). Har-
poon was configured to generate traffic at our target average
rate of 200 Mbps. The results indicate that the system is able to
handle these attacks without service disruption — zero percent
packet loss and no stale connections. The average delay across
the shuffling strategies also remains minimal (under 1 ms).
As expected,UBS, NBS, andSGSoutperformPSS. We expect
the impact of the system under other attack scenarios such as
worm outbreaks and flash crowds to be similar. Those andin
situ tests are future work.

V. D ISCUSSION

Initial experiments with Kaleidoscope demonstrate the fea-
sibility of a shuffling middlebox for protecting honeynets.
However, there are other important considerations involving
the placement and protocol for the shuffling logic.

A. Deployment Issues

Network Address Translation (NAT). The address trans-
lation logic built into the shuffler is analogous to functionality
implemented in commodity NAT devices. A key difference
is the requirement to support inbound connection requests in
an environment where the local (internal) network changes
dynamically. Much like a NAT, legitimate server addresses
are statically routed; however, connection requests to dynamic
hosts are routed based on the shuffling epoch. We built our
network address shuffler on the premise that most addresses
are client hosts that do not require static routing.

Dynamic Host Configuration Protocol (DHCP). The
network protocol commonly used to automate the allocation
of IP addresses to dynamic participants in a network is

0 100 200 300 400 500
Time (in seconds)

0

500

1000

D
el

ay
 (

in
 m

ic
ro

se
co

nd
s)

UBS
PSS
NBS
SGS

0 100 200 300 400 500
Time (in seconds)

0

500

1000

D
el

ay
 (

in
 m

ic
ro

se
co

nd
s)

UBS
PSS
NBS
SGS

Fig. 4. Packet delays caused by Kaleidoscope under SYN-flood (left) and
scanning attacks (right).

Shuffler 200 Mbps 400 Mbps
UBS 0% 0%
NBS 0% 0%
SGS 0% 0%
PSS 0% 0.11%

TABLE II
SUMMARY OF PACKET LOSS CAUSED BYKALEIDOSCOPE UNDER

DIFFERENT SHUFFLING STRATEGIES.

DHCP [22]. The transient nature of clients makes such envi-
ronments particularly hospitable for our shuffling architecture.
We expect that our system will readily coexist with existing
DHCP networks and plan to investigate opportunities for more
active integration of DHCP management with network address
shuffling, e.g., support for adaptive management of address
pools.

Integration with Routers. One alternative to our mid-
dlebox deployment is using intra-AS routing protocols such
as OSPF or RIP as the basis for honeynet protection. The
advantage of such an approach is the ability to utilize high-
performance routing architectures. In such an environment the
network address shuffler would send periodic link state updates
to route affectedaddress blocks through this system, while
the remaining traffic would bypass the shuffler. Alternately,
one could build the route shuffling request as a new OSPF
message type.

B. Collaborative Shuffling

A possible extension of Kaleidoscope is a collaborative
shuffling infrastructure (CSI) that provides Internet-wide hon-
eynet defense. Our architecture makes such an extension quite
straightforward,i.e., without any changes to the Internet rout-
ing infrastructure. We envision CSI as a globally distributed



overlay network [13] with Kaleidoscope nodes providingon-
demand address shuffling service. The service would maintain
a list of honeynet and non-honeynet (live host) address blocks.
For each address block, the system would also maintain
a current list of producer(owner) andconsumernetworks.
The consumers of network blocks would change periodically
when a given network segment has seen sufficient scans.
The producers remain constant and all traffic gets routed via
overlays between the producers and consumers. The benefit for
participants is gaining real-time perspective on attack activity
at other networks and enhanced heterogeneity of the local
network. Further, one could imagine anonymizing producer
networks by onion routing the communication over Tor [10]. A
CSI could also enable networks to efficiently share information
that could be used in building real-time blacklists of probe-
response attack sources. There are obvious challenges that we
need to tackle such as privacy and economic implications. We
intend to investigate them in future work.

VI. SUMMARY AND CONCLUSION

We present an address camoflauging methodology for safe-
guarding honeynet monitors from being mapped by adver-
saries. We designed and built a prototype middlebox sys-
tem that counts probes to a network and shuffles embedded
honeynets when probe thresholds are reached. This system
was developed to understand the demands and requirements
for four different methods of address space shuffling. We
tested Kaleidoscope in a laboratory environment configured
to approximate the traffic conditions in our own campus
network where we operate a large honeynet. First, we tested
the per-packet delays introduced by Kaleidoscope, and found
that the worst-case delays were on the order of hundreds
of microseconds, which would be quite acceptable for most
networks. Second, we tested the state required within the
middlebox for the different shuffling strategies and found
that all are easily accommodated by our design. Finally,
we tested resource requirements when Kaleidoscope itself is
under attack, and found that our implementation approach
is sufficient to continue operation without packet loss or
significant increase in delay.

VII. A CKNOWLEDGEMENTS

The authors thank Phil Porras and the GI 2007 sympo-
sium reviewers for encouraging and valuable feedback that
improved our presentation of the paper. This material is based
upon work supported through the U.S. Army Research Office
under the Cyber-TA Research Grant No. W911NF-06-1-0316
and NSF grants No. CNS-0347252 and CCR-0325653. Any
opinions, findings, conclusions, or recommendations expressed
in this material are those of the authors and do not necessarily
reflect the views of the NSF or ARO.

REFERENCES

[1] S. Agarwal, J. Sommers, and P. Barford. Scalable network path
emulation. InProceedings of IEEE MASCOTS, 2005.

[2] M. Allman. On the performance of middleboxes. InProceedings of
Sigcomm Internet Measurement Conference, 2003.

[3] S. Antonatos, P. Akritidis, E. Markatos, and K. Anagnostakis. Defending
against hitlist worms using network address space randomization. In
Proceedings of ACM CCS WORM, 2005.

[4] S. Antonatos and K. Anagnostakis. Protecting against Hitlist Worms
using Transparent Address Obfuscation. InProceedings of CMS, 2006.

[5] M. Atighetchi, P. Pal, F. Webber, R. Schantz, and C. Jones. Adaptive use
of network-centric mechanisms in cyber defense. In6th International
Symposium on Object-oriented Real-time Distributed Computing, 2003.

[6] J. Bethencourt, J. Franklin, and M. Vernon. Mapping Internet sensors
with probe response packets. InProceedings of USENIX Security
Symposium, 2005.

[7] J.-Y. Cai, V. Yegneswaran, C. Alfeld, and P. Barford. HoneyGames: A
Game-Theoretic Approach to Defending Network Monitors. University
of Wisconsin, Technical Report, 2006.

[8] M. Casado, T. Garfinkel, W. Cui, V. Paxson, and S. Savage. Oppor-
tunistic measurement. InProceedings of ACM Hotnets, 2005.

[9] E. Cooke, M. Bailey, M. Mao, D. Watson, F. Jahanian, and D. McPher-
son. Toward understanding distributed blackhole placement. InPro-
ceedings of CCS WORM, 2004.

[10] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The second-
generation onion router. InUSENIX Security Symposium, 2004.

[11] Endace: Accelerated Network Security.http://www.endace.com.
[12] German Honeynet Project. Tracking botnets.http://www.honeynet.org/

papers/bots, 2005.
[13] A. Keromytis, V. Misra, and D. Rubenstein. SOS: Secure overlay

services. InProceedings of ACM Sigcomm, 2002.
[14] D. Kewley, J. Lowry, R. Fink, and M. Dean. Dynamic approaches to

thwart adversary intelligence gathering. InDISCEX, 2001.
[15] S. Khattab, R. Melhem, D. Mosse, and T. Znati. Honeypot Back-

propagation for Mitigating Spoofing Distributed Denial-of-Service At-
tacks. InProceedings of SSN, 2006.

[16] E. Kohler, R. Morris, and B. Chen. Modular components for network
address translation.IEEE OPENARCH, June 2002.

[17] E. Kohler, R. Morris, B. Chen, J. Jannotti, and F. Kaashoek. The click
modular router.ACM Transactions on Computer Systems, August 2000.

[18] C. Kreibich and J. Crowcroft. Honeycomb–creating intrusion detection
signatures using honeypots. InProceedings of ACM Hotnets, 2003.

[19] J. Michalski, C. Price, E. Stanton, E. Chua, K. Seah, W. Heng, and
T. Pheng. Final report for the network security mechanisms utilizing
network address translation ldrd project. Technical Report SAND2002-
3613, Sandia National Laboratories, 2002.

[20] R. Pang, V. Yegneswaran, P. Barford, V. Paxson, and L. Peterson.
Characteristics of Internet background radiation. InProceedings of the
ACM SIGCOMM Internet Measurement Conference, 2004.

[21] M. A. Rajab, F. Monrose, and A. Terzis. Fast and evasive attacks:
Highlighting the challenges ahead. InProceedings of RAID, 2006.

[22] RFC 2131 - Dynamic Host Control Protocol.
http://www.faqs.org/rfcs/rfc2131.html.

[23] RFC 3234 - Middleboxes: Taxonomy and issues.
http://www.faqs.org/rfcs/rfc3234.html.

[24] Y. Shinoda, K. Ikai, and M. Itoh. Vulnerabilities of passive internet
threat monitors. InProceedings of USENIX Security Symposium, 2005.

[25] S. Sinha, M. Bailey, and F. Jahanian. Shedding Light on the Configu-
ration of Dark Addresses. InProceedings of NDSS, 2007.

[26] J. Sommers and P. Barford. Self-configuring network traffic generation.
In Proceedings of ACM SIGCOMM Internet Measurement Conference,
2004.

[27] J. Sommers, V. Yegneswaran, and P. Barford. A framework for malicious
workload generation. InProceedings of ACM SIGCOMM Internet
Measurement Conference, 2004.

[28] J. Ullrich. Dshield. http://www.dshield.org, 2007.
[29] M. Vrable, J. Ma, J. Chen, D. Moore, E. Vandekieft, A. Snoeren,

G. Voelker, and S. Savage. Scalability, fidelity and containment in the
potemkin virtual honeyfarm. InProceedings of ACM SOSP, 2005.

[30] V. Yegneswaran, P. Barford, and D. Plonka. On the design and utility of
Internet sinks for network abuse monitoring. InProceedings of RAID,
2004.

[31] V. Yegneswaran, J. T. Giffin, P. Barford, and S. Jha. An architecture for
generating semantics-aware signatures. InUsenix Security Symposium,
2005.


