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Abstract
Linux container-based microservices have emerged as an

attractive alternative to virtualization as they reduce appli-
cation footprints and facilitate more efficient resource uti-
lization. Their popularity has also led to increased scrutiny
of the underlying security properties and attack surface of
container technology. Provenance-based analysis techniques
have been proposed as an effective means toward compre-
hensive and high-assurance security control as they provide
fine-grained mechanisms to track data flows across the system
and detect unwanted or unexpected changes to data objects.
However, existing provenance tracking techniques are limited
in their ability to build sound and clear provenance in con-
tainer network environments due to complexities introduced
by namespace virtualization.

We describe a namespace- and container-aware prove-
nance tracking solution, called CLARION, that addresses
the unique soundness and clarity challenges introduced by
traditional provenance tracking solutions. Specifically, we
first describe fragmentation and ambiguities introduced in
provenance analysis tools by each of the Linux namespaces
and propose solutions to address analysis soundness. Then we
discuss the design of specialized semantics-summarization
techniques that improve the clarity of provenance analysis. We
have developed a prototype implementation of CLARION
and evaluate its performance against a spectrum of container-
specific attacks. The results demonstrate the utility of our sys-
tem and how it outperforms the state-of-the-art provenance
tracking systems by providing an accurate and concise view
of data provenance in container environments.

1 Introduction
Linux container technology has seen a rapid rise in adop-
tion due to the miniaturized application footprints and im-
proved resource utilization that are crucial in contemporary
microservice architectures [20] and serverless computing envi-
ronments [2]. The performance boost realized in containerized
environments stems from their use of light-weight virtualiza-
tion techniques whereby a single Linux operating system (OS)
kernel is used to manage an array of virtualized containers.
However, a side effect of this design choice is that an attack
initiated inside a container may affect the shared host Linux
OS kernel. Compared to the traditional virtual machine (VM)
model, in which the guest VM OS is completely isolated from
the host, this provides a much greater target surface to the

attacker. Hence, comprehensive security tracking and analysis
are vital in container networks.

The application of data provenance analysis techniques
[22, 24, 27–30, 32, 34, 36, 39] for host and enterprise security
monitoring has been well studied. However, extending such
capabilities to container-based microservice environments
raises some unique research challenges. At a cursory glance,
the shared-host OS kernel substrate provides a centralized
monitoring platform for observing events across containers
and implementing security policy. In fact, the use of Linux
namespaces introduces fragmentation and ambiguities in data
streams used by provenance tracking systems, such as those
based on the Linux Audit subsystem. Here, fragmentation
refers to abnormal vertex splitting leading to false disconnec-
tions in the provenance graph. Conversely, ambiguity refers
to vertex merging where a single vertex incorrectly repre-
sents multiple distinct objects in the correct provenance graph.
Both fragmentation and ambiguities lead to false or missing
dependencies. We refer to these as soundness challenges for
container provenance analysis.

Namespaces [15] are a fundamental feature in the Linux
kernel that facilitate efficient partitioning of kernel resources
across process groups. This is the key feature exploited by
popular containerization technologies such as Docker [7].
While processes within the same namespaces will share OS re-
sources, those in different namespaces have isolated instances
of corresponding operating system resources. For example,
files in the same mount namespace have the same root direc-
tory so they must have different path names. Conversely, two
files in different mount namespaces can appear to have exactly
the same path names within but can still be distinguished by
the root directory of their respective mount namespaces – i.e.,
their path names are virtualized (containerized) by the mount
namespace. Unfortunately, it is the virtualized path names that
will be recorded and reported by the kernel’s audit subsys-
tems, making those two files indistinguishable, which leads
to falsely conflated elements in inferred provenance graphs.

Furthermore, mishandling the effect of namespaces can
prevent a provenance tracking system from correctly charac-
terizing essential aspects, such as the boundary of containers.
Here the boundary of containers refer to the delineation of
a provenance subgraph that represents the behavior within a
container. It includes the processes running inside the con-
tainer, the files manipulated by them, the sockets they create,
etc. Without a proper understanding of container semantics



(i.e., ability to define boundary of containers and activity
patterns of container engines corresponding to initialization,
termination etc.), it will be impossible for security analysts to
reason about how, when, and what containers are affected by
attacks. We refer to these as clarity challenges for container
provenance analysis.

CLARION Solution. To resolve the aforementioned sound-
ness and clarity challenges, we propose CLARION, a
namespace- and container-aware provenance tracking solu-
tion for Linux microservice environments. For soundness, we
first provide an in-depth analysis of how the virtualization
provided by each relevant namespace causes fragmentation
and ambiguity in the inferred provenance. For each relevant
namespace, we then propose a corresponding technical solu-
tion to resolve both issues. To improve clarity, we first define
essential container-specific semantics including boundary of
containers and initialization of containers. Next, we propose
summarization techniques for each semantics to automatically
mark the corresponding provenance subgraphs.

We show that soundness and clarity challenges are not spe-
cific – i.e., they exist in a range of monitoring approaches,
including Linux Audit [25], Sysdig [21] and LTTng [16]. We
describe a prototype implementation based on SPADE [23],
an open source state-of-the-art provenance tracking system
and comprehensively evaluate the effectiveness, efficiency,
and generality of our solution. We studied the effectiveness
and utility of our system using container-specific attacks. We
also empirically evaluated system efficiency by running our
solution on desktop computers as well as in an enterprise-level
microservice environment. To assess generality, we collected
provenance graphs for various state-of-the-art container en-
gines including Docker, rkt [3], LXC [17] and Mesos [1].
These results show our solution works across container en-
gines and outperforms the traditional provenance tracking
technique by producing superior provenance graphs with an
acceptable increase in system overhead (< 5%).

Contributions. In summary, our paper makes the following
contributions:

• We thoroughly analyze the ways namespace virtualiza-
tion can affect provenance tracking. To the best of our
knowledge, this is the first in-depth analysis of the im-
plications of namespaces on microservice provenance
tracking.

• Based on these insights, we designed and implemented
a namespace- and container-aware provenance tracking
solution – i.e., CLARION– that holistically addresses
the soundness and clarity challenges.

• We conducted a comprehensive evaluation of the effec-
tiveness, efficiency, and generality of our solution. The
results show our solution produces sound and clear prove-
nance in container-based microservice environments
with low system overhead.

Table 1: Supported Linux Namespaces
Namespace Isolated System Resource

Cgroup Cgroup root directory
IPC System V IPC, POSIX message queues

Network Network devices, stacks, ports, etc.
Mount Mount points

PID Process IDs
Time Boot and monotonic clocks
User User and group IDs
UTS Hostname and NIS domain name

2 Background and Motivation
We provide basic background information on Linux contain-
ers and namespaces. We then use a motivating example to
highlight the limitations of existing provenance tracking tech-
niques and also describe our threat model.

2.1 Linux Namespaces
Linux namespaces [15] provide a foundational mechanism
leveraged by containerization technologies to enable system-
level virtualization. They are advertised as a Linux kernel
feature that supports isolating instances of critical operating
system resources including process identifiers, filesystem, and
network stack across groups of processes. Internally, names-
paces are implemented as an attribute of each process, such
that only those processes with the same namespaces attribute
value can access corresponding instances of containerized
system resources. Currently, eight namespaces are supported
by the Linux kernel as listed in Table 1.

Consider the mount namespace as an example. On a Linux
operating system that has just been booted, every process runs
in an initial mount namespace, accesses the same set of mount
points, and has the same view of the filesystem. Once a new
mount namespace is created, the processes inside the new
mount namespace can mount and alter the filesystems on its
mount points without affecting the filesystem in other mount
namespaces.

2.2 Linux Containers
Linux containers may be viewed as a set of running pro-
cesses that collectively share common namespaces and sys-
tem setup. In practice, containers are usually created by a
container engine using its container runtime. The container
runtime will specify the namespace to be shared among pro-
cesses running inside the container. As a concrete example,
the Docker container engine specifies five namespaces (PID,
Mount, Network, IPC and UTS) to be shared, initializes sev-
eral system components including rootfs /, hostname, /proc
pseudo-filesystem, and finally executes the target application
as the first process inside the container.

2.3 Motivating Example
We motivate our solution by investigating the performance of
three classes of state-of-the-art provenance tracking solutions
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(a) Provenance Tracking without Container Awareness or
Namespace Awareness

Red labels represent the errors caused by this solution.
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Figure 1: Comparison between different provenance tracking
solutions. The traditional provenance solution graph illus-
trated in (a) lacks namespace awareness and container aware-
ness. The container-aware graph shown in (b), produced by
systems such as Winnower, performs slightly better because it
can distinguish processes from different containers, but lacks
namespace awareness, leading to disconnected intra-container
provenance graphs. The namespace-aware graph, illustrated in
(c), produced by CamFlow lacks container-awareness. While
this graph does not suffer from the soundness issue, it can-
not effectively capture essential container semantics (e.g., the
boundary of containers).

against a trivial credential theft insider attack1. Notably, dur-
ing this attack, the attacker touches the /etc/passwd file in
both a container and the host system.

First, as shown in Figure 1(a), traditional solutions that lack
both container and namespace awareness, e.g., SPADE, are un-
able to deliver a sound and clear illustration of this attack step.
To illustrate soundness challenges, we explain how fragmen-
tation and ambiguity occur in the figure. For fragmentation,
when bash (2976) forks a child process bash (10) with
the global PID 3030 to execute the cat command, the virtual-
ized PID 10 will be reported and used in building this process
creation provenance so bash (3030) splits into two vertices,
bash (10) and cat (3030), which build incorrect fork and
execve edges correspondingly. For ambiguity, consider the
file /etc/passwd. Since the file path is virtualized, ambigu-
ity occurs on the vertex representing two /etc/passwd files
(inside and outside the container respectively) simultaneously.
The correct graph should contain two separate /etc/passwd
file artifact vertices. With respect to clarity, it is not intuitive
which processes are inside the container because container
boundaries are not marked in the graph.

Second, solutions that only provide container awareness,
e.g., Winnower, also suffer from the soundness challenge.
Though they can distinguish the processes inside the container
in Figure 1(b), the ambiguity and graph fragmentation issues
persist. This is also the case for other simple container labeling
solutions, e.g., using a cgroup prefix or a SELinux label for
every provenance artifact.

Third, solutions that only provide namespace awareness,
e.g., CamFlow, still suffer from the clarity challenge. As we
can see in Figure 1(c), they do not capture essential container
semantics, such as the boundary of containers, complicating
security analysis. As CamFlow provides a more fine-grained
and complex provenance graph2, non-trivial additional graph
analysis will be required to design and apply similar semantic
patterns in CamFlow to provide clarity. For instance, to sup-
port the boundary of containers, it is necessary in CamFlow
to (1) put the PID namespace identifier on every task vertex
to group processes inside a container by aggregating PID
namespace information; (2) get the namespace-virtualized
pathname and the mount namespace identifier for each file to
reveal whether the file is inside a container by complementing
mount namespace information.

For (1), we need to find the process memory vertex as-
signed to each task vertex and use its PID namespace identi-
fier. Figure 1(c) illustrates a simple case. In practice, the graph
analysis required is more complex. Because CamFlow uses
versions to avoid cycles or to record any object state change
for a provenance artifact, a path traversal is needed to find the
correct version of the task vertex, i.e., where a clone tries to

1A complete attack description can be found in the Appendix, but is not
required to illustrate the challenges faced by container provenance systems.

2The provenance graph of CamFlow is framed over fine-grained kernel
objects, e.g., task, process memory, inode, path, packet.



type=SYSCALL msg=audit(1567029444.851:431219): arch=c000003e syscall=56
success=yes exit=2 a0=3d0f00 a1=7f81aa8f8fb0 a2=7f81aa8f99d0
a3=7f81aa8f99d0 items=0 ppid=5880 pid=5903 auid=4294967295 uid=0 gid=0
euid=0 suid=0 fsuid=0 egid=0 sgid=0 fsgid=0 tty=(none) ses=4294967295
comm="runc:[2:INIT]" exe="/" key=(null)

Figure 2: Problematic Linux Audit Record (PID)
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(a) PID namespace failure

(b) PID namespace success

Figure 3: PID Namespace: Failure and Success

assign the process memory. For (2), CamFlow does not pro-
vide virtualized paths and mount namespace identifier for file
vertices natively. The same state management implemented
on CLARION (See Section 4.1.2) to track pivot_root and
chroot calls and path traversal analogous to what was de-
scribed above for (1) will need to be implemented within
CamFlow.

2.4 Threat Model

We consider the OS kernel and audit subsystem, i.e., Linux
Audit, to be part of the trust computing base (TCB). We as-
sume that the OS kernel is well protected by existing kernel-
protection techniques [13, 38]. The integrity of Linux Audit
assures the ability to observe all system calls associated with
malicious activity in user space. If the attackers succeed in
compromising the kernel, they can disrupt the normal oper-
ation of Linux Audit and the kernel module used by CLAR-
ION. To address such attacks, the security of the TCB can
be bolstered using TPM-based approaches as used by prior
provenance-tracking systems [22, 35].

We further assume adversaries can only have limited or no a
priori privileges. Thus, we only consider a threat model where
attacks are launched from user space. This threat model is
based on what was used in prior provenance tracking systems,
and it is reasonable because the container virtualization does
not mitigate the effort required for attackers to compromise
the kernel. Implementing provenance tracking for containers
and addressing namespace virtualization problems shown in
Section 3 do not require additional information beyond what
is provided in the kernel, as described in Section 4. Finally,
the system may be subject to resource exhaustion attacks,
leading to missed events. We believe that the defense against
such attacks is outside the scope of this paper.

type=SYSCALL msg=audit(1573775822.523:18757): arch=c000003e syscall=257
success=yes exit=3 a0=ffffff9c a1=7fff09576970 a2=0 a3=0 items=1 ppid=22352
pid=22422 auid=4294967295 uid=0 gid=0 euid=0 suid=0 fsuid=0 egid=0 sgid=0
fsgid=0 tty=pts0 ses=4294967295 comm="cat" exe="/bin/cat" key=(null)
type=CWD msg=audit(1573775822.523:18757): cwd="/"
type=PATH msg=audit(1573775822.523:18757): item=0 name="/etc/passwd"
inode=67535 dev=00:2e mode=0100644 ouid=0 ogid=0 rdev=00:00
nametype=NORMAL cap_fp=0000000000000000 cap_fi=0000000000000000
cap_fe=0 cap_fver=0

Figure 4: Problematic Linux Audit Record (Mount)
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Figure 5: Mount Namespace: Failure and Success

3 Container Provenance Challenges
We elaborate on the soundness and clarity challenges intro-
duced by mishandling the effect of container virtualization in
each namespace. Through the analysis in this section, we also
ensure that the technique we propose in Section 4 covers all
the needed namespace interactions.

3.1 Soundness: Namespace Virtualization
As illustrated in the motivating example, fragmentation and
ambiguity are soundness issues caused by namespace virtu-
alization in provenance tracking. However, not every names-
pace triggers either or both issues. In Table 2, we provide a
deeper analysis about how each namespace impacts prove-
nance tracking and what events will be affected. In addition,
we use audit records from Linux Audit to demonstrate the
problem and show how the soundness challenge can extend
to other monitoring techniques such as Sysdig and LTTng.

3.1.1 PID Namespace

Figure 2 shows a problematic audit record. It is created by a
runC container runtime process inside a container and trying
to finish the initialization. Syscall value 56 means that it is
a clone system call, and its return value is the PID of the
cloned child process. Here, we can see that exit value is 2,
but the process 2 is usually a kernel-related process generated
when the system is booted. It suggests process 2 cannot be
the cloned child process of this runC runtime process, which
is confirmed by our further investigation. So 2 cannot be the
global PID for the cloned child process. It can only be a
virtualized PID.

Figure 3 illustrates the subgraph exposing the fragmenta-
tion caused by PID namespace virtualization in the motivating



Table 2: Namespace Virtualization: What / How Provenance?
Namespace What events will be affected? How each namespace impacts provenance tracking?
PID Audit records related to process manipulation system calls (e.g.,

clone, fork) will be affected. In those records, the argument fields
and return value field with PID semantics are virtualized but the PID
fields themselves are virtualized. This leads to a semantic inconsis-
tency.

The aforementioned inconsistency leads to fragmentation in the prove-
nance graph when process creation happens, so the provenance track-
ing system fails to produce sound provenance information.

Mount Audit records related to file operation system calls, e.g., open, close
and read, will be affected. Just like the PID namespace, argument
fields with file path semantics will be virtualized. In addition, the file
path in CWD and PATH records will also be virtualized.

Two different files, accessed within two different containers, may
have the same name which leads to ambiguity. Thus the provenance
tracking system fails to produce sound provenance information.

Network Audit records containing local IP addresses and local ports of a socket
will be affected. Examples include the bind system call, which is the
only system call directly providing local IP and local ports of a socket
in its arguments, and other system calls like the listen system call
providing socket file descriptors where local IP addresses and ports
can be indirectly extracted.

Two sockets in two containers can have the same local IP address
and local port leading to ambiguity. Furthermore, sockets inside the
container are connected to a host port through port-mapping rules.
Without explicit understanding of this mapping information, the prove-
nance system fails to connect the incoming connection to the correct
sockets, leading to fragmentation.

IPC Audit records related to system calls handling SYSV IPC objects, i.e.,
message queue, semaphore and shared memory segmentation, and
the POSIX message queue will be affected, e.g., msgget, mq_open,
shm_open. The effect is that argument fields with the semantics of
the ID/name of a SYSV IPC object or a POSIX message queue are
virtualized.

Two IPC objects of the same type can have the same ID/name, and
this will lead to ambiguity in the provenance graph.

User The only affected data elements are UIDs and GIDs. They do not
lead to fragmentation in the provenance graph. As for ambiguity,
Linux Audit records can report the host view of UID and GID in the
corresponding fields of every audit record so that ambiguity will also
be resolved.

Since there is no impact, user namespace auditing is unchanged. Fur-
thermore, most container engines do not use the user namespace
in their default container initialization because it breaks access per-
mission to critical libraries on the host and storage features like bind
mount may be automatically disabled if the user namespace is enabled
in the container.

Time, UTS
and Cgroup

These namespaces do not affect dataflow in practice and thus do not
directly impact provenance.

N/A

example. The bash process 2976 expects that it created child
process 10 which is actually process 3030.

3.1.2 Mount Namespace

Figure 4 shows a problematic audit record. A system call
openat (inferred by syscall=257) is invoked by a process
trying to read /etc/passwd in the container. As we can
see, the CWD is / and the PATH is /etc/passwd. In
fact, all files inside the container are stored under some
directory specific to this container. This specific directory
may vary due to different container engine choices. Taking
Docker as an example, the specific directory is usually
/var/lib/docker/overlay2/container_hash/merged/
where container_hash is a hash string related to this
container. So to get the global paths of the CWD / and the
PATH /etc/passwd, the path of the specific directory needs
to be added to them as the prefix.

Figure 5 illustrates the subgraph exposing the mount names-
pace virtualization problem described in the motivation ex-
ample. Two cat processes (with PIDs 3030 and 4146), are
attempting to read the /etc/passwd file, and the two files are
confused with each other without mount-namespace aware-
ness. CLARION’s host-container mapping enables us to
easily distinguish between them.

3.1.3 Network Namespace

Figure 6 illustrates the subgraph exposing the network names-
pace virtualization problem in the motivation example. Two

nc processes (PID 3043 and 4149) are listening on socket
(0.0.0.0/4000) within their respective containers, and one of
them accepts a connection from (10.0.2.15/3884). Since the
local IP addresses/ports are virtualized and remote IP ad-
dresses/ports are the same, the two sockets can be confused
with each other without network-namespace awareness. With-
out establishing the host-container mapping of sockets inside
the container, we are unable to attribute the connection to a
socket inside the container, as illustrated in Figure 6.

3.1.4 Soundness Challenge on Other Audit Subsystems

We further investigated the impact of container virtualiza-
tion on two alternative Linux audit subsystems, specifically
Sysdig [21] and LTTng [16], to assess whether soundness
challenge impacts other systems besides Linux Audit. We
summarize our findings in Table 3. We find that Sysdig suf-
fers from the same soundness challenges confronted by Linux
Audit. LTTng provides host-container ID mappings using
more low-level events3 but the soundness challenge in mount
namespace still persists. Our investigation shows that sound-
ness challenge is not specific to Linux Audit.

3.1.5 Soundness Challenge on Rootless Containers

Rootless containers refer to the containers that can be cre-
ated, run, and managed by unprivileged users. They differ
from traditional containers in which they have a new unprivi-

3For example, the sched_process_fork event.



Table 3: Provenance Soundness on Sysdig and LTTng
Namespace Sysdig LTTng
PID Soundness challenge persists because the return values and the ar-

guments providing PID semantics will be virtualized in the audit
records corresponding to process manipulation system calls, e.g.,
clone, fork.

Soundness challenge persists if only system call events are used
in provenance tracking system because the return values and the
arguments providing PID semantics will be virtualized. However,
LTTng can provide the host-container PID mapping which eliminates
the PID namespace soundness challenge.

Mount Soundness challenge persists because the data fields providing file
path semantics, e.g., name and filename, will be virtualized in the
audit records corresponding to file operation system calls, e.g., open,
close, and read.

Soundness challenge persists because the data fields providing file
path semantics, e.g., filename, will be virtualized.

Network Soundness challenge persists. The data fields having local IP ad-
dresses/ports will be virtualized. Examples include the argument
(addr) of a bind system call and the translation of the argument (fd)
being the socket file descriptor of a listen system call.

Local IP addresses and ports are still affected. However, since LT-
Tng does not explicitly transform the addr argument in the bind
system call to a socket address, the soundness challenge in network
namespace is less severe.

IPC Soundness challenge persists. Names/IDs of a SYSV IPC object or a
POSIX message queue will be virtuailzed.

Soundness challenge persists. Names/IDs of a SYSV IPC object
or a POSIX message queue virtualized by IPC namespace will be
virtuailzed.

User The return values and arguments of UID-manipulation system calls
will be virtualized but soundness is not affected.

Soundness is not affected. Furthermore, clarity can be achieved since
the UID/GID host-container mapping is provided.

Time, UTS
and Cgroup

These do not affect dataflow in practice and thus do not directly
impact provenance.

These do not affect dataflow in practice and thus do not directly
impact provenance.

(a)Network namespace failure
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Figure 6: Network Namespace: Failure and Success

leged user namespace. In this user namespace, all UIDs and
GIDs are mapped from the global user namespace, including
a pseudo-root user. This core difference causes further effects
in filesystem and networking in the rootless container. For
filesystem, many Linux distributions do not allow mounting
overlay filesystems in user namespaces. This limitation makes
rootless containers inefficient. For networking, virtual Ether-
net (veth) devices4 cannot be created as only real root users

4Veth devices are a special type of Linux interface used in virtual net-
working. They are always created in pairs and usually serve as local Ethernet

have the privileges to do so.
As summarized in Table 2, the user namespace does not

affect the soundness of provenance analysis. Further, although
rootless containers have slightly different implementations
for filesystem and networking (mentioned above), to support
unprivileged root users, they do not affect provenance. Thus,
we claim that rootless containers share the same soundness
challenges faced by traditional containers.

3.1.6 Soundness Challenge on Other OS Platforms

We also investigated two alternative resource isolation tech-
niques, specifically FreeBSD Jails and Solaris Zones, to see
whether soundness challenge can also occur in other platforms.
We summarize our findings in Table 4. Our key finding is that
if semantics inconsistency exists in the low-level audit events
related to virtualized system resources (e.g., PIDs, file paths,
network addresses/ports), the resource-isolation technology
will suffer from the soundness challenge. We assume this
finding also extends to other OS platforms like Windows and
MacOS. Semantic inconsistencies are at the core of the sound-
ness challenge so the key to make CLARION feasible on
those platforms is to systematically address such inconsisten-
cies.

3.2 Clarity: Essential Container Semantics
We describe the challenges involved in automating the com-
prehension of essential container semantics. This is a feature
that is unique to our provenance tracking system, and we
believe it can greatly simplify the understanding and analy-
sis of dataflow provenance in container-based microservice
environments.

An important aspect of forensic analysis is accurately know-
ing what subgraphs correspond to which container so that we

tunnel between namespaces in container networks.



Table 4: Provenance Soundness in BSD Jails and Solaris Zones
Resource BSD Jail Solaris Zone
Process BSD Jails use JID (Jail ID) to mark the processes inside a jail. Thus no

virtualized PID is used and no soundness challenge will be introduced.
Zone ID is used to isolate the processes. Thus no virtualized PID is
used and no soundness challenge will be introduced.

Filesystem Ambiguity exists because filesystem isolation is also achieved by
chroot-like operation and file path will be virtualized while the root
directory path is specified by jail system call.

Ambiguity exists because a Zone needs a new root directory to be
specified.

Network This depends on what network isolation method is applied. If bind-
filtering is applied, sockets are actually created under host network
stack so that no soundness challenge would occur. Otherwise, if
epair of VNET is used for network isolation, each jail would have a
completely separate network stack just like what happens in Linux
network namespace. Then both fragmentation and ambiguity can
exist.

Both fragmentation and ambiguity can exist. When the default
exclusive-IP setting is applied, Data-link acts just like veth pairs
in Ubuntu and epair in BSD to provide the isolated network stack
where sockets are virtualized.

IPC Ambiguity exists. POSIX IPC objects are naturally isolated and Sys-
tem V IPC objects can be isolated with specific parameters so two
IPC objects can have the same ID/name.

Ambiguity exists. System V IPC objects are naturally isolated and
two System V IPC objects can have the same ID/name.

User The same provenance effect as that in Table 2 will occur for jails. The same provenance effect as that in Table 2 will occur for zones.
Time, UTS
and Cgroup

These do not affect dataflow in practice and thus do not directly
impact provenance.

These do not affect dataflow in practice and thus do not directly
impact provenance.

can effectively track the origins of a container microservice
attack as well as assess the forensic impact of such attacks.
For example, was the effect of the attack limited to the specific
container or was it used as a stepping stone to other container
targets? To effectively answer such questions, we need to de-
mystify the boundary of containers in the provenance graph.

Initialization of containers is another frequent activity that
explodes provenance graphs and may be abstracted to sim-
plify analysis. Thus, if we can accurately identify subgraphs
corresponding to initialization of each containers, we can pro-
duce simplified provenance graphs, effectively reducing the
effort for forensic analysts by automatically annotating ab-
normal cross-container activity. Specifically, we investigate
the container initialization regulation of several representa-
tive container engines, including Docker, rkt and LXC, and
summarize the patterns observed in each of them.

4 System Design and Implementation
In this section, we provide a detailed description of the
CLARION prototype design and the implementation that ex-
tends the SPADE provenance tracking system with additional
container-specific extensions. Our design goal is to propose a
solution for addressing soundness and clarity challenges by
only using trusted information from the kernel while limiting
extra instrumentation.

We claim that our solution is complete in handling all
aliasing introduced by namespaces. First, we cover all system
calls that can be used to manipulate namespaces generally, i.e.,
clone, unshare and setns. We investigate their semantics
and provide associated provenance data models with con-
sideration to different argument combinations as shown in
Section 4.2. Second, we analyze all existing namespaces and
understand what information will be aliased in the low-level
audit and cause problems to provenance tracking as shown in
Section 3.1. Our solution is designed to address all introduced
problems below in Section 4.1.

Table 5: Namespace Provenance Mapping Strategies
Namespace Affected Provenance Data Strategy

PID Process IDs Host-container mapping
Mount File paths Host-container mapping

Network Local IP addresses and ports Host-container mapping
IPC IPC Obejct IDs and names Namespace labeling

4.1 Mapping Virtualized Namespaces
We summarize our virtualized namespace-mapping strategies
in Table 5. For the soundness challenge, we establish a host-
container mapping view on provenance graph artifacts that
are impacted by most Linux namespaces because we believe
this will provide the most clear view for users to understand
the provenance. However, for the IPC namespace, the host
view of an IPC object does not actually exist. Hence, we adopt
a namespace-labeling approach.

4.1.1 PID Namespace

We considered multiple options to tackle the PID host-
container mapping problem including: (i) directly using
PPID (parent PID) to connect processes; (ii) using times-
tamps to map cloned child processes to its parent; (iii) using
/proc/PID/status for mapping information; and (iv) using
kernel module injection to get the PID mapping from kernel
data structures.

We ultimately eliminated other options and chose to imple-
ment a kernel module for several reasons. We found that di-
rectly using PPID was infeasible because it sometimes points
to the parent of the the process creating it. For the timestamp
option, the granularity provided by audit record cannot guar-
antee that the order of process creation matches the order
corresponding system call events. We also decided against us-
ing /proc/PID/status information as the /proc filesystem
does not support asynchronous callbacks and the overhead of
polling is prohibitive.

We implement our PID namespace host-container map-
ping solution as a kernel module that intercepts process-
manipulation-related system calls, e.g., clone, fork, and



Table 6: Operator Annotation
Annotation Explanation

put((key,value), X) put a pair (key,value) in a mapping X
get(key, X) get the value from a mapping Y given the key

vfork. Once those system calls are invoked by a process,
we do not directly use the return value to determine the PID
of its child process because it can be virtualized. Instead, we
input this return value to a kernel helper function pid_nr()
in /include/linux/pid.h to generate the global PID. Ultimately,
we use the global PID to generate the sound provenance graph.
However, we still capture both the global PID and virtualized
PID for every process vertex such that a complete view can
be provided.

4.1.2 Mount Namespace

To obtain the host-container mapping for file paths virtual-
ized by containers, we leverage an empirically derived de-
sign principle about the mount namespace, that is consis-
tent across state-of-the-art container engines, to develop an
instrumentation-free solution.

This empirical design principle is that the newly created
mount namespace needs the init process, i.e., the process
with virtual PID 1, to provide a new filesystem view different
from that in the parent mount namespace. It is achieved by us-
ing root directory change system calls, i.e., pivot_root and
chroot, where new root directories are provided in their ar-
guments. Specifically, state-of-the-art container engines make
the init process move CWD to the root directory of a new
container by using chdir(container_root_path) and then
invoke a pivot_root(‘.’,‘.’) or a chroot(‘.’) to wrap
up the root directory change.

Therefore, if we monitor those root directory change system
calls, we can use the CWD record associated with the chdir
to find the host path of the container root directory, and then
we attach this host path to every virtualized path as a prefix
to establish the host-container mapping on file paths. Given
the annotation in Table 6, the algorithm is described as four
steps.

Step 1. Handle chdir. (input: PID ‘p1’, CWD ‘cwd1’; op-
eration: put((p1,cwd1), LastCWD)). We do this to record the
last working directory for every process. With this informa-
tion we can know what is the last CWD of the first process
inside a new container, which will be the prefix for every
virtualized path.

Step 2. Handle pivot_root or chroot. (input: PID ‘p1’;
operation: put((p1, get(p1, LastCWD)), Prefix)). When a root
directory changing system call occurs, we label the corre-
sponding process with the last CWD as the prefix.

Step 3. Handle virtualized PATH records, CWD records
and arguments related to file operation system calls with path
prefix. (input: PID ‘p1’, syscall ‘s1’, operation: if ‘s1’ is
‘open’,‘read’,‘write’ etc. Use get(p1, Prefix) to add a new
annotation ‘nsroot’ representing the host prefix in the cor-

responding artifacts). This helps propagate the prefix from
processes to file artifacts.

Step 4. Handle (clone, fork, vfork). (input: Parent PID
‘p1’, Child PID ‘p2’; operation: put((p2, get(p1, Prefix)), Pre-
fix)). The prefix (root directory) information will be propa-
gated through process creation as kernel does.

We consider our mount namespace mapping solution to
be robust because it relies on a standardized implementation
technique for filesystem isolation and empirically validate its
adoption across representative container engines including
Docker, rkt and LXC.

For other cases where directories are shared between host
and container than chroot-like cases, we claim that our solu-
tion still works well. Taking bind mount as an example, the
key components in the bind mount provenance graph will be
one process vertex which executes a mount system call along
with two file artifacts representing the bound directories and
two file artifacts are connected by an edge representing that
mount system call. In this case, only the file path of the file
artifact inside the container will be affected and our solution
can still provide the host view of this file.

4.1.3 Network Namespace

For accurate provenance tracking of container network activ-
ity, CLARION needs to establish the host-container mapping
for virtualized local IP addresses and ports. To this end, we de-
sign a Netfilter-based solution for tracking the host-container
IP/port mapping and use the network namespace ID as a dis-
tinguisher. Netfilter is a Linux-kernel framework that provides
hooks to monitor every ingress and egress packet, including
packets from or to containers, on the host network stack [19].
The host network stack will do a source NAT for container
egress packets and a destination NAT for container ingress
packets before correctly forwarding those packets. Therefore,
by monitoring the IP/port NAT about container ingress/egress
packets on the host network stack, we can build the host-
container mapping of local IP addresses and ports for sockets
inside containers. We annotate each network socket artifact
with the corresponding network namespace identifier, so sock-
ets from different containers can be reliably distinguished.

The CLARION prototype implementation for the net-
work namespace consists of two parts: network namespace
identification and netfilter-based address mapping. For net-
work namespace identification, we modify SPADE’s ker-
nel module to intercept network-related system calls and
put the network namespace identifier of the calling process
on the generated network socket. For netfilter-based map-
ping, we register kernel modules at the beginning and the
end of netfilter hooks corresponding to NAT. Specifically,
POST_ROUTING and LOCAL_INPUT are used for source
NAT, while PRE_ROUTING and LOCAL_OUTPUT are used
for destination NAT. The former two hooks provide the map-
ping for egress connections from container and the latter two
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Figure 7: Handling the clone system call: a process vertex
representing the child will be created with the new namespace
label.

provide the mapping for ingress connections.
Whenever a new mapping is added, we will search for

the network device having the virtualized local IP address
in the new mapping, by iterating through network names-
paces using the function ip_dev_find(struct net *net,
__be32 addr). Through this, we find the container related
to this virtualized local IP address and put the mapped global
local IP address/port on the socket artifact that has the virtual-
ized local IP address/port in the new mapping. As a special
case, a socket may listen on 0.0.0.0 (IN_ADDR_ANY),
i.e., it can accept connection on any local IP address. Hence,
when we match socket artifacts with the virtualized local IP
address/port in the container, we always treat 0.0.0.0 as a
matched local IP and only check the local port.

4.1.4 IPC Namespace

The issue in the IPC namespace is that two different IPC
objects from different IPC namespaces may have the same
ID/name. Unlike other namespaces, the host-container map-
ping strategy for disambiguation does not extend to IPC object
artifacts, because there is no corresponding host IPC object
for virtualized IPC objects. Our design involves adding an IPC
namespace ID to every IPC object artifact so that IPC objects
from different containers can be uniquely distinguished.

The implementation of the IPC namespace solution was
effected by adding IPC namespace IDs to IPC objects affected
by namespace virtualization. Those objects consist of the
POSIX message queue and all System V IPC objects, i.e.,
message queue, semaphore, and shared memory. We assign
and propagate IPC namespace ids by carefully interpreting
process management system calls, e.g., clone, and IPC object
management system calls, e.g., msgget and msgsnd.

4.2 Essential Container Semantic Patterns
To address the clarity challenge, we propose two essential
container semantics which can significantly improve the qual-
ity of provenance graph. In addition, we design the semantic
patterns for summarizing them during provenance tracking.

4.2.1 Boundary of Containers

We begin by first providing a practical definition for a con-
tainer at runtime. A container at runtime is a set of processes
that share the same PID namespace. Usually processes inside
a container can share multiple namespaces but, most critically,
they at least have to share the PID namespace. In fact, while
container runtimes often provide support for sharing other
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ns_mnt: C0
ns_net: D0
ns_ipc: E0

pid: F0

unshare | setns
flag: CLONE_NEWPID

ns_pid: A0
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Figure 8: Handling the unshare and setns system calls on
NEWPID: a process vertex representing the calling process
itself will be created with the new assigned pid_for_children
label.
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ns_net: D0
ns_ipc: E0

pid: F0
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Figure 9: Handling unshare and setns system calls with
other flags: a process vertex representing the calling process
itself will be created with the new assigned namespace label.

namespaces, e.g., mount, IPC, and network, between contain-
ers, none of them allow for sharing the PID namespace.

Next, we define the relationship between an artifact, e.g.,
file and network, and a container. An artifact relates to a
container if and only if it can be accessed by a process in-
side that container. Here, "accessed" may refer to any type of
read-write operation. An artifact may relate to several con-
tainers and thus may be used to infer the relationship between
specific containers. An important challenge is labeling each
process with the correct namespace identifier. We address
this by carefully designing a new provenance data model for
system calls related to namespace operations. There are three
essential system calls for tracking the boundary of containers,
i.e., clone, unshare and setns. Clone and unshare sys-
tem calls are used for creating new namespaces; thus, they
signal the process of creating a container boundary. Setns
is used for aggregating two namespace together or making
another process join a namespace.

We designed five different namespace labels (correspond-
ing to PID, mount, network, IPC, and pid_for_children) and
handle them when three essential namespace-related system
calls (i.e., clone, unshare, and setns) occur, as shown in
Figure 7, 8 and 9. All figures are illustrated in the OPM prove-
nance data model format. The red areas highlight the changes
between before and after. The implementation follows the
Linux Kernel semantics for each system call and each names-
pace. The special case here is that if CLONE_NEWPID flag
is specified for unshare or setns process, this only affects
the child process generated by the calling process but does not
affect the calling process itself. By adding namespace labels
and handling namespace-related system calls, CLARION is
able to capture the namespace information for every single
process and leverage the PID namespace label to certify the
boundary of each container.
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Figure 10: CVE 2019-5736: Provenance graph for 1st start without (top) and with (bottom) namespace/container awareness

4.2.2 Initialization of Containers

By analyzing several state-of-the-art container engines, we
find that specific common pattern exist across containers that
may be leveraged to identify the initialization of containers.
In a nutshell, this pattern can be summarized as follows: start
with an unshare/clone with new namespace flag specified,
and end with an execve so that a new application can be
launched inside the container. Slight differences exist across
different container engines as described in Section 4. Identi-
fying these patterns facilitates abstracting subgraphs in the
provenance graph that corresponds to container spawning and
initialization activity.

Here, we explain the container initialization patterns for
Docker and rkt. For Docker, the initialization pattern is as
follows:

• After receiving gRPC connection from dockerd,
containerd will start a containerd-shim, which is
responsible for starting a new container.

• This containerd-shim process will invoke several
runC processes for initialization.

• One of those runC processes will invoke the unshare
system call and this marks the beginning of the actual

container initialization.

• The runC process calling unshare will clone several
child processes to finish several initialization tasks in-
cluding setting up /proc, /rootfs, and the network
stack.

• Finally, it will clone a child process and make it execute
the default container application, e.g., bash and apache.

Unlike centralized container engines like Docker, rkt does
not have a daemon process that is responsible for starting a
container. It has a more complex three-stage initialization pat-
tern that begins once rkt is started with specified parameters
to create a rkt container.

• Stage 0: It will use several instances of the systemd
process to set up different namespaces including PID,
Mount, Network, IPC and UTS.

• Stage 1: It will generate process inside the container
with namespace restriction set up and call chroot to
create a filesystem jail for this container.

• Stage 2: Finally, it will run the default application on
this process.



We implement those patterns as a SPADE filter, and it au-
tomatically finds the starting point of those initialization pat-
terns and attempts to do a backward traversal so the subgraph
corresponding to initialization will be marked.

5 System Evaluation
In this section, we evaluate CLARION by answering the
following questions.

• Q1. Usefulness: How effective is CLARION in dealing
with real-world container microservice attacks?

• Q2. Generality: Are namespace disambiguation strate-
gies implemented by CLARION for performing prove-
nance tracking generally applicable across different con-
tainer engines?

• Q3. Performance: Does CLARION provide an effi-
cient provenance monitoring solution for real-world mi-
croservice deployments?

5.1 Effectiveness Evaluation
To illustrate the effectiveness of CLARION for container-
based provenance and forensic analysis, we evaluate against
exploits of three recent CVEs affecting Docker. Specifically,
we generate the provenance graphs with and without names-
pace and container awareness to show the capability of our
solution. Then, we compare between the original provenance
graphs generated by SPADE and CLARION.

The CVEs that we selected include CVE 2019-5736
(runC), CVE 2019-14271 (docker-tar) and CVE 2018-
15664 (docker-cp). The first two exploits are particularly
detrimental because they can lead to privilege escalation in the
host machine. The third is a race-condition (time-dependent)
which requires multiple tries and some serendipity for suc-
cessful exploitation.

5.1.1 CVE 2019-5736: runC Exploit

runC through 1.0-rc6 (as used in Docker before 18.09.2 and
other platforms like LXC), allows attackers to overwrite the
host runC binary (and consequently obtain host root access)
by leveraging the ability to execute a command as root within
one of these containers: (1) a new container with an attacker-
controlled image, or (2) an existing container, to which the
attacker previously had write access, that can be attached with
docker exec. This occurs because of file-descriptor mishan-
dling, related to /proc/self/exe [6]. Overwriting runC can
lead to a privilege escalation attack by replacing runC binary
with a backdoor program. The following four steps are used to
demonstrate a successful exploitation using this vulnerability:

1. Create a container where we have gcc installed.

2. Create three files in this container with the docker cp
command. Those files are (1) a script (bad_init.sh)
that overwrites the executable (/proc/self/exe) of
the process running this script; (2) a C program

file (bad_libseccomp.c) that invokes bad_init.sh;
and (3) a shell script (make.sh) for compiling
bad_libseccomp.c and setting up the bait for runC.

3. Start this container and execute make.sh that accom-
plishes two goals: (1) replaces the seccomp module with
bad_libseccomp.c. Here seccomp module is a regu-
lar library which will be automatically loaded when an
Ubuntu container starts; (2) replaces the default start-up
process, i.e., the bash shell in Ubuntu containers, with
/proc/self/exe.

4. If and when this container is restarted, runC on the host
loads the malicious seccomp module leading to execu-
tion of the malicious script (bad_init.sh), which over-
writes the parent process, i.e., runC will be overwritten
with the contents of bad_init.sh.

We illustrate the provenance graphs associated with this
exploit in Figures 10, 11. This exploit consists of two starts
of a malicious container. Figure 10 corresponds to the first
start and Figure 11 corresponds to the second start.

We see that in the graphs without namespace aware-
ness, the provenance graph fractures completely. Specif-
ically, subgraphs corresponding to essential exploit steps
are fractured, making it challenging for analysts to do
backward and forward tracking given the attack points on
make.sh and bash. Furthermore, ambiguity exists every-
where in those namespace-unaware graphs. Among many
points exposing ambiguity, the ambiguity between two
/lib/x86_64-linux-gnu/libseccmp.so.2.4.1 file arti-
facts in the second start is significant. If we cannot distinguish
between them, we will not be able to understand that a ma-
licious GNU library inside the container is linked with the
runC instance (/proc/self/exe).

CLARION can successfully restore the connection be-
tween essential exploit steps in the namespace-aware prove-
nance graphs and also resolve the associated ambiguity issues,
making it very clear that a malicious container library is linked
by the runC instance (which is anomalous).

5.1.2 CVE 2019-14271: docker-tar Exploit

Docker 19.03.x (prior to 19.03.1) linked against the GNU C
Library (glibc) is vulnerable to code injection attacks, that
may occur when the nsswitch facility dynamically loads a
library inside the container using chroot 5 [5]. This code
injection can affect the library files on the host and may be
used to trigger privilege-escalation attacks.

We exploit this privilege-escalation vulnerability using
docker-tar, a helper process spawned by the Docker engine
that obviates the need to manually resolve symlinks in the
container filesystem. First, docker-tar uses the chroot com-
mand to change its root to the container’s root. This is done
so that all symlinks are resolved relative to the container’s

5The assumption here is that libraries within the containers are untrusted
from the perspective of the host.
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Figure 11: CVE 2019-5736: Provenance graph for 2nd start without (top) and with (bottom) namespace/container awareness

root, preventing any ambiguities. After running chroot,
docker-tar attempts to link with several standard glibc
libraries, which induces the vulnerability. When docker-tar
attempts to link with these libraries, it will instead link the
library files inside the container. However, a malicious image
could inject code inside those library files, such that the mali-
cious code executes as part of the docker-tar process since
they are linked by docker-tar. Specifically, two steps are
required to demonstrate exploitation of this vulnerability:

1. We modify libnss_files.so in the container image by
a malicious script modify.sh, an example library linked
with docker-tar, using a code injection attack such that
it includes additional code to execute a malicious script,
called breakout.sh, that sets up a backdoor on the host
using netcat.

2. When we then run the docker-tar command from a
container using this image, the docker cp command is
executed within the container that copies the library file
to the host, leading to an open backdoor on the host.

Provenance graphs for comparison are shown in Figure
12. Similar to the first exploit, the namespace-unaware prove-
nance graph is fractured. We see that bash process 2098 forked
a child process but does nothing due to PID namespace frac-
turing. In addition, this graph implies that the libnss library
on the host was compromised, which is incorrect. In contrast,
CLARION eliminates graph fracturing and provides a sound
and clear understanding of how this attack is initiated from
inside the container. Specifically, (1) CLARION marks the
boundary of containers so we know the starting malicious

script modify.sh is run inside the container; and (2) CLAR-
ION provides the mapped path for the library file so we know
the compromised libnss_files.so is inside the container.

5.1.3 CVE 2018-15664: Symlink TOCTOU Exploit

In Docker (versions <= 18.06.1-ce-rc2), API endpoints be-
hind the docker cp command are vulnerable to a symlink-
exchange attack with Directory Traversal. This gives attack-
ers arbitrary read-write access to the host filesystem with
root privileges, because daemon/archive.go does not do
archive operations on a frozen filesystem (or from within a
chroot) [4].

When docker cp attempts to use a symlink from the con-
tainer directory, it must find the absolute pathname file or di-
rectory in the context of the container filesystem. Failing to do
so causes the symlink to be resolved in the host’s filesystem,
which allows symlinks created inside the container to affect
files outside the container. When a user executes docker cp
on a container filesystem, the Docker daemon process first ex-
ecutes a FollowSymlinkInScope() function, which returns
the non-symlink path to the file/directory. Only after finding
the actual path for both source and destination filenames does
docker cp start copying files. One problem that arises from
this process is that there is no guarantee that the filesystem
won’t change between running FollowSymlinkInScope()
and copying the files. Here, a possible attack utilizing a Time-
of-Check to Time-of-Use (TOCTOU) race condition is to
have a process inside the container apply a symlink right af-
ter Docker verifies the symlink path, and right before docker
begins writing the file. When docker uses the filename it re-
solved earlier, it will traverse the symlink to a file on the host
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Figure 12: CVE 2019-14271: Provenance graph for the docker-tar exploit without (top) and with (bottom) namespace/container
awareness

machine.
Through this exploit, a container process could potentially

overwrite any file in the container when the host tries to copy
a file into that container. This includes crucial system files
such as password and user records. In our example, we use
the four steps shown below in the order when attackers win
the race condition to reproduce the exploit:

1. Host tries to copy a file w00t_w00t_im_a_flag from
the container’s filesystem to the host system by running
docker cp.

2. Docker engine resolves both source and destination file-
names, traversing any necessary symlinks.

3. Malicious process inside the container creates an-
other directory (stash_path), applies a symlink to
/, and performs a rename exchange of the origi-
nal directory containing w00t_w00t_im_a_flag, i.e.,
totally_safe_path, with stash_path.

4. Docker engine, uses the filename resolved at Step 2, and
performs a read of the container filename, and writes the
data to the host filesystem.

Once the malicious process wins the race condition (Step
3), the symlink will be resolved in the host’s filesystem and
docker cp ends up copying the w00t_w00t_im_a_flag in
the host, rather than the one inside the container. For this ex-
ploit, the provenance generated by CLARION graph shown
in Figure 13 does not show significant difference from the
namespace-unaware graph, because there is only one mali-
cious process which will be run from at container start. Yet,
without namespace awareness, the analyst will not be able to

know that the key malicious process, i.e., symlink_swap, is
running inside a container.

5.2 Cross-container Evaluation
To demonstrate that our solution is generic to several pop-
ular container engines together with deeper insights about
provenance graph statistics, we select LXC (a classical con-
tainer engine), rkt (a container engine with the second highest
market share), Mesos and Docker for evaluation.

5.2.1 Initialization Graphs

We show the provenance graphs for the initialization of a
hello-world container within each container engine in Fig-
ures 14, 15, and 16.

We find the initialization provenance graphs for the three
different container engines to be clear and intuitive. They
show that even when varying initialization routines are em-
ployed by different container engines, (e.g., rkt doesn’t start
the container before it finishes changing root path, while the
other two use the first process inside the container), our ini-
tialization patterns always detect them accurately. Moreover,
CLARION successfully summarizes the container boundary
for all three container engines.

5.2.2 Quantitative Provenance Graph Results

We measured the impact of CLARION on provenance graph
statistics to quantitatively assess the implications of names-
pace awareness with various container engines. We selected
five popular Docker images that cover typical use cases in
microservices including the base OS (ubuntu), a popular
database (redis), a continuous integration server (jenkins) and
a web server (nginx). We ran those images on three popu-
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Figure 13: CVE2018-15664: docker cp race condition exploit without and with namespace/container awareness. Steps 1 and 2
are attempts to establish the symlink between the stash path inside the container and the root path on the host. Steps 3 and 4
represent the renaming exchange between the symlinked stach path and the path of the file to be copied. Steps 5-7 show that
dockerd didn’t resolve the correct path and ultimately copies the incorrect file.
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Figure 14: Initialization of a hello-world rkt container

lar container engines: Docker, rkt and Mesos. The results
are reported in Tables 7, 8, and 9, respectively. For each im-
age, we collected the behavior from container initialization
to stable operation. In addition, we used two advanced con-
figurations for nginx to highlight the effect of namespace
awareness. MT-4 indicates that we ran the nginx server with
worker_process=4, while MC-4 means we ran four nginx con-
tainers concurrently.

We see that in most cases, the total count of vertices and
edges are not significantly impacted by the addition of names-
pace awareness. This is because it is possible for namespace
unawareness to add or reduce vertices/edges, depending on the
workload. For example, process cloning leads to more spuri-
ous vertices while false dependencies due to shared filenames
in the mount namespace results in fewer vertices. Generally
speaking, fewer vertices and more edges will be a better result
because the provenance graph suffers from less fracturing.
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Figure 15: Initialization of a hello-world Docker container

Hence, we count the (lost/extra) error vertices/edges in two
common cases, i.e., process creation and file access, causing
fragmentation and ambiguities. Though this may not cover
all cases causing error vertices/edges, we believe it provides a
useful lower bound to illustrate the severity of the soundness
issue. Finally, in the case of components, we can observe
significant differences when namespace awareness is turned
on. Specifically, in nginx(MC-4) for rkt, we can see the com-
ponents of SPADE are doubled in comparison to CLARION,
meaning the corresponding provenance graph fractures sig-
nificantly. This is because the four-container setting has more
workload inside the containers and so the subgraph inside
the container is much larger. Since the namespace-unaware
system will fail to infer correct provenance inside containers,
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Figure 16: Initialization of a hello-world LXC container

the whole graph becomes more fractured as well. These re-
sults underscore how, especially in microservice scenarios,
namespace-unawareness can lead to significant errors due to
both fragmentation and ambiguities.

5.3 Efficiency Evaluation
Our efficiency evaluation consists of two parts: runtime over-
head evaluation and storage overhead evaluation. We de-
ployed a microservice benchmark and conducted a perfor-
mance comparison between SPADE and CLARION.

5.3.1 Experiment Setup

The server machine we used has a configuration of Xeon(R)
E5-4669 CPU and 256 GB memory. The microservice bench-
mark we selected a very popular microservice demo, Online
Boutique [10], provided by Google. It contains 10 representa-
tive microservices and a web-based e-commerce app in which
users can browse items, add them to the cart, and purchase
them (i.e., a typical use-case for modern microservices).

5.3.2 Runtime Overhead

To compute the runtime overhead, we started every microser-
vice independently 100 times and recorded the cumulative
time for those 100 microservice containers to be initialized.
First, we performed this process for each microservice with-
out any audit subsystem enabled to get a baseline. Next, we
repeated this evaluation with Linux Audit, SPADE, CLAR-
ION, CamFlow, and Linux Audit with SE-Linux labeling 6.

We summarize the detailed results in Table 10. The incre-
mental overhead is calculated by comparing CLARION’s
overhead with that of SPADE. The “overall overheads” are
based on comparison against the performance of the Base sys-
tem. We find that the additional runtime overhead on SPADE
imposed by CLARION is under 5% which we consider to
be acceptable.

6Our objective is to obtain an estimate for Winnower’s computational
overhead. Unfortunately, because we do not have access to the Winnower
system, we use Linux Audit with namespace-aware audit rules and SE-Linux-
enabled Docker to obtain the results shown under SEL-Audit. We believe
SEL-Audit results can serve as a lower-bound estimate of Winnower’s com-
putational overhead as Winnower uses Linux Audit and relies on SE-Linux
labels. This does not measure the cost associated with Winnower’s graph
reduction or anomaly detection functionality.

The overall overhead of CLARION consists of SPADE
overhead and CLARION’s (PID namespace, Netfilter) kernel
module overhead. By comparing values in the Base column
with CLARION’s overhead columns, we see that the major
overhead originates from Linux Audit as opposed to extra
modules introduced by CLARION.

5.3.3 Storage Overhead

We compare the size of raw logs collected by SPADE and
CLARION in the aforementioned microservice environment
with all 10 microservices. We collected logs for 24 hours and
the results are shown in Table 11. We see that the additional
storage overhead for CLARION is modest (under 5%) and
much lower than CamFlow.

6 Related Work
Container Security. With the growing popularity of
container-based virtualization, numerous security issues have
been identified in container orchestration systems [8,9,14,18].
The reasons for these security issues may be attributed to a
diverse set of flaws in design assumptions. For instance, to
simplify support for file-system features like “bind mount”,
container engines, such as Docker do not enable the user
namespace by default because this leads to file access privi-
lege problems. But disabling the user namespace also implies
that the root user inside the container also becomes the root
user outside the container. In several aforementioned security
issues, attackers simply leverage this general vulnerability to
achieve privilege escalation on the host OS. Given the preva-
lence of such security issues, developing defensive technol-
ogy that supports security analysis in container environments
is crucial. This paper describes a first step toward a robust
forensics analysis framework for containerized application
deployments.
Container Vulnerability Analysis. Many existing efforts
[37] have focused on the problem of container system vul-
nerability analysis. One line of work leverages traditional
static analysis techniques to perform compliance checking
on container images, such as those built with Docker. How-
ever, they do not protect the integrity of container instances at
runtime [33, 40]. Thus, contemporary container vulnerability
analysis tools are limited in their ability to conduct long-term
forensic analysis. Our study complements current container
vulnerability analytics by providing a dynamic analysis view
that leverages semantics-aware comprehension of attacks tar-
geting running containers.
Provenance Tracking and Causality Analysis. Provenance
tracking and causality analysis have played a vital role in
system forensics [31, 32, 34, 36]. These tools build prove-
nance/causal graphs by connecting system objects like pro-
cesses, files, and sockets by using low-level events, such as
system calls. When an attack entry point is identified, forward
and backward tracking along graphs can then be performed to
find the attack-related subgraphs. These allow analysts to get



Table 7: Provenance Graph Statistics Comparison (Docker)
Service Error Vertices

(lost/extra)
Error Edges Vertices

SPADE/CLARION
Edges
SPADE/CLARION

Components
SPADE/CLARION

ubuntu 58 (8/50) 900 4236 / 4152 19056 / 19066 22 / 22
redis 78 (18/60) 1612 4759 / 4677 22856 / 22871 23 / 22
jenkins 55 (2/53) 133 4673 / 4581 21024 / 21026 28 / 25
node 72 (9/63) 919 4473 / 4387 19371 / 19376 24 / 21
nginx 72 (18/54) 1558 4737 / 4637 20780 / 20841 26 / 21
nginx
MT-4

73 (19/54) 1662 7467 / 7345 40711 / 40781 32 / 26

nginx
MC-4

376 (135/241) 7492 23875 / 23233 119128 / 119372 49 / 31

Table 8: Provenance Graph Statistics Comparison (rkt)
Service Error Vertices

(lost/extra)
Error Edges Vertices

SPADE/CLARION
Edges
SPADE/CLARION

Components
SPADE/CLARION

ubuntu 80 (59/21) 10076 19047 / 19031 88022 / 88114 28 / 27
redis 171 (145/26) 12540 19348 / 19330 90471 / 90573 26 / 26
jenkins 99 (84/15) 10749 19441 / 19420 90798 / 90893 28 / 28
node 138 (103/35) 13334 19600 / 19575 90029 / 90125 27 / 25
nginx 85 (69/16) 10671 19666 / 19617 90885 / 91063 34 / 28
nginx
MT-4

101 (70/31) 15272 23761 / 23721 106599 / 106754 40 / 33

nginx
MC-4

828 (726/102) 65022 92962 / 93158 425550 / 426194 66 / 36

a clear understanding of the attack origin and its impact on the
system. Several prior efforts have proposed mechanisms that
seek to improve the quality of generated provenance/causal
graphs [31, 32, 36] in different ways. While some of these
attempt to mitigate the dependency explosion problem and
eliminate unrelated data [41], others focus on real-time and
scalable graph generation [34]. As described in Section 2,
systems such as Winnower [26] and CamFlow [39] also have
limitations. CamFlow has namespace awareness but not con-
tainer awareness (i.e., it only extracts namespace identifiers,
but does nothing to deal with container semantics or container
boundaries.) In contrast, Winnower is container-aware but not
namespace-aware. Although it uses SELinux label informa-
tion to assign docker container IDs for process, file, and socket
objects, those labels are not sufficient to fully disambiguate
the effect of important syscalls like clone, fork. However,
since both Winnower and CLARION run on SPADE, the
two systems are complementary and could potentially be inte-
grated. Our work is also more general and agnostic to specific
container-management frameworks.
Alternative OS-level Virtualization Techniques. Multiple
OS-level virtualization techniques exist on other operating sys-
tem platforms. Among all those techniques, Solaris zones [11]
and FreeBSD jails [12] show considerable similarity to Linux
namespaces because both of them seek to provide isolation of
system resources virtualized by Linux namespaces, e.g., pro-
cess identifiers, filesystem and network stack, while sharing
the same underlying kernel. Although conceptually similar,
provenance effects from these techniques depend on multiple
factors including virtualized resources, OS platforms, audit
frameworks, etc. We provide a summary of our investigation
into BSD Jail and Solaris Zones in Section 3.1.

7 Conclusion
In this paper, we present a comprehensive analysis of the
soundness and clarity challenges introduced in data prove-
nance analysis by Linux namespaces and containerization.
Our analysis informed the development of CLARION, a
namespace-aware provenance tracking solution targeting
Linux container-based microservice deployments. Specifi-
cally, we resolved the soundness challenges introduced in
each of the Linux namespaces affected by containeriza-
tion and developed abstraction patterns to clarify container-
specific semantics. We demonstrated the wide applicability
of our solution by illustrating the generation of namespace-
aware provenance graphs across multiple container engines.
Evaluation results on real-world microservice benchmarks
show that our solution is more effective than state-of-the-art
provenance-tracking techniques and introduces acceptable
additional overhead.
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Table 9: Provenance Graph Statistics Comparison (Mesos)
Service Error Vertices

(lost/extra)
Error Edges Vertices

SPADE/CLARION
Edges
SPADE/CLARION

Components
SPADE/CLARION

ubuntu 10 (5/5) 241 28019 / 27932 76555 / 76561 18 / 17
redis 30 (18/12) 3149 19667 / 19574 59504 / 59507 17 / 17
jenkins 267 (210/57) 25453 34664 / 34560 141381 / 141387 26 / 24
node 21 (9/12) 1106 4960 / 4864 15492 / 15495 16 / 15
nginx 23 (20/3) 2389 5159 / 5067 17580 / 17582 20 / 17
nginx
MT-4

23 (20/3) 2418 5185 / 5093 22545 / 22547 17 / 16

nginx
MC-4

1402 (1383/19) 30304 19606 / 18817 66972 / 66982 30 / 22

Table 10: Runtime Overhead Comparison of Container Provenance Systems
Service Base (secs) Linux Audit

(secs)
SPADE
(secs)

CLARION
(secs)

Incremental
Overhead
(CLARION)

Overall
Overhead
(Audit +
SPADE +
CLARION)

Overall
Overhead
(CamFlow)

Overall
Overhead
(SEL-Audit)

frontend 1503 s 1550 s 1558 s 1578 s 1.3% 3.7% 4.8% 32.4%
productcatalog
service

668 s 679 s 681 s 691 s 1.5% 3.4% 9.1% 25.0%

currencyservice 1104 s 1139 s 1153 s 1169 s 1.4% 5.9% 12.9% 8.5%
paymentservice 1082 s 1123 s 1126 s 1143 s 1.5% 5.6% 11.5% 9.7%
shippingservice 434 s 446 s 449 s 451 s 0.4% 3.9% 22.5% 25.8%
emailservice 929 s 960 s 1028 s 1068 s 3.9% 15.0% 1.2% 17.6%
checkoutservice 682 s 719 s 714 s 734 s 2.8% 7.6% 3.2% 13.9%
recommendation
service

8726 s 9418 s 9337 s 9729 s 4.2% 11.5% 9.5% 19.5%

adservice 4438 s 4454 s 4518 s 4571 s 1.2% 3.0% 5.3% 8.5%
loadgenerator 200 s 208 s 212 s 215 s 1.4% 7.5% 20.4% 29.4%

Table 11: Storage Overhead Comparison
SEL-Audit CamFlow SPADE CLARION Incremental

Overhead
168.79 GB 312.56 GB 174.68 GB 181.75 GB 4.05%
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Figure 17: Motivating Example: Trivial insider attack.
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A Insider Attack: Detailed Steps
The attack partially shown in the motivating example is illus-
trated in Figures 20. The attack involves 3 steps.

Step 1: The cat command is used in a bash shell to read
the /etc/passwd file.

Step 2: The same bash shell is then used to set up a back-
door using the netcat (nc) tool on socket with IP address /
local port (0.0.0.0/4000).

Step 3: Connection is established to this backdoor port
from a remote host.

We perform those steps inside a container and on the
host. The container is initialized with a port mapping from
port TCP/4000 inside the container to port TCP/8000 on the
host. It looks like the netcat process was listening on port
TCP/4000 of this container, but in fact it was listening on port
TCP/8000 on the host. The bash shell processes which start
the attacks are process 2976 and process 4032.

As shown in Figure 20, we cannot identify which attack is
performed in the container. Furthermore, the process creation
provenance, clone between PID 2976 and PID 3030 (VPID
10), inside the container is broken, resulting in fragmentation.

In addition, we only see one file and one socket being
touched in the graph because two touched files have the same
virtualized paths and two connected sockets have the same
local addresses, leading to ambiguity.
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