
BLADE: Slashing The Invisible Channel of
Drive-by Download Malware

Long Lu1, Vinod Yegneswaran2, Phillip Porras2, and Wenke Lee1

1 School of Computer Science, Georgia Tech, Atlanta, GA 30332 USA
2 SRI International, Menlo Park, CA, 94025 USA

{long, wenke}@cc.gatech.edu, {vinod, porras}@csl.sri.com

Abstract. Drive-by downloads, which result in the unauthorized instal-
lation of code through the browser and into the victim host, have become
one of the dominant means through which mass infections now occur.
We present BLADE (Block All Drive-by download Exploits), a browser-
independent system that seeks to eliminate the drive-by threat. BLADE
prudently assumes that the legitimate download of any executable must
result from explicit user consent. BLADE transparently redirects every
browser download into a non-executable safe zone on disk, unless it is
associated with a programmatically inferred user-consent event. BLADE
thwarts the necessary underlying transaction on which all drive-by down-
loads rely, therefore it requires no prior knowledge of the exploit methods,
and is not subject to circumvention by obfuscations or zero-day threats.

1 The BLADE System

Unlike push-based approaches adopted by Internet scanning worms and viruses,
contemporary malware publishers rely on drive-by exploits for silent dissemina-
tion of spyware, trojans, and bots [3]. As a countermeasure, BLADE is a kernel-
based monitor designed to block all malware delivered without user knowledge
via browsers and overcomes the challenges described in [2].

BLADE’s design is motivated by the fundamental observation that all browser
downloads fall into either of two basic categories: supported file types (e.g., html,
jpeg) or unsupported file types (e.g., exe, zip). While browsers silently fetch and
render all supported file types, they must prompt the user when an unsupported-
type is encountered. The objective of client-side download exploits is to deliver
malicious (unsupported) content through the browser using methods that essen-
tially bypass the standard unsupported-type user prompt interactions. BLADE’s
approach is to intercept and impose “execution prevention” of all downloaded
content that has not been directly consented to by user-to-browser interaction.
To achieve this, BLADE introduces two key OS-level capabilities:

(1) User-Interaction Tracking: A novel aspect of BLADE is the introduction
of user-interaction tracking as a means to discern transparent browser down-
loads from those that involve direct user authorization. Operating from the ker-
nel space, BLADE introduces a browser-independent supervisor, which infers user
consent-to-download events, by reconstructing on-screen user interfaces (UI) from

1



 
 On-Screen UI

User

Browser

Kernel Space

File
System

Safe
Zone

I/O-
Redirector

Interupt
Dispatch

Win32K
Supervisor

FileSys 
View

Blade

Disk
 I/O

Fig 1. BLADE's Architecture

User Interactions

BrowserBrowsers

kernel memory and monitoring user interactions in the form of hardware inter-
rupts. Specifically, it retrieves semantic UI information from the kernel objects
maintained by the windowing subsystem (Win32K), discovers interested UI ele-
ments and their status changes (e.g., download confirmation dialogs), and listens
to hardware-interaction events (e.g., mouse clicks) targeted at any interested UI
element. Once a download consent event is inferred, the supervisor records it as
an authorization along with the information parsed from UI elements (e.g., file
names and URLs).

(2) Disk I/O Redirection: BLADE’s I/O-Redirector transparently redirects all
hard disk write operations to a safe zone. This safe zone, created and managed
by BLADE, represents offshore storage inaccessible from the local file system.
Being addressable only through BLADE ensures that files in the safe zone can
never be loaded or executed, even by the OS. Upon finishing each file write
operation, the I/O-Redirector queries the supervisor and maps the current file
to the local file system if a stored authorization correlates with it. To maintain
functional consistency, the supervised processes are also provided a modified file
system view, which renders the impression that all disk writes are carried out in
their respective locations, while actual disk I/O to these files are forwarded by
BLADE to the safe zone. A prototype of BLADE is now under development as a
kernel driver for Windows platforms, which will be tested with multiple versions
of Firefox, Internet Explorer and Chrome.

Threat Model: We assume that the OS, the underlying hardware and network
infrastructure are uncompromised. The attacker’s goal is to perform a forced
upload and execution of malicious binary content on the victim machine. Upon
successfully hijacking control of a browser process, an attacker may pursue either
of two possible paths to bypass BLADE and install a malware binary: (a) evading
I/O redirection, or (b) executing the malware stored in the safe zone. As a kernel
driver only dealing with trusted OS components and unforgeable hardware events
(e.g., mouse clicks), BLADE is not subject to code injection or data manipulation
attacks, and not deceived by fake UI messages which makes (a) difficult. Likewise,
attempts to launch the malware from outside the browser process are naturally
prevented as the the malware is only addressable through BLADE.

References

1. Drive-by downloads: The web under siege. Kaspersky Lab, http://www.viruslist.
com/en/analysis?pubid=204792056, April 2009.

2. M. Egele, E. Kirda, and C. Kruegel. Mitigating drive-by download attacks: Chal-
lenges and open problems. In iNetSec 2009, Zurich, Switzerland, April 2009.

2



3. N. Provos, P. Mavrommatis, M. A. Rajab, and F. Monrose. All your iframes point
to us. In Proceedings of the 17th USENIX Security Symposium, 2008.

3


